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I. INTRODUCTION 
The mixed integral equation of Fredholm -Volterra type can be solved analytically using these 

methods: Cauchy method, orthogonal polynomial method, Potential theory method and Krein's method. The 

importance of F-VIE of the first kind and contact problems came from Abdou work in [1]. Where, the solution 

of F-VIE of the first kind in one, two and three dimensional has been obtained, analytically using separation of 

variables method.  

Now, the solution of F– VIE of the second kind plays an important rule in contact problem and theory 

of elasticity. In [2], a numerical method is used to obtain the solution of F– VIE of the second kind when the 

kernel of Fredholm integral term takes a form of continuous function. Also the relations between the F–VIE and 

contact problems have been discussed in [3]. Using the Fredholm index and operator theory, the existence and 

uniqueness of F-VIE of the second kind have been obtained in [4].  

In this paper we will discuss and solve the nonlinear F-VIE of the second kind using two different 

methods. FI term is considered in position, while VI term is measured in time. 

The remainder of this paper is devoted into three sections. In section two the stability of the solution of 

nonlinear F-VIE of the second kind in the space 2[0,1] [0, ] , 1L C T T  , are presented. The kernel of FI term 

is considered as a continuous function in position, while the kernel of VI term is a positive continuous function 

in time. In section three, using a numerical method, the F-VIE will be reduced to a linear algebraic system of 

FIE. In section four Trapezoidal and Simpson’s methods are discussed and applied to solve the FIE of the 

second kind with continuous kernels. Finally, conclusion is considered to explain the results. 

 

II. THE STABILITY OF THE SOLUTIONS 
Consider the formula,  

1

0 0

( , ) ( ( , ), ( , )) ( , ) ( , ) ( , ) ( , )

t

x t f x t x t k x y y t dy F t x d                       (2.1) 

The integral equation (2.1) is called nonlinear F-V integral type. This formula is considered in the 

space 2[0,1] [0, ] , 1L C T T  , where the Fredholm integral term is considered in position and its kernel 

( , )k x y  may has a singular term. While the Volterra integral term is considered in time and its kernel ( , )F t   

is positive and continuous for all , [0, ], 1t T T   , µ is defined the kind of integral equation and λ is a 

constant that has a physical meaning.  

In order to guarantee the existence of a unique solution of equation (2.1) by using Picard method, we assume the 

following conditions: 

 

(i) The kernel of the Fredholm term     ( , ) 0,1 0,1 ,k x y C   and for the 
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discontinuous case, we use the Fedholm condition: 
1

1 1 2
2

0 0

( , ) , ( is a constant )k x y dy dx c c
 

 
  
   

(ii)  The kernel of the Volterra term     ( , ) 0, 0, ,F t C T T    0 1t T    , and 

satisfies:    , , , 0, ,F t M t T        M  is a constant 

(iii)  The given function ( ( , ), ( , ))f x t x t   with its partial derivatives with respect to tx   and   are 

continuous in 2[0,1] [0, ],L C T    and satisfies,  

 

 (iii-a)           ( , , , )x t f      

(iii-b)          

1
1 2

2

0
0 0

( , ) max ( , ) ,    is a constant

t

t T
f f dx d H H    

 

 
  

 
   

 (iii-c)           
1 2 1 2( , ) ( , ) .( 1)f f A A          

Where 

                                    1 2 2, [0,1] [0, ]L C T     

To prove that the solution is exist, we use the successive approximation, for this we pick up any real continuous 

function ),(0 tx  in 2[0,1] [0, ]L C T , then construct a sequence n  defined by 

1

1 1

0 0

( , ) ( ( , ), ( , )) ( , ) ( , ) ( , ) ( , )

t

n n n nx t f x t x t k x y y t dy F t x d                   

1

1 1 2 2

0 0

( , ) ( ( , ), ( , )) ( , ) ( , ) ( , ) ( , ) (2.2)

t

n n n nx t f x t x t k x y y t dy F t x d                 

For ease of manipulation it is convenient to introduce: 

   

1

1

1 2 1 2

0 0

( , ) [ ( ( , ), ( , )) ( ( , ), ( , ))]

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) , 1, 2 (2.3)

                                                                              

n n n

t

n n n n

x t f x t x t f x t x t

k x y y t y t dy F t x x d n

    

         



   

 

     

         

 1, ( , ) (2.4)n n nWhere x t      

the formula (2.4) can be adapted in the form,                               

   
1

, , (2.5)
n

n i

i

x t x t 


  

Using the conditions (iii-c) and (1.3) we have,                                                 

 
1

1 1 1 1

0 0

( , ) ( , ) ( , ) ( , ) ( , ) , ( 1 ) (2.6)

t

n n nx t k x y y t dy F t x d A                 

Using the properties of the norm and conditions, (i) and (iii) to get, 
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 

1

1 1 1 2
2 2

1 1 0 0
0

0 0 0 0 0

1
1 2

2

0
0

0 0

( , ) max ( , ) ( , ) ( , )

max ( , ) 2.7

t t

t T

t

t T

x t k x y dy y t dy dx d M x d

c y t dy d M t

        

   

 

 

  
   

   

 
  

 

    

  

Finally, we get,  

1 1

( , ) , (2.8)

n

n n

n

c M T c M T
x t    

 

    
     

   
 

                         

This bound makes the sequence ),( txn  converges under the following condition,  

 

11 (2.9)
c M T


   


   

The result of (2.9), leads us to say that the formula (2.7) has a convergent solution. So, let n  , we have 

                                           

0

( , ) ( , ) (2.10)i

i

x t x t 





                                                        

The infinite series of (2.10) is convergent, and  tx,  represents the convergent solution of Eq. (2.1). Also 

each of i  is continuous, therefore  tx,  is also continuous.  

 To show that  tx,  is unique, assume that  tx,
~
  is also a continuous solution of (4.1) then, we write 

   
1

0 0

( , ) ( , ) [ ( ( , ), ( , )) ( ( , ), ( , ))] (2.11)

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

t

x t x t f x t x t f x t x t

k x y y t y t dy F t x x d

     

         

  

    

 

 

              

This leads us to the following 

Using condition (i) and (ii) , then applying Cauchy - Schwarz inequality, equation (2.11) describe the conditions 

for stability solution.                 

We obtain,            

   

 

1 ( , ) ( , ) , ( , ) , ( , ) (2.12)

, ( , )

x t x t c y t y t M T x x

y t y t

          

  

    

 

  


 

Finally, we obtain 

                    

 (1 ) , ( , ) 0, 1 (2.13)x t x t                                               

Since   ),(
~

, txtx    is necessarily non – negative, and 1  , we get 

0 .         

It follows that if (2.1) has a unique solution. 

 

III. NUMERICAL METHODS AND EXAMPLES, 

  In this section, we discuss the solution of the nonlinear NF-VIE (1.1) numerically using two different 

methods Trapezoidal rule, Simpson rule method, and determine the error in each method. 
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● Trapezoidal rule: For solving equation (1.1) numerically, we divide the interval  0,1 into s  subintervals 

with length 1 ; 0,1,2,3,...h s s L   can be even or odd, where 
 

, ,i jx x y x  0 , .i j s   

Then the nonlinear F-VIE (1.1) reduce to the following nonlinear algebraic system  

When  ju  the weight function with respect to position, while w  weight function with respect to time. 

     

 

0

, ,

0

( ( ), ( )) , (3.1)

, 0,1,2, , .

s

n i n i i j i j j

j

n

n i n s

x f x x u k x x x

w F x R n N  



    

 





 

  



 

                  

 

Where,  ju ,w   are the weights defined by 

                       

2 0,
2 0,

;
0 .

0

j

h n
h j S

u w
h j S

h n








 

  
                  

 

  After neglecting the error, we using the following notations:  

   , , , , , ,, ( , ) ( , ( )), ( , ), ( , ).n i n i n i n i n i n n i n i i j i j m mx f f x x k k x x F F t t          The 

formula (1.1) can be rewritten in the following form:
 

, , , , , , , , ,
0 0

( , ) ,0 . (3.2)
s n

n i n i n i n i j i j n j n i n S
j

f u k w F R n S  


      
 

      
        

 

The formula (2.1) represents system of ( 1)N   equations and ( 1)N   unknowns coefficients. By solving them, 

we can obtain the approximation solution of (1.1). 

Definition 1: The estimate the error NR of Trapezoidal rule is determined by  

 
1

0 0

,

, , , , , , ,
0 0

( ( , ), ( , )) ( , ) ( ; ) , ( ; )

, 0 (3.3)

( , )

t

n s s n

n i n i n i j i j n j n i
j

f x t x t k x y y t dy F t x d

R i s

f u k w F
  



        

     
 

 

  

  

 

 

Theorem (without proof): the nonlinear system (2.1) has a unique solution in the space  under the 

conditions:

 '1
1 2; 1 (3.4)

' 'L M


 


  


                                             

Where, for a constant   1 2 3' max , , ,       we have consider the definition of,  

' '

, , , 1 2 ,

'

, , , , , , 3 , ,

(1') ( , )

(2 ') ( , ) ( , )

n i n i n i n i

n i n i n i n i n i n i n i n i

f

f f

  

     

  


   

 


 

Also, we have   

, , , ,
0 0

( '')sup '', ( '')sup ' (3.5)
S n

j i j n j n i
j

ii k L iii F M  


   
 

    

Simpson rule: 

For using Simpson rule to solve (2.1) numerically, we divide the interval  0,1 into s subintervals with 

length 1/h s is even, 0 , .i j s    Let , ,i jx x y x  then, after approximating the integrals term, we 

get 
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, , , , , , ,

0 0

( , ) , 0 (3.6)
s n

n i n i n i n i j i j j n i

j

f k F n s  


        
 

       

1

, ,
0

0

( , ) ( , )
s

N j i j j

j

R k x y y t dy k    


                        

 

Where the weight j is defined as 

 ( / 3, 0, );( 4 / 3, 0 , ),j jh j s h j s j odd      and ( 2 / 3, 0 , )j h j s j even     

While, the weight  takes two forms depending on the value of n odd or even 

If n is odd we use Trapezoidal rule and then,  

 ; ( / 2, 0, );( , 0 ) ( 0, ) (3.7)h n h n and n                  
   

           

(2.8) 

If n is even we use Simpson rule and  

; ( / 3, 0, );( 4 / 3, 0 , ); (3.8)

( 2 / 3, 0 , ) ( 0, )

h n h n odd

h n even and n

   

 

      

    

     

    

  

 
                 

 

Definition 2: The estimate error
 
of Simpson rule is determined by  
1

,

0 0

, , , , , ,

0 0

( ( , ), ( , )) ( , ) ( , ) ( , ) ( , ) (3.9)

{ ( , ) }

t

n s

s n

n i n i n i j i j j n i

j

R f x t x t k x y y t dy F t x d

f k F  



        

       
 

  

  

 

 



      

Theorem (without proof): The nonlinear system (2.1) using Trapezoidal and Simpson’s methods has a unique 

solution in space  , under the conditions, (2.6) 

'

2

'
; ' 1

'' ''

B
B

L M
   


  

If  ,n s , we have  , 0n sR   

 

, , , , , , ,
0 0

1

0 0

( , )

( ( , ), ( , )) ( , ) ( ; ) , ( ; )

S n

n i n i n i j i j n j n i
j

t

f u k w F

f x t x t k x y y t dy F t x d

  


     

        

 

 
   

 

 
  

 

 

 
  

IV. NUMERICAL EXAMPLES: 
Example (1) 

1

2 2 2

0 0

2 2

(x, t) f(x, t) (x, t) (y, t)dy . (x, )d

( (x, t) ; 0.01, 0.8)

t

µ x y t t

x t t

        

 

   

  

 
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Table (1) 

 
Table (1) describes the deference in errors using Trapezoidal and Simpson’s rule at time t = 0.01. 

 
 

 

0.0 0.2 0.4 0.6 0.8

0.0000

0.00002

0.00004

0.00006

0.00008

0.0001

Trapezoidal X , 

Ex a ct

Num e rica l
 

 

 

 

0.0 0.2 0.4 0.6 0.8

0.0000

0.00002

0.00004

0.00006

0.00008

0.0001

Simpson X  
Ex a ct

Num e rica l
 

0.01, 0.8t   

Figure (1) 
 

Figure (1) describe the relationship between exact solution and numerical solution using Trapezoidal and 

Simpson’s rule. 
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Table (2) 

 

Table (2) describes the deference in errors using Trapezoidal and Simpson’s rule at fixed time t = 0.1 
 

 

 

0.0 0.2 0.4 0.6 0.8

0.000

0.002

0.004

0.006

0.008

0.010

Trapezoidal x  
Ex a ct

Num e rica l
 

 

 

 

0.0 0.2 0.4 0.6 0.8

0.000

0.002

0.004

0.006

0.008

0.010

Simpsons x  
Ex a ct

Num e rica l
 

 
 

Figure 2 
Figure (2) describe the relationship between exact solution and numerical solution using Trapezoidal and 

Simpson’s rule. 
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Table (3) 

Table (3) describes the deference in errors using Trapezoidal and Simpson’s rule at fixed time t = 0.95 
 

 

 

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

Trapezoidal X  
Ex a ct

Num e rica l
 

 

 

 

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

Simpesons X  
Ex a ct

Num e rica l
 

 
Figure (3) 

 
Figure (3) describe the relationship between exact solution and numerical solution using Trapezoidal and 

Simpson’s rule. 

 

Example (2)                
1

2 2

0 0

2 2

(x, t) f(x, t) (x, t) (y, t)dy . (x, )d

( (x, t) ; 0.01, 0.8)

t

xyµ e t t

x t t

        

 

   

  

 
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Table (4) 

 

  Table (4) describes the deference between the error using Trapezoidal and Simpson’s rule at time t = 0.01 

Figure (4) 
 

Figure (4) describe the relationship between exact solution and numerical solution using Trapezoidal and 

Simpson’s rule. 
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Table (5) 

  Table (5) describes the deference between the error using Trapezoidal and Simpson’s rule at time t = 0.1 
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Figure (5) 

Figure (5) describe the relationship between exact solution and numerical solution using Trapezoidal and 

Simpson’s rule. 
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Table (6) 

 

In table (6) we show, the deference between the errors using Trapezoidal and Simpson’s rule at time t = 0.95. 
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Figure (6) 

Figure (6) describe the relationship between exact solution and numerical solution using Trapezoidal and 

Simpson’s rule. 

 

V.  CONCLUSION 
Here, we consider a nonlinear integral equation of the second kind with continuous kernels, we obtain 

the numerical solution of the NF-VIE using Simpson’s method and Trapezoidal method, while, the functions of 

the integral equations are represented in the form of Simpson’s and Trapezoidal rules. The error, in each 

example is computed. 

After using example 1 Simpson’s and Trapezoidal rule we note that: 

In table (1) with μ= 0.8 and t = 0.01, we noticed in trapezoidal method and Simpson’s method the error 

decreasing in the period of 0 0.25x    and increasing in the period of 0.3 0.8x  . 
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In table (2) with μ= 0.8 and t = 0.1, as we noticed in trapezoidal method and Simpson’s method the error 

decreasing in the period of  0 0.25x   and increasing in the period of 0.3 0.8x  

 

In table (3) with μ= 0.8 and t = 0.95, as we noticed in trapezoidal method and Simpson’s method the error 

decreasing in the period of  0 0.2x   and increasing in the period of 0.2 0.8x  .   

 
By using example 2 for Simpson’s and Trapezoidal rule we note that: 

In table (4) with μ= 0.8 and t = 0.01, we noticed that the error stable in trapezoidal method, but in Simpson’s 

method the error decreasing in the period of the period of 0 0.15x   , and decreasing in period 

0.2 0.8x  

 

In table (5) with μ= 0.02 and t = 0.1, we noticed in trapezoidal method the error is stable in the period of 

0 0.8x  , but in Simpson’s method the error decreasing in the period of the period of 0 0.15x  ,and 

decreasing in period of 0.2 0.8x  

 

In table (6)  with μ= 0.8 and t = 0.95, we noticed in trapezoidal method the error decreasing in the period of 

0 0.1x     and increasing in the period of 0.15 0.8x  but in Simpson’s method the error decreasing in 

the period of the period of 0 0.25x  ,  and decreasing in period of 0.3 0.8x  

 

We conclude that we have a good accuracy results with Simpson’s method to solve nonlinear Fredholm -

Volterra integral equation. 
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