

Voltage Regulation Using Static Var Compensatorat Karu 132/33kv Substation in Abuja Nigeria

A.E.Anyalebechi.

Electrical Engineering Department, Nnamdi Azikiwe University Awka, Anambra State, Nigeria.

Date of Submission: 07-06-2020

Date of Acceptance: 23-06-2020

-

I. INTRODUCTION

Voltage magnitude regulation is achieved by controlling the amount of reactive power generated or absorbed at key points of the network as well as by controlling the flow of reactive power throughout the network [1]. Voltage regulation is carried out locally by sources and sinks of reactive power, such as shunt capacitors, shunt reactors, rotating synchronous condensers and Static Var Compensators (SVCs). Shunt capacitors and reactors are only capable of providing passive compensation since their generation or absorption of reactive power depends on their rating, and the voltage level at the connection point. On the other hand, the reactive power generated or absorbed by synchronous condensers and SVCs is automatically adjusted in order to maintain fixed voltage magnitude at the connection points. A load that has positive reactive power (+Q) is said to "absorb" vars. Inductive loads therefore absorb vars. Conversely, a load that has negative reactive power (-Q) generates or supplies vars. Hence, capacitive loads supply or generate vars.

From the operational point of view, the SVC behaves like a shunt-connected variable reactance, which either generates or absorbs reactive power in order to regulate the voltage magnitude at the point of connection to the AC network [1]. In its simplest form, the SVC consists of a TCR in parallel with abank of capacitors. The thyristor's firing angle (α) control enables the SVC to have an almost instantaneous speed of response.

Figure (1a) SVC structure formed by fixed capacitor and TCR; and (1b) Variable susceptance representation.

It is used extensively to provide fast reactive power and voltage regulation support. It is also known to increase system stability margin and to dampen power system oscillations [2]. The schematic representation of the SVC and its equivalent circuit are shown in Figure (1) above, where a TCR is connected in parallel with a fixed bank of capacitors.

An ideal variable shunt compensator is assumed to contain no resistive components, i.e. G_{svc} is equal to zero. Accordingly, it draws no active power from the network. On the other hand, its reactive power is a function of nodal voltage magnitude at the connection point, say node *n*, and the SVC equivalent susceptance B_{svc} . That is, $P_n = 0$ (1)

$$\mathbf{Q}_n = -|V_n|^2 B_{svc} \qquad (2)$$

Where,

$$B_{SVC} = -\left\{ \frac{X_L - \frac{X_C}{\pi} [2(\pi - \alpha) + \sin 2\alpha]}{X_C X_L} \right\} \dots (3)$$

 $\alpha = \text{the firing angle of the thyristors,}$
 $X_C = \text{the capacitive reactance,}$
 $X_L = \text{the inductive reactance.}$

When the SVC is operated in voltage regulation mode, it implements the following V-I characteristics.

 $\begin{array}{l} V_{ref} + I X_s & \text{if SVC is in regulation range } (-B_{cmax} < B < B_{lmax}) \\ - I/B_{cmax} & \text{if SVC is fully capacitive } (B = B_{cmax}) \\ \text{if SVC is fully inductive } (B = B_{lmax}). \end{array}$ $\begin{array}{l} (4)$

V	Positive sequence voltage (pu)
Ι	Reactive current (pu/pbase) (I> 0 indicates an inductive current)
Xs	Slope or droop reactance (pu/Pbase)
B _{cmax}	Maximum capacitive susceptance (pu/Pbase) with all TSCs in service, no TSR or TCR
B _{lmax}	Maximum inductive susceptance (pu/Pbase) with all TSRs in service or TCRs at full conduction, no TSC
Pbase	Three-phase base power specified in the block dialog box.

II. KARU SUBSTATION:

There are four 2-winding power transformers and nine feeders in the karu 132/33 KV substation. The transformers and feeders are as follows:

- TR1 this is a transformer rated 30MVA. It supplies
- Karshi Line 1: feeder 1
- TR2- this is a transformer rated 30MVA. It supplies
- Karshi Line 2: feeder 2
- TR3- this transformer is rated 60 MVA. It supplies the following feeders
- Kugbo: feeder 3
- Nyanya-Mpappe: feeder 4
- Jikwoyi: feeder 5
- TR4 this is a transformer rated 60MVA supplying
- Gidan-Daya: feeder 6
- Orozo: feeder 7
- Gidan-Mangoro: feeder 8

Apo: feeder 9

Figure (3) Single line diagram of Karu 132/33KV substation.

To carry out load flow analysis, we made the following assumptions:

- An external grid connected to the 132KV incoming bus bar is considered as the reference bus
- A nominal voltage of 33KV at the bus bar of the receiving end
- The average temperature of the transmission line is taken to be 70 degrees Celsius
- Since the feeder length are low, they are neglected
- The system frequency is taken to be 50Hz
- The transformers have tap changers assumed to be in the neutral position
- The system is in steady state condition
- The marginal limit for voltage is 98% to 102%
- Critical limit for voltage is 95% to 105%

III. SIMULATION DATA AND EQUIPMENT PARAMETERS

Table1:Karu Peak Load Data for August 2018:

	PEAK LOAD (MW)	PEAK LOAD (MVAR)
KARSHI LINE 1	13.4	6.5
KARSHI LINE 2	16.4	7.9
KUGBO	15.6	7.5
NYANYA-MPAPPE	7.9	3.8
JIKWOYI	6	2.9
GIDAN-DAYA	5.5	2.7
OROZO	20	9.7
GIDAN-MANGORO	9.4	4.5
APO	5.6	2.7

				,	
Basic Data	General Advanced				ОК
Load Flow	Input Mode	P, cos(p	hi)	•	Cancel
VDE/IEC Short-Circuit	Balanced/Unbalanced	Balance	d	-	Figure >>
Complete Short-Circuit	Operating Point			Actual Values	
ANSI Short-Circuit	Active Power	5.5	MW	5.5 MW	Jump to
IEC 61363	Power Factor	0.85	ind. 💌	0.85	
DC Short-Circuit	Voltage	1.	p.u.		
RMS-Simulation	Scaling Factor	1.		1.	
EMT-Simulation	Adjusted by Load	Scaling	Zone Scalin	g Factor: 1.	
Harmonics/Power Quality	L				
Optimal Power Flow					
State Estimation					
Reliability					
Generation Adequacy					
Description					

	1					
Basic Data	Name	2-Winding 1	ransformer Type(D		
Load Flow	Technology	Three Phas	e Transformer	-		
VDE/IEC Short-Circuit	Rated Power	30.	MVA			
Complete Short-Circuit	Nominal Frequency	50.	Hz			
ANSI Short-Circuit	Rated Voltage			Vector Group		
IEC 61363	HV-Side	132.	kV	HV-Side	YN 👻	
DC Short-Circuit	LV-Side	33.	kV	LV-Side	YN 💌	
RMS-Simulation	Positive Sequence Impedar	nce		Internal Del	ta Winding	_
EMT-Simulation	Short-Circuit Voltage uk	3.	* ●	Phase Shift	0.	*30deg
Harmonics/Power Quality	Copper Losses	0.	kW	Name	YNyn0	
Protection	- Zero Sequence Impedance					
Optimal Power Flow	Short-Circuit Voltage uk0	3.	~ %			
Reliability	SHC-Voltage (Re(uk0)) uk0	r 0.	%			
Generation Adequacy		1				
Description						

Table 4: Bus	Parameters	as entered in	PowerFactory
I dole li Dat	1 unumeters	as entered in	10men actory

Basic Data	Voltage Control				
.oad Flow	Target Voltage	1.	p.u.	33.	kV
/DE/IEC Short-Circuit	Delta V max	5.	%		
Complete Short-Circuit	Delta V min	-5.	%		
NSI Short-Circuit	Priority	-1			
EC 61363	Steady State Voltag	ge Limits			
C Short-Circuit	Max. Voltage	1.05	p.u.		
MS-Simulation	Min. Voltage	0.95	p.u.		
MT-Simulation	-Voltage Step Chap	ne Limite			
larmonics/Power Quality	n-1	6	~		
rotection	n-2	12.	~ %		
ptimal Power Flow	Busbar Fault	12.	~ %		
leliability		1			
eneration Adequacy					
lie Open Point Opt.					

Load How	Terminal ▼ → new haven\BUS 1\Cub_3	BUS 1	C
VDE/IEC Short-Circuit	Zone 🔸		Fig
Complete Short-Circuit	Area 🔸		- 119
ANSI Short-Circuit	Cut of Service		Jun
IEC 61363		7	
DC Short-Circuit	Q Reactance (>0) 0. Mvar		
RMS-Simulation	TCR, Max. Limit 0. Mvar		
EMT-Simulation			
Harmonics/Power Quality	TSC Max. Number of Capacitors]	
Optimal Power Flow	A per Capacitor Unit (<0) 0 Myar		
State Estimation			
Reliability	MSC	7	
Generation Adequacy	Number of Capacitors 0		
Description	Q per Capacitor Unit (<0) 0. Mvar		
	Balanced/Unbalanced Control	7	
	Balanced Control		
	O Unbalanced Control		

 Table 5: Static Var System parameter as entered in PowerFactory

Table 6: Transmission Line parameters as entered in PowerFactory

ine Type - Equipment Type	Library\Line Type.Ty	pLne *				S X
Basic Data	Name	Line Type				ОК
Load Flow	Rated Voltage	33. kV				Cancel
VDE/IEC Short-Circuit	Rated Current	0.45 kA				
Complete Short-Circuit	Nominal Frequency	50. Hz				
ANSI Short-Circuit	Cable / OHL	Overhead Line	•			
IEC 61363	System Type	AC 💌	Phases	3 Number of Neutr	als 0 🔻	
DC Short-Circuit	Parameters per Le	ength 1,2-Sequence		Parameters per Length Ze	ro Sequence	1
RMS-Simulation	AC-Resistance	R'(20°C) 0.00953	Ohm/km	AC-Resistance R0'	0.07555 Ohm/km	
EMT-Simulation				▶	•	
Harmonics/Power Quality	Reactance X'	0.7242	Ohm/km	Reactance X0'	0.21753 Ohm/km	
Protection						
Optimal Power Flow						
Reliability						
Generation Adequacy						
Cable Sizing						
Description						

Table7: Recorded and Simulated Load Voltages with and without SVC:

		6	
BUS	BUS VOLTAGE FROM	BUS VOLTAGE WITHOUT SVC	BUS VOLTAGE WITH SVC
	RECORDED VALUE(KV)	WITH SIMULATION(KV)	WITH SIMULATION(KV)
1	32.4	32.5	33.0
2	32.3	32.4	33.0
3	32.4	32.7	33.0
4	31.9	32.0	33.0

IV. GRAPH SHOWING VOLTAGES WITH AND WITHOUT SVC:

Figure (9)Graph comparing Bus voltages, Recorded, simulated with and without SVC.

TABLE8:SVC data after simulation				
BUS	SVC DATA (MVAR)	SVC DATA (KA)		
1	-8.5	0.149		
2	-10.5	0.185		
3	-11.3	0.197		
4	-26.4	0.461		

FABLE 9: Transformer	r loading	before	and after	SVC
-----------------------------	-----------	--------	-----------	-----

TRANSFORMER	LOADING WITHOUT SVC (%)	LOADING WITH SVC (%)			
TR1	53.3	44.7			
TR2	66.5	54.7			
TR3	52.8	49.2			
TR4	82.0	67.5			

V. CONCLUSION

The simulations were carried out, with all the parameters above, using *PowerFactory Digsilent software models*. The summary of the results are as shown in figure 9 above and tables 8 and 9.. By the result, the SVC was able to effect proper compensation at the various buses, hence offering a good voltage profile. This therefore confirms our expectations thereby proving the device's feasibility.

REFERENCES

- [1]. Miller. T.J.E. (ed), Reactive Power Control in Electric Systems, John Wiley & Sons, New York, 1982.
- [2]. Kundur. P., *Power System Stability and Control*, the EPRI Power System Engineering Series, McGraw-Hill, New York, 1994.

A.E.Anyalebechi. "Voltage Regulation Using Static Var Compensatorat Karu 132/33kv Substation in Abuja Nigeria." *The International Journal of Engineering and Science (IJES)*, 9(6), (2020): pp. 36-41.