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---------------------------------------------------ABSTRACT------------------------------------------------------- 
The ultimate feature of every electrical machine, whether a generator,  motor or transformer is its output 

characteristics. It is the yard-stick upon which the machine is evaluated. Obviously, the output characteristics of 

all conventional transfer field reluctance machines are much inferior to that of a conventional induction 

machine of comparable size and ratings. This is an attribute of their low direct axis reactance to quadrature 

axis reactance ratio, coupled with the excessive leakage reactance from the quadrature axis reactance. These 

are as a result of the salient nature of their rotor pole structures. To ameliorate these set-backs, their rotor 

designs have to be optimized. This is achieved by the introduction of cage (rotor) windings at the periphery of 

the machine shaft.  
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I. INTRODUCTION 
The inherent demerit of all cage-less three phase transfer field effect machines is their poor output 

characteristics such as low output power, low electromagnetic torque and low power factor, when compared 

with those of conventional three phase induction machine of related size and ratings. To enhance the output 

characteristics of the machine set, the leakage reactance has to be minimized. This is achieved by optimizing the 

rotor design. To this effect, additional windings known as rotor (cage) windings are wounded at the periphery of 

the rotor shaft connecting the two stack machines. Just as in auxiliary windings, the rotor windings, are 

transposed between the two machine sets, and then connected in parallel with the auxiliary windings. The idea 

for such connection is that when impedance are added to the rotor circuit, of the conventional T.f machine, the 

rotor power factor is improved. (Menta V. K. et al 2000). 

Since the effect of improvement of power factor during starting predominates the increase in 

impedance or decrease of current, the torque of the motor is improved. To bring down the effect, such reduction 

in rotor-induced current or in the increase in rotor impedance, the auxiliary and cage windings of both machine 

sections are connected in parallel, but transposed between the two machine halves and then short circuited. 

Surely, the arrangement boosts the rotor induced current, owing to reduction in the overall impedance of the 

circuit.  

The use of short-circuited rotor windings, would lead to considerable improvement in its output 

performance. The rotor windings do not only give rise to increase in the induced e.m.f. but also augment output 

power by effectively lowering the synchronous reactance of the output windings, thus leading to a higher output 

and greater synchronous stability.  

To this end, there is a necessity to rise the output of the cage-less three phase transfer field machine by way of 

using circuits on the rotor structure, so as to augment the effect of saliency (E.S. Obe and A. Binder 2011). 

 

II. THE MACHINE DESCRIPTION 

 The structural arrangement of the machine under study is shown in figure 1. Unlike the existing three 

phase transfer field cage –less machine counterpart, the three-phase transfer field machine with cage windings 

comprise two identical poly-phase reluctance machine with moving conductors (rotor windings), whose salient 

poles rotor are mechanically coupled together, such that their d and qaxes are in space quadrature. As depicted 

in figure 1, the stator windings, are integrally wound. Each machine element has three sets of windings.  Both 

sets of windings of the machine are identical. The stator (primary) and the auxiliary windings are housed at the 

stator slots. The main windings of the machine carry the excitation current, while the auxiliary and the rotor 

windings, carry the circulating current. The (2s-1) ω0 low frequency current is confined in the auxiliary and the 

rotor windings without interfering with the supply. The main windings of the machine sets are connected in 
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series while the auxiliary windings, though also in the stator are transposed between the two machine stacks. 

They are wound for the same pole number and both are star connected. The third set of windings known as the 

rotor (cage) windings are wounded at the periphery of the rotor shaft connecting the two machine sets. Just as in 

the auxiliary windings, the rotor (cage) windings are also transposed between the two machine stacks and then 

connected in parallel with the auxiliary windings (see figure 2). 

 

 
Figure 1: Connection diagram for three phase transfer field reluctance machine with rotor (cage) winding 

 

Steady state analysis of three-phase transfer-field reluctance machine with rotor (cage) winding. 

The steady state analysis of the configured machine can be done, using the schematic diagram of figure 2 below; 

 

 
Figure 2: Per-phase schematic diagram of 3-phase transfer field machine with rotor (cage) windings. 
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Figure 3 Modified schematic diagram of 3-phase transfer field machine with cage winding under stand-

still condition, that is slip(s)=1 

 

 
Figure 4: Per-phasemodified schematic diagram of three-phase transfer machine with cage winding 

under run condition, that is slip = (2s-1). 

 

Where, V1 = Main winding voltage  

 V2 = Auxiliary winding voltage 

 V3 = Cage (rotor) winding voltage  
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Ld1 = L d2 = L d3 = Ld = Direct axis inductances  

Lq1 = L q2 = L q3 = Lq = Quadrature axis inductances  

R1 = R2 = R3 = R = Resistance of the machine windings  

i1 = Current at the main windings 

i2 = Current at the Auxiliary windings 

i3 = Current at the rotor windings 

Also , L12, L13. L21 L23 L31 and L32 are the mutual coupling between coil 1, 2,  and 3 at the direct axis.  

Similarly, 𝐿12 ,𝐿13 ,𝐿,𝑙23 ,𝐿31  and 𝐿32 are the mutual couplings between coil 1, 2, and 3 at the quadrature axis.  

Hence  L12 = L13 = L21 = L23 = L31 =  L32 = k  𝐿𝑑𝐿𝑑  = Ld  

Similarly, 𝐿12 =𝐿13 =𝐿21 =𝐿31  = 𝐿32 = k 𝐿𝑞𝐿𝑞  = Lq 

Owing to the fact that the pole structure of the machine is salient in nature as in fig, Ld ≠ Lq. that is; 

 

 
Figure 5 The Salient pole structure of the machine with d-axis and q-axis positions 

 

From figure 5,  

Ld= N
2
Pd = 

𝑁2

𝑆𝑑
 

Lq = N
2
Pq = 

𝑁2

𝑆𝑞
  

Sd = 
𝑙𝑑

𝜇𝐴
            (1) 

Sq= 
𝑙𝑞

𝜇𝐴
 

 

Also from figure 5,lq>ld, at constant μA and N,Sq>Sd 

Ld>Lq 

Where, ld  = Direct axis air-gap length, 

lq = Quadrature axis are gap length  

Pd, Sd = Direct axis permeance and reluctance respectively  

Pq, Sq= Quadrature axis permeance and reluctance respectively  

Ld = Direct axis inductance  

Lq = Quadrature axis inductance  

Taking the voltage equation of the machine sections of figure 2, we obtain; 

V1 = (R1 + R1) i1 + Ld

𝑑𝑖1

𝑑𝑡
 + Lq 

𝑑𝑖1

𝑑𝑡
 + L12 

𝑑𝑖2

𝑑𝑡
 - 𝐿12 

𝑑𝑖2

𝑑𝑡
 + L13 

𝑑𝑖3

𝑑𝑡
 - 𝐿13 

𝑑𝑖3

𝑑𝑡
 

V1 = (R1 + R1) i1 + Ld

𝑑𝑖1

𝑑𝑡
 + Lq 

𝑑𝑖1

𝑑𝑡
 + Ld

𝑑𝑖2

𝑑𝑡
 - Lq 

𝑑𝑖2

𝑑𝑡
 + Ld 

𝑑𝑖3

𝑑𝑡
 -Lq

𝑑𝑖3

𝑑𝑡
 

V1 = 2R1 i1 + jωLd i1 + jωLq i1 + jωLd i2 – jωLq i2 + jωLd i3 – jωLq i3 

V1 = 2R1 i1 + jxd i1 + jxq i1 + jxd i2 - jxq i2 + jxd i3 - jxq i3 

V1 = 2R1 i1 + j(xd + xq – (xd - xq) i1 + j(xd - xq)i1+ (xd - xq)i2+ j(xd - xq)i3 

V1  = 2R1 i1 + j (2xq)i1 +(xd - xq) (i1 + i2 + i3)              (2) 

V2 = (R2 + R2)i2 + Ld

𝑑𝑖2

𝑑𝑡
 + Lq 

𝑑𝑖2

𝑑𝑡
+ L21 

𝑑𝑖1

𝑑𝑡
 - 𝐿2𝑖 

𝑑𝑖1

𝑑𝑡
 + L23 

𝑑𝑖3

𝑑𝑡
- 𝐿23 

𝑑𝑖3

𝑑𝑡
 

V2 = (R2 + R2) i2 + Ld

𝑑𝑖2

𝑑𝑡
 + Lq 

𝑑𝑖2

𝑑𝑡
 + Ld

𝑑𝑖1

𝑑𝑡
 - Lq 

𝑑𝑖1

𝑑𝑡
 + Ld 

𝑑𝑖3

𝑑𝑡
 -Lq

𝑑𝑖5

𝑑𝑡
 

V2=  2R2 i2 + (2s -1) [ jωLd i2 +jωLq i2 +jωLd i1 – jωLq i1 + jωLd i3 – jωLq i3] 

V2 = 2R2 i2 + (2s -1) [ jxd i2 + jxq i2 + jxd i1 - jxq i1 + jxd i3 - jxq i3] 

V2 = 2R2 i2 + (2s -1) [ j(xd + xq – (xd - xq)) i2 + j(xd - xq)i2+ j(xd - xq)i1+ j(xd - xq)i3] 

V2  = 2R2 i2 +  (2s -1) [ j (2xq) i2 +j (xd - xq) (i2 + i1 + i3)      
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
𝑉2

2𝑠−1
  =  

2𝑅2𝑖2

2𝑠−1
  + j (2xq)i2 + j(xd- xq) (i1 + i2 + i3)       (3) 

Also, V3 = (R3 + R3)i3 + Ld

𝑑𝑖3

𝑑𝑡
 + Lq 

𝑑𝑖3

𝑑𝑡
 + L31

𝑑𝑖1

𝑑𝑡
 - 𝐿31 

𝑑𝑖1

𝑑𝑡
 + L32 

𝑑𝑖2

𝑑𝑡
 - 𝐿32 

𝑑𝑖2

𝑑𝑡
 

 V3  = (R3 + R3)i3 + Ld

𝑑𝑖3

𝑑𝑡
 + Lq 

𝑑𝑖3

𝑑𝑡
+ Ld

𝑑𝑖1

𝑑𝑡
 – Lq

𝑑𝑖1

𝑑𝑡
 + Ld 

𝑑𝑖2

𝑑𝑡
- Lq

𝑑𝑖2

𝑑𝑡
 

V3=  2R3 i3 + (2s -1) [ jωLd i3 + jωLq i3 – jωLq i1 + jωLd i1 – jωLq i2 + jωLd i2] 

V3 = 2R3 i3 + (2s -1) [ jxd i3 + jxq i3 + jxd i1 - jxq i1 + jxd i2 - jxq i2] 

=  2R3 i3 + (2s -1) [j(xd + xq –( xd - xq))i3+j( xd - xq) i3 + j( xd - xq)i1 + j( xd - xq)i2 

= 2R3 i3 + (2s -1) [j(2xq)i3 +  j( xd - xq) (i3 + i1 + i2) 


𝑉3

2𝑠−1
=  

2𝑅3𝑖3

2𝑠−1
+ j(2xq) i3+ j(xd- xq) (i1 + i2 + i3)       (4) 

Equation 2-4 result an equivalent circuit of figure 6 below  

 

 
Figure 6 Per-phase steady state equivalent circuit of 3-phase transfer field machine with rotor windings 

 

Since the rotor and auxiliary windings are short circuited, 
𝑉3

2𝑠−1
 =0, 

𝑉2

2𝑠−1
 = 0. Hence, figure6 yields; 

 

 
Figure 7 Per-phase steady state equivalent circuit of 3-phase transfer field machine with rotor (cage 

winding) when rotor and auxiliary windings are short circuited. 

 

From figure 3, So far R1 = R2 = R3 = R, 

Z2↑↑ Z3 =  
 

2𝑅

2𝑠−1
 +  𝑗2 𝑥𝑞  

2𝑅

2𝑠−1
 +  𝑗2 𝑥𝑞  

 
2𝑅

2𝑠−1
 + 𝑗2 𝑥𝑞+  

2𝑅

2𝑠−1
 +  𝑗2 𝑥𝑞 

  

 

= 
  

2𝑅

2𝑠−1
 +  𝑗2 𝑥𝑞  

2

2[ 
2𝑅

2𝑠−1
 +  𝑗2 𝑥𝑞  ]
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= 

2𝑅

2𝑠−1
 +𝑗2 𝑥𝑞

2
 

 

= 
2𝑅

2(2𝑠−1)
 + 

𝑗2 𝑥𝑞

2
 

 Z2↑↑ Z3 = 
𝑅

2𝑠−1
 +𝑗𝑥𝑞         (5) 

 

Hence, figure7 can be redrawn as below;  

 

 
Figure 8 Modified steady state equivalent circuit of the machine under short circuit condition. 

 

Also, 
2𝑅

2𝑠−1
 = R + 

2𝑅 (1−𝑠)

2𝑠−1
         

Hence, Figure 8 becomes;  

 

 
Figure 9 Per-phase steady state equivalent circuit machine with electrical (representing Cu-loss) and 

mechanical loads. 

 

From figure 9,  

VTH =  
𝑗  𝑥𝑑−𝑥𝑞  

𝑗  𝑥𝑑−𝑥𝑞  +  2𝑅+𝑗2 𝑥𝑞  
 𝑉1 

=  
𝑗  𝑥𝑑−𝑥𝑞  

2𝑅+𝑗  (𝑥𝑑−𝑥𝑞+2𝑥𝑞 ) 
 𝑉1 

If 2R <<j (xd – xq + 2 xq), we have; 

VTH =  
𝑗  𝑥𝑑−𝑥𝑞  

𝑗 (𝑥𝑑−𝑥𝑞+2𝑥𝑞 ) 
 𝑉1 

VTH  = 
𝑥𝑑−𝑥𝑞

𝑥𝑑+𝑥𝑞
 𝑉1  volts         (6) 

Also 

ZTH = 
𝑗  𝑥𝑑−𝑥𝑞  (2𝑅+𝑗2 𝑥𝑞)

𝑗  𝑥𝑑−𝑥𝑞  (2𝑅+𝑗2 𝑥𝑞)
 

= 
𝑗  𝑥𝑑−𝑥𝑞  (2𝑅+𝑗2 𝑥𝑞 )

2𝑅+𝑗  (𝑥𝑑−𝑥𝑞+2𝑥𝑞 )
 

If 2R <<< j (xd – xq + 2 xq), then; 
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ZTH = 
𝑗  𝑥𝑑−𝑥𝑞  (2𝑅+𝑗2 𝑥𝑞)

𝑗  𝑥𝑑−𝑥𝑞+2𝑥𝑞  
 

= 
 𝑥𝑑−𝑥𝑞   2𝑅+𝑗2 𝑥𝑞  

 𝑥𝑑+𝑥𝑞  
 

But (xd – xq) (2R + j2 xq) = 2R (xd – xq) + j(2xq (xd – xq))  

= 2R (xd – xq) + j(2xq xd – 2xq xq))        (7) 

 ZTH = 
2𝑅 𝑥𝑑−𝑥𝑞  

(𝑥𝑑+𝑥𝑞 )
 +

𝑗  2𝑥𝑞𝑥𝑑− 2 𝑥𝑞  
2
 

(𝑥𝑑+𝑥𝑞 )
 

But ZTH = RTH + XTH 

Hence RTH = 
2𝑅 (𝑋𝑑−𝑋𝑞  )

(𝑋𝑑+𝑋𝑞  )
 - Real value of ZTH       (8) 

XTH =  
𝑗 (2𝑥𝑞𝑥𝑑 −2(𝑥𝑞 )2) 

(𝑋𝑑+𝑋𝑞  )
 = 

𝑗2𝑥𝑞  (𝑋𝑑−𝑋𝑞  )

(𝑋𝑑+𝑋𝑞  )
 - Imaginary value of ZTH     (9) 

 

Hence figure 9reduces to;  

 

Figure 10 Thevenin equivalent circuit model of 3-phase transfer field machine with cage (rotor) windings 

 

From figure 10,  

𝑖1  =i23=
𝑉𝑇𝐻

𝑍𝑇𝐻
 = 

𝑉𝑇𝐻

 𝑅𝑇𝐻 + 𝑅+ 
2𝑅(1−𝑠)

2𝑠−1
 + 𝑗  (𝑋𝑇𝐻 +𝑋𝑞 )

 

= 
𝑉𝑇𝐻

 𝑅𝑇𝐻 + 
𝑅

2𝑠−1
 + 𝑗  (𝑋𝑇𝐻 +𝑋𝑞)

         (10) 

𝑖1
2 = 

 𝑉𝑇𝐻  2

[ 𝑅𝑇𝐻 + 
𝑅

2𝑠−1
 + 𝑗 (𝑋𝑇𝐻 +𝑋𝑞 )]2

 

=  
 𝑉𝑇𝐻  2

 𝑅𝑇𝐻 + 
𝑅

2𝑠−1
 

2
+  (𝑋𝑇𝐻 +𝑋𝑞 )2

         (11) 

 

Power Across Air-gap, Torque and Power Output in three-phase transfer field machine with cage (rotor) 

winding  

 With regards to the equivalent circuit of figure 9, the power crossing the terminal ab in the circuit is the 

power that is transferred from the stator windings to auxiliary and cage windings, through the machine air-gap 

magnetic field. This is called the power across the air gap or simply air-gap power, whose three phase value is 

shown below;  

PG = 3 (i23)
2 𝑅

2𝑠−1
 Watts         (12) 

Also, Auxiliary Rotor windings copper loss Pc (aux/rotor) = 3(i23)
2
R    (13) 

Putting equation 13 into equation 12, we have;  

 

PG = 
𝑃𝑐(𝑎𝑢𝑥 /𝑟𝑜𝑡𝑜𝑟 )

2𝑠−1
 

 Pc (aux/rotor) = (2s-1) PG Watts        (14) 

But Mechanical Output (gross) Power (Pm) of the machine is given by;  

Pm = PG – Pc (aux/rotor) 

 Pm =  3(𝑖23 )2 𝑅

2𝑠−1
  -  3(𝑖23)2 𝑅 = 6 (i23)

2
R 

(1−𝑆)

2𝑠−1
 Watts 

Pm = 2PG(1-s) Watts         (15) 
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 From equation 14 and 15, it can be inferred that high slip operation of the machine will favour 

auxiliary/rotor winding copper losses Pc(aux/rotor) at the detriment of the mechanical output (gross) Power 

(Pm), and would make the machine highly inefficient. Hence, the machine is particularly designed to operate at 

low slip, even at full load. 

 

Torque/slip Characteristic of 3-phase transfer field reluctance machine with cage windings  

From figure 10, the expression for the steady-state electromagnetic torque of the machine is given as below;  

Te = 
𝑃𝑚

𝜔𝑚
 = 

𝑃𝑚

𝜔 1−𝑠 
          

= [6 (i23)
2
R 

(1−𝑆)

2𝑠−1
x 

1

𝜔 1−𝑠 
]= 

6(𝑖23 )2𝑅

𝜔 (2𝑠−1)
 

= 
6(𝑖23 )2𝑅

𝜔 (2𝑠−1)
 N-m           (16) 

Putting equation 11 into equation 16, we have; 

Te = 
6

𝜔
 

𝑅

2𝑠−1
  

 𝑉𝑇𝐻  2

 𝑅𝑇𝐻 + 
𝑅

2𝑠−1
 

2
+ (𝑋𝑇𝐻 +𝑋𝑞 )2

  N-m        (17) 

Equation 17 is the expression for torque developed as a function of voltage (VTH) and slip (s). 

 

 

Production of Torque/Slip Curve for 3-Phase Transfer field Machine with cage (rotor) winding  

It is the interaction between the windings (main, auxiliary and the rotor) current that produce the fluxes, which 

is responsible for torque production. 

 

Table 1 – Parameters for 3-phase transfer field reluctance machine with cage (rotor) windings 
S/No Parameter  Value 

1 Lmd 133.3mH 

2 Lmq 25.6mH 

3 Lls = Lla = Lrr 0.6mH 

4 rm = ra = rr = 2R 3.0Ω 

5 J 1.98x10-3kgm3 

6 V 220V 

7 F 50HZ 

8 P 2 

With the values of the machine parameters and using equation 6 through equation 17 a plot for the Torque/Slip 

curve of the machine is developed as in figure 11. 

 

 
Figure 11 A plot of Torque/Slip characteristics of the 3-phase transfer field machine with cage winding. 

 

Efficiency/Slip characteristics of the configured 3-phase transfer field machine  

 The efficiency-slip relationship for the configured 3-phase transfer field machine can be studied for 

better, using the per phase steady-state equivalent circuit of the machine as in figure 9. 

The input impedance looking through the input terminals is; 
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Z = 2R + j2xq +  
𝑗  𝑋𝑑−𝑋𝑞   (𝑗𝑥 𝑞+

𝑅

2𝑠−1
 )

𝑅

2𝑠−1
+ 𝑗 (𝑥𝑞+  𝑋𝑑−𝑋𝑞  )

      = 2R + j2xq +  
𝑗  𝑋𝑑−𝑋𝑞   (𝑗𝑥 𝑞+

𝑅

2𝑠−1
 )

𝑅

2𝑠−1
+ 𝑗𝑥𝑑

    (18) 

The current I1 in the main winding is giving by;  

iI = 
𝑉𝐼

𝑍
           (19) 

Similarly, the current in the auxiliary and rotor windings (i23) is given by; 

i23 =  
𝑗  𝑋𝑑−𝑋𝑞 

𝑅

2𝑠−1
+𝑗(𝑥𝑞+  𝑋𝑑−𝑋𝑞 

 𝑖1        (20) 

The copper losses in the main, auxiliary and rotor winding = 3 2𝑅 𝑖1 
2 +  𝑅 𝑖23 

2  
       =3𝑅 2 𝑖1 

2 +   𝑖23 
2  (21) 

But, Input Power = Output Power + Copper losses in the main, auxiliary and rotor winding, excluding windage 

and friction losses; 

 Input Power = 6R  
1−𝑠

2𝑠−1
  𝑖23 

2 + 3R (2(i1)
2
 + (i23)

2
)  

                       = 3R  2  
1−𝑠

2𝑠−1
  𝑖23 

2 +  2 𝑖1 
2+ 𝑖23 

2      (22) 

 The machine efficiency (ɛ) = 
2 

1−𝑠

2𝑠−1
  𝑖23  2

2 
1−𝑠

2𝑠−1
  𝑖23 2+ 2 𝑖1 

2+ 𝑖23  2
     (23) 

The characteristics curve of the relationship between the machine efficiency against slip(s) is obtained, using 

equation 23, as in figure  

 

 
Figure 12 Efficiency/Slip characteristics of 3- phase transfer field machine with cage winding 

 

Power factors/Slip characteristic of 3-phase transfer field machine   

From the Thevenin equivalent of the configured machine of figure 9 the machine’s power factor (cosθ) is given 

by;  

Power factor (cosθ) = 
𝑅𝑒𝑎𝑙  (𝑍)

 𝑅𝑒𝑎𝑙  (𝑍)2+𝐼𝑚𝑎𝑔  (𝑍)2
 

   = 
𝑅𝑇𝐻 +

𝑅

2𝑠−1

 (𝑅𝑇𝐻 +2𝑠−1
𝑅 )2+  𝑋𝑇𝐻 +𝑋𝑞  

2
      (24) 

A  plot of the power factor (cosθ) against slip(s) is shown in using equation 24 
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Figure 13 Power factor/Slip characteristics of 3-phase transfer field machine with cage winding 

 

Rotor current (i23) /Slip(s) characteristic of 3-phase transfer field machine with rotor windings  

Using equation 10, a plot of rotor current (i23) against slip(s) is obtained as in figure 14. 

 

 
Figure 14 A plot of Rotor current/slip characteristics of 3-phase T.F machine with cage winding. 

 

Dynamic Model of 3-Phase transfer Field Machine with cage (rotor) windings  

 For us to derive the dynamic equations of the circuit model of the configured transfer field reluctance 

machine it is paramount to take a look at the variation of inductances with rotor position since the rotor has 

salient poles. In general, the peameance along the d and q axes is not the same. 

 Since the rotor is of salient poles, its mmfs are always directed along the d and q axes. Also, the 

direction of the resultant mmf of the stator windings relative to these two axes will vary with the power factor. A 

common approach to handling the magnetic effect of the stator’s resultantmmf is to resolve it along the d and q 

axes, where it could be dealt with systematically. Let us consider the magnetic effect of current flowing in phase 

aof the stator. The resolved components of the a-phase mmfFa, will produce the flux components:  

 

𝜙d = PdFasin θr and 𝜙q = PqFacosθr along the d and q axes respectively. 

 

Where P = peameance 

The linkage of these resolved flux components with the a-phase windings is; 

λaa = Ns (𝜙d Sin θr + 𝜙q cos θr) Wb turn.  

     = Ns Fa (Pd sin2θr + Pq cos2θr) 

     = Ns Fa (
𝑝𝑑+𝑝𝑞

2
 -

𝑝𝑑−𝑝𝑞

2
 cos 2θr)        (25) 
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Similarly, the linkage of the flux component, 𝜙d and 𝜙q by the b - phase winding that is 
2𝜋

3
 ahead may be 

written as: 

λba = NsFa (Pd sin θr sin (θr - 
2𝜋

3
) + pqcosθrcos (θr - 

2𝜋

3
)) 

           = NsFa (−
𝑝𝑑+𝑝𝑞

4
 -

𝑝𝑑−𝑝𝑞

2
 cos 2(θr- 

𝜋

3
))       (26) 

 

Based on the functional relationship of λaa with the rotor angle, θr, we can deduce that the self inductance of the 

stator a-phase winding, excluding the leakage has the form; 

Laa= Lo – Lmscos 2 θr, H 

Where; 

Lo = 
𝐿𝑚𝑑 +𝐿𝑚𝑞

2
  and Lms = 

𝐿𝑚𝑑 +𝐿𝑚𝑞

2
 

Those of the b – and c – phases, Lbb, Lcc are similar to that of Laa but with θr replaced by (θr- 
2𝜋

3
) and (θr+ 

2𝜋

3
), 

respectively.  

Similarly, it can be deduced that the mutual inductance between the a and b phase of the stator is of the form,  

Lab = Lba = 
𝐿𝑜

2
 - Lmscos 2 (θr- 

2𝜋

3
) H        (27) 

 

 Similarly, expression for Lbc and Lac can be obtained by replacing θr with (θr- 
2𝜋

3
) and (θr+ 

2𝜋

3
) 

respectively.  

 Since a conventional T.F. effect machine is composed of two components with two windings each, if 

the parameter referring to the main winding is increased with the subscript A, B, C (ie phase quantities) while 

that referring to the auxiliary winding will have subscript a, b, c, the dynamic model can be derived as follows:  

VABC = rABCiABC + PλABC 

Vabc = rabciabc + Pλabc         

VdqrABC = rdqrABCidqrABC + PλdqrABC        (28) 

Vdqrabc = rdqrabcidqrabc + Pλdqrabc 

Where P 
𝑑

𝑑𝑡
, λ = flux  

RABC = diag [(rArBrC)] andrabc= diag [(rarbrc)] 

The flux linkages are expressed as;  

λABC = LGGiABC + LGHiabc 

λabc = LHGiABC + LHHiabc         (29) 

where LGG, LGH, LHG and LHH are inductance matrices obtained from the inductance sub matrices of the two 

components machines as shown below. 

 Let L11 be the self inductance of the main winding and L22 be the self inductance of the auxiliary 

winding; then the mutual inductance between the main and the mutual inductance between the main and the 

auxiliary winding will be L12 or L21 as the case may be; 

Now; L11 =  

𝐿𝐴𝐴 𝐿𝐴𝐵 𝐿𝐴𝐶

𝐿𝐵𝐴 𝐿𝐵𝐵 𝐿𝐵𝐶

𝐿𝐶𝐴 𝐿𝐶𝐵 𝐿𝐶𝐶

   L12 = ±   

𝐿𝐴𝑎 𝐿𝐴𝑏 𝐿𝐴𝑐

𝐿𝐵𝑎 𝐿𝐵𝑏 𝐿𝐵𝑐

𝐿𝐶𝑎 𝐿𝐶𝑏 𝐿𝐶𝑐

  

L21 = ±  

𝐿𝑎𝐴 𝐿𝑎𝐵 𝐿𝑎𝐶

𝐿𝑏𝐴 𝐿𝑏𝐵 𝐿𝑏𝐶

𝐿𝑐𝐴 𝐿𝑐𝐵 𝐿𝑐𝐶

   L12 = ±   

𝐿𝑎𝑎 𝐿𝑎𝑏 𝐿𝑎𝑐

𝐿𝑏𝑎 𝐿𝑏𝑏 𝐿𝑏𝑐

𝐿𝑐𝑎 𝐿𝑐𝑏 𝐿𝑐𝑐

  

So far the main and the auxiliary winding are identical, 

LGG = L11 (Machine A) + L11 (Machine B) 

       = 𝐿11
𝐴  +𝐿11

𝐵  

The individual inductance expressions are as follows; 

LAA =La1 + La2cos 2 θr 

LAB = LBA = - ½  La1 ±  La2cos (2 θr – α) 

LAC = LCA = - ½  La1 ±  La2cos (2 θr + α) 

LBC = LCB = - ½  La1 ±  La2cos 2 θr 

LBB=  ½  La1 ±  La2cos (2 θr - α) 

LCC=  ½  La1 ±  La2cos (2 θr + α) 

Laa=  ½  La1 ±  La2cos 2 θr 

 Lab = Lba=  ½  La1 ±  Lb2cos (2 θr - α) 

Lbc = Lcb=  ½  Lb1 ±  Lb2cos 2 θr 

Lbb  =  ½  Lb1 ±  Lb2cos (2 θr - α) 

Lcc  =  ½  La1 ±  Lb2cos (2 θr + α) 

LAa = LaA=  ½  Lb12 ±  Lb12cos 2 θr 
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LAb = LbA=  ½  La12cos α ± Lb12cos (2 θr - α) 

LAc = LcA=  ½  La12cos α ± Lb12cos (2 θr + α) 

LBa = Lab=  ½  La12cos α ± Lb12cos (2 θr - α) 

LBb = LbB=  ½  La12cos α ± Lb12cos (2 θr + α) 

LBc = LcB=  ½  La12cos α ± Lb12cos 2 θr 

LCa = LaC=  ½  La12cos α ± Lb12cos (2 θr + α) 

LCb = LbC=  ½  La12cos α ± Lb12cos 2 θr 

LCc = LcC=  ½  La12cos α ± Lb12cos (2 θr - α) 

Where , α = 
2𝜋

3
, and; La11 = La22 = La12 = ½ (Lmd + Lmq) 

   Lb11 = Lb22 = Lb12 = ½ (Lmd - Lmq) 

However, the expressions for the individual inductances above, can further be used for the inductance matrix for 

the main windings for both machines A and B. 

 

For machine A, the inductance matrix for the main winding is; 

𝐿11=
𝐴

 
 
 
 
 
 𝐿𝑙𝑠 +  𝐿𝑎 − 𝐿𝑚𝑠 𝑐𝑜𝑠 2 𝜃𝑟 −

1

2
𝐿𝑜 − 𝐿𝑚𝑠 𝑐𝑜𝑠 2  𝜃𝑟 −

𝜋

3
 

1

2
𝐿𝑜 − 𝐿𝑚𝑠 𝑐𝑜𝑠 2  𝜃𝑟 +

𝜋

3
 

−
1

2
𝐿𝑜 − 𝐿𝑚𝑠 𝑐𝑜𝑠 2  𝜃𝑟 −

𝜋

3
 𝐿𝑙𝑠 +  𝐿𝑎 − 𝐿𝑚𝑠 𝑐𝑜𝑠 2  𝜃𝑟 +

2𝜋

3
 −

1

2
𝐿𝑜 − 𝐿𝑚𝑠 𝑐𝑜𝑠 2  𝜃𝑟 − 𝜋 

–
1

2
𝐿𝑜 + 𝐿𝑚𝑠 𝑐𝑜𝑠 2  𝜃𝑟 +

𝜋

3
 −

1

2
𝐿𝑜 + 𝐿𝑚𝑠 𝑐𝑜𝑠 2  𝜃𝑟 − 𝜋 𝐿𝑙𝑠 +  𝐿𝑎 − 𝐿𝑚𝑠 𝑐𝑜𝑠 2  𝜃𝑟 −

2𝜋

3
  
 
 
 
 
 

 

For machine B, the inductance matrix for the main winding is; 

𝐿11=
𝐵

 
 
 
 
 
 𝐿𝑙𝑠 +  𝐿𝑎 + 𝐿𝑚𝑠 𝑐𝑜𝑠 2 𝜃𝑟 −

1

2
𝐿𝑜 + 𝐿𝑚𝑠 𝑐𝑜𝑠 2  𝜃𝑟 −

𝜋

3
 −

1

2
𝐿𝑜 + 𝐿𝑚𝑠 𝑐𝑜𝑠 2  𝜃𝑟 +

𝜋

3
 

−
1

2
𝐿𝑜 + 𝐿𝑚𝑠 𝑐𝑜𝑠 2  𝜃𝑟 −

𝜋

3
 𝐿𝑙𝑠 +  𝐿𝑎 + 𝐿𝑚𝑠 𝑐𝑜𝑠 2  𝜃𝑟 +

2𝜋

3
 −

1

2
𝐿𝑜 + 𝐿𝑚𝑠 𝑐𝑜𝑠 2  𝜃𝑟 − 𝜋 

–
1

2
𝐿𝑜 + 𝐿𝑚𝑠 𝑐𝑜𝑠 2  𝜃𝑟 +

𝜋

3
 𝐿𝑜 + 𝐿𝑚𝑠 𝑐𝑜𝑠 2  𝜃𝑟 − 𝜋 𝐿𝑙𝑠 + 𝐿𝑎 + 𝐿𝑚𝑠 𝑐𝑜𝑠 2  𝜃𝑟 −

2𝜋

3
  

 
 
 
 
 

 

Hence LGG  =𝐿11
𝐴  +𝐿11

𝐵  
2𝐿𝐿𝑆 + 2𝐿𝑂– 𝐿𝑂– 𝐿𝑂

−𝐿𝑂                  2𝐿𝐿𝑆 + 2𝐿𝑂 − 𝐿𝑂

−𝐿𝑂 − 𝐿𝑂                          2𝐿𝐿𝑆 + 2𝐿𝑂

  

Where LLs = leakage inductance, and Lo = 
𝐿𝑚𝑑 +𝐿𝑚𝑞

2
 

LGG=

 
 
 
 
 2𝐿𝐿𝑆 + 𝐿𝑚𝑑 + 𝐿𝑚𝑞 −

1

2
 𝐿𝑚𝑑 + 𝐿𝑚𝑞  −

1

2
 𝐿𝑚𝑑 + 𝐿𝑚𝑞  

−
1

2
 𝐿𝑚𝑑 + 𝐿𝑚𝑞  2𝐿𝐿𝑆 + 𝐿𝑚𝑑 + 𝐿𝑚𝑞 −

1

2
 𝐿𝑚𝑑 + 𝐿𝑚𝑞  

−
1

2
 𝐿𝑚𝑑 + 𝐿𝑚𝑞  −

1

2
 𝐿𝑚𝑑 + 𝐿𝑚𝑞  2𝐿𝐿𝑆 + 𝐿𝑚𝑑 + 𝐿𝑚𝑞  

 
 
 
 

 (30) 

Now for mutual inductance  

For machine A, the mutual inductance matrix is given as; 

𝐿12 
𝐴 =

 
 
 
 

𝐿𝑙𝑠 + 𝐿𝑎 − 𝐿𝑚𝑠 𝑐𝑜𝑠 2 𝜃𝑟𝐿𝑜 − 𝐿𝑚𝑠 𝑐𝑜𝑠 2𝜃𝑟 − 𝛼 𝐿𝑜𝑐𝑜𝑠𝛼 − 𝐿𝑚𝑠 𝑐𝑜𝑠 2𝜃𝑟 + 𝛼 

𝐿𝑜𝑐𝑜𝑠𝛼 − 𝐿𝑚𝑠 𝑐𝑜𝑠 2𝜃𝑟 − 𝛼 𝐿𝑙𝑠 +  𝐿𝑎 − 𝐿𝑚𝑠 𝑐𝑜𝑠 2𝜃𝑟 + 𝛼 𝐿𝑜𝑐𝑜𝑠𝛼 − 𝐿𝑚𝑠 𝑐𝑜𝑠 2𝜃𝑟

𝐿𝑜𝑐𝑜𝑠𝛼 − 𝐿𝑚𝑠 𝑐𝑜𝑠 2𝜃𝑟 + 𝛼 𝐿𝑜𝑐𝑜𝑠𝛼 − 𝐿𝑚𝑠 𝑐𝑜𝑠2𝜃𝑟 𝐿𝑙𝑠 +  𝐿𝑎 − 𝐿𝑚𝑠 𝑐𝑜𝑠 2𝜃𝑟 − 𝛼  
 
 
 

 

Likewise, for machine B, the mutual inductance matrix is given as; 

 

𝐿12 
𝐵 =

 
 
 
 

𝐿𝑙𝑠 + 𝐿𝑎 + 𝐿𝑚𝑠 𝑐𝑜𝑠 2 𝜃𝑟𝐿𝑜 + 𝐿𝑚𝑠 𝑐𝑜𝑠 2𝜃𝑟 − 𝛼 𝐿𝑜𝑐𝑜𝑠𝛼 + 𝐿𝑚𝑠 𝑐𝑜𝑠 2𝜃𝑟 + 𝛼 

𝐿𝑜𝑐𝑜s𝛼 + 𝐿𝑚𝑠 𝑐𝑜𝑠 2𝜃𝑟 − 𝛼 𝐿𝑙𝑠 + 𝐿𝑎 + 𝐿𝑚𝑠 𝑐𝑜𝑠 2𝜃𝑟 + 𝛼 𝐿𝑜𝑐𝑜𝑠𝛼 + 𝐿𝑚𝑠 𝑐𝑜𝑠 2𝜃𝑟

𝐿𝑜𝑐𝑜𝑠𝛼 + 𝐿𝑚𝑠 𝑐𝑜𝑠 2𝜃𝑟 + 𝛼 𝐿𝑜𝑐𝑜𝑠𝛼 + 𝐿𝑚𝑠 𝑐𝑜𝑠2𝜃𝑟 𝐿𝑙𝑠 +  𝐿𝑎 + 𝐿𝑚𝑠 𝑐𝑜𝑠 2𝜃𝑟 − 𝛼  
 
 
 

 

 

But LGH =𝐿12 
𝐴 + 𝐿12 

𝐵  

𝐿𝐺𝐻 =

 
 
 
 
−2𝐿𝑚𝑠 𝑐𝑜𝑠 2 𝜃𝑟 − 2𝐿𝑚𝑠 𝑐𝑜𝑠 2𝜃𝑟 − 𝛼 − 2𝐿𝑚𝑠 𝑐𝑜𝑠 2𝜃𝑟 + 𝛼 

−2𝐿𝑚𝑠 𝑐𝑜𝑠 2𝜃𝑟 − 𝛼 − 2𝐿𝑚𝑠 𝑐𝑜𝑠 2𝜃𝑟 + 𝛼 − 2𝐿𝑚𝑠 𝑐𝑜𝑠 2𝜃𝑟

−2𝐿𝑚𝑠 𝑐𝑜𝑠 2𝜃𝑟 + 𝛼 − 2𝐿𝑚𝑠 𝑐𝑜𝑠2𝜃𝑟 − 2𝐿𝑙𝑠𝑐𝑜𝑠 2𝜃𝑟 − 𝛼  
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𝐿𝐺𝐻 = −2𝐿𝑚𝑠

 
 
 
 
𝑐𝑜𝑠 2 𝜃𝑟 𝑐𝑜𝑠 2𝜃𝑟 − 𝛼 𝑐𝑜𝑠 2𝜃𝑟 + 𝛼 

𝑐𝑜𝑠 2𝜃𝑟 − 𝛼 𝑐𝑜𝑠 2𝜃𝑟 + 𝛼 𝑐𝑜𝑠 2𝜃𝑟

𝑐𝑜𝑠 2𝜃𝑟 + 𝛼 𝑐𝑜𝑠2𝜃𝑟 𝑐𝑜𝑠 2𝜃𝑟 − 𝛼  
 
 
 
 

But 𝐿𝑚𝑠 =  
𝐿𝑚𝑑 −𝐿𝑚𝑞

2
 

 - 2Lms = 
2(𝐿𝑚𝑞 −𝐿𝑚𝑑 )

2
 

𝐿𝐺𝐻  = 𝐿𝑚𝑞 − 𝐿𝑚𝑑

 
 
 
 
𝑐𝑜𝑠 2 𝜃𝑟 𝑐𝑜𝑠 2𝜃𝑟 − 𝛼 𝑐𝑜𝑠 2𝜃𝑟 + 𝛼 

𝑐𝑜𝑠 2𝜃𝑟 − 𝛼 𝑐𝑜𝑠 2𝜃𝑟 + 𝛼 𝑐𝑜𝑠 2𝜃𝑟

𝑐𝑜𝑠 2𝜃𝑟 + 𝛼 𝑐𝑜𝑠2𝜃𝑟 𝑐𝑜𝑠 2𝜃𝑟 − 𝛼  
 
 
 
      (31) 

Where, α =
2𝜋

3
 

Since the main and auxiliary winding for machine A and B are identical, LHG  and LHH will be the same as LGH 

and LGG respectively. 

 

Rotor Winding Inductance 

 The stages of transformation of the voltage equations are to first transform the a.b.c. phase variables 

into q-d-o frame where the quantities are in stationary reference fame. Secondly is to convert the stationary 

reference q-d-o frame into the rotor reference frame iedr and qr. Since the rotor of this machine is salient pole, 

the axis of the rotor quantities  are already in the q and d axis, so that the q-d-o transformation need only by 

applied to the stator quantities. 

 

The Machine Model in Arbitrary q-d-o Reference Frame 

 In order to remove the rotor position dependence on the inductances seen in equation 31, the voltage 

equations in equation 28 need to be transferred to q-d-o reference frame. The technique is to transform all the 

stator variable to an arbitrary reference frame. 

 Here, all the stator variable will be transform to the rotor. In the voltage equations for the main and 

auxiliary windings of the transfer field machine of equation 28, there is no need to include the rotor equation 

here since our intension is to adopt rotor reference frame. 

Hence, the voltage equations of the main winding of the machine will after the transformation yield; 

VQ = ωλD + ρλQ + riQ 

VD = ωλQ + ρλD + riD         (32) 

VO = ρλO + riO 

Doing like – wise for the auxiliary and cage (rotor) windings, we have,  

Vq = (ω-2ωr) λd + ρλq + riq         

Vd = (ω-2ωr) λq+ ρλd+ rid 

Vo = ρλo+ rio          (33) 

𝑉𝑞𝑟  = (ω -2ωr)  𝜆𝑑𝑟  + 𝜌𝜆𝑞𝑟  + 𝑟𝑞𝑟 𝑖𝑞𝑟  

𝑉𝑑𝑟  = (ω -2ωr)  𝜆𝑞𝑟  + 𝜌𝜆𝑑𝑟  + 𝑟𝑑𝑟 𝑖𝑑𝑟  

 

Transformation of flux Linkages  

 The ABC and abcsubscripts denote variables and parameters associated with the main and auxiliary 

windings respectively. Both rABC and rabc are diagonal matrices each with equal non zero elements. For a 

magnetically linear system, the flux linkages may be expressed as; 

 
𝜆𝐴𝐵𝐶

𝜆𝑎𝑏𝑐
  =  

𝐿𝐺𝐺𝐿𝐺𝐻

𝐿𝐻𝐺𝐿𝐻𝐻
  

𝑖𝐴𝐵𝐶

𝑖𝑎𝑏𝑐
 Wb turns        (34) 

Where G = main winding, H = Auxiliary winding. 

To transform the above equation in respect to the cage winding, we have as follows, 

 
 
 
 
𝜆𝐴𝐵𝐶

𝜆𝑎𝑏𝑐

𝜆𝑑𝑞𝑟 1

𝜆𝑑𝑞𝑟 2 
 
 
 

 =  

𝐿𝐺𝐺𝐿𝐺𝐻𝐿𝐺𝑅𝐴𝐿𝐺𝑅𝐵

𝐿𝐻𝐺𝐿𝐻𝐻𝐿𝐻𝑅𝐴𝐿𝐻𝑅𝐵

𝐿𝑅𝐴𝐺𝐿𝑅𝐴𝐻𝐿𝑅𝐴𝑅𝐴𝐿𝑅𝐴𝑅𝐵

𝐿𝑅𝐵𝐺𝐿𝑅𝐵𝐻𝐿𝑅𝐵𝑅𝐴𝐿𝑅𝐵𝑅𝐵

  

𝑖𝐴𝐵𝐶

𝑖𝑎𝑏𝑐
𝑖𝑑𝑞𝑟 1

𝑖𝑑𝑞𝑟 2

       (35) 

The inductance matrix terms LGG, LGH, LHG and LHH are obtained from inductance sub-matrices L11, L12,L21 and 

L22 for machine A and B.  

LGRA is the mutual inductance matrix between main winding of machine A and rotor winding of machine A. 

LGRB is the mutual inductance matrix between main winding of machine B and rotor winding of machine B. 

LHRA is the mutual inductance matrix between auxiliary winding of machine A and rotor winding of machine A 

LHRB is the mutual inductance matrix between auxiliary winding of machine B and rotor winding of machine B. 
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LRARA is the inductance matrix of rotor winding of machine A. 

LRARB is the mutual inductance matrix between the rotor winding of machine A and the rotor winding of 

machine B. 

 

Stator Winding inductances  
To reduce the mathematical complexities of equation 34, it is rewritten in q-d-o frame as;  

 
𝜆𝑄𝜆𝐷𝜆𝑂

𝜆𝑞𝜆𝑑𝜆𝑜
 

𝑇

=  
𝐾𝐺𝐿𝐺𝐺𝐾𝐺

−1𝐾𝐺𝐿𝐺𝐻𝐾𝐻
−1

𝐾𝐻𝐿𝐻𝐺𝐾𝐺
−1𝐾𝐺𝐿𝐻𝐻𝐾𝐻

−1  
𝑖𝑄𝑖𝐷𝑖𝑂
𝑖𝑞 𝑖𝑑 𝑖𝑜

      (36) 

 

Where KG = 
2

3
 

𝑐𝑜𝑠𝜃𝑐𝑜𝑠⁡ 𝜃 − 𝛼 𝑐𝑜𝑠⁡ 𝜃 + 𝛼 

𝑠𝑖𝑛𝜃𝑠𝑖𝑛⁡ 𝜃 − 𝛼 𝑠𝑖𝑛⁡ 𝜃 + 𝛼 
1

2

1

2

1

2

      (37) 

 

𝐾𝐺
−1 = 

𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃                    1
𝑐𝑜𝑠 𝜃 − 𝛼 𝑠𝑖𝑛 𝜃 − 𝛼       1

𝑐𝑜𝑠 𝜃 + 𝛼 𝑠𝑖𝑛 𝜃 + 𝛼       1
        (38) 

 

KH = 
2

3
 

𝑐𝑜𝑠𝛽𝑐𝑜𝑠⁡ 𝛽 − 𝛼 𝑐𝑜𝑠⁡ 𝛽 + 𝛼 

𝑠𝑖𝑛𝛽𝑠𝑖𝑛⁡ 𝛽 − 𝛼 𝑠𝑖𝑛⁡ 𝛽 + 𝛼 
1

2

1

2

1

2

       (39) 

𝐾𝐻
−1 = 

𝑐𝑜𝑠𝛽𝑠𝑖𝑛𝛽                    1

𝑐𝑜𝑠 𝛽 − 𝛼 𝑠𝑖𝑛 𝛽 − 𝛼       1

𝑐𝑜𝑠 𝛽 + 𝛼 𝑠𝑖𝑛 𝛽 + 𝛼       1
        (40) 

Where 𝛽 = θ – = Speed of rotation of the arbitrary reference frame  

θr = Angular rotor position 

Therefore the flux linkage of equation 11 is now expressed as;  

λQ = (2LL + Lmq + Lmd) iQ – (Lmd– Lmq) (iq + 𝑖𝑞𝑟 ) 

=  2LLiQ + LmqiQ + LmdiQ - Lmd (iq + 𝑖𝑞𝑟 ) + Lmq(iq + 𝑖𝑞𝑟 )  

    = 2LLiQ + LmqiQ + LmdiQ + LmdiQ- LmdiQ- Lmd(iq+ 𝑖𝑞𝑟 ) + Lmq(iq + 𝑖𝑞𝑟 ) 

    = 2LLiQ+ 2LmdiQ+ LmqiQ- LmdiQ- (iq+ 𝑖𝑞𝑟 ) + Lmq(iq + 𝑖𝑞𝑟 ) 

=  2 (LL + Lmd) iQ  + [iQ(Lmq- Lmd) +(iq + 𝑖𝑞𝑟 ) (Lmq- Lmd)] 

    = 2 (LL + Lmd) iQ  + (iQ + iq + 𝑖𝑞𝑟 ) (Lmq- Lmd) 

λQ =2 (LL + Lmd) iQ  + (Lmq- Lmd) (iQ + iq + 𝑖𝑞𝑟 )      (41) 

Similarly; 

λD= (2LL + Lmq + Lmd) iD + (Lmd– Lmq) (id + 𝑖𝑑𝑟 ) 

=2 (LL + Lmq) iD  + (Lmd- Lmq) (iD + id +𝑖𝑑𝑟 )      (42) 

λO=2LLiO          (43) 

Also, λq = (2LL + Lmq + Lmd) iq – (Lmd–Lmq) (iQ +𝑖𝑞𝑟 ) 

              = 2 (LL + Lmd) iq  + (Lmq- Lmd) (iQ + iq+𝑖𝑞𝑟 )      (44) 

λd= (2LL + Lmq + Lmd) id + (Lmd– Lmq) (iD + 𝑖𝑑𝑟 ) 

             =2 (LL + Lmq) id  + (Lmd- Lmq) (iD + id +𝑖𝑑𝑟 )      (45) 

λo=2LLio          (46) 

Also; 𝜆𝑞𝑟 =(LLqr + Lmq + Lmd) 𝑖𝑞𝑟  – (Lmd  –Lmq) (iQ +iq) 

             =(LLqr + 2Lmd) 𝑖𝑞𝑟  + (Lmq- Lmd) (iQ + iq+ 𝑖𝑞𝑟 )                                  (47) 

𝜆𝑑𝑟 =(LLdr + Lmq + Lmd) 𝑖𝑑𝑟  – (Lmd  –Lmq) (iD +id) 

             =(LLdr + 2Lmq) 𝑖𝑑𝑟  + (Lmd - Lmq) (id + id + 𝑖𝑑𝑟 )      (48) 

 

 

NB: Upper case letters represent the main winding parameters, while the lower case letters and the primed lower 

case letters represent the auxiliary winding parameters and rotor winding parameters respectively  

As before equations 41 - 43 represent the flux linkages of the main winding circuit while equations 44 - 46 

represent the flux linkages of the auxiliary winding circuit. Also equations 47 -48 represent the flux linkages of 

the caged (rotor) winding circuit, and r in equations 32 and 33 is the sum of the resistances of the main, 

auxiliary and rotor windings in both machine halves. Hence equations 41 - 48 can be put into equations 32 and 

33 to yield; 

VQ = ωλD + ρ [2 (LL + Lmd) iQ  + (Lmq- Lmd) (iQ + iq + 𝑖𝑞𝑟 )] + riQ   (49) 
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Vq= (ω - 2ωr) λd + ρ [2 (LL + Lmd) iq  + (Lmq- Lmd) (iQ + iq+iqr )] + riq   (50) 

Vqr  = (ω - 2ωr) λdr + ρ[(LLqr + 2Lmd) iqr  + (Lmq- Lmd) (iQ + iq + iqr )+ riqr   (51) 

VD = ωλQ+ ρ [2 (LL + Lmq) iD  + (Lmd- Lmq) (iD + id +idr )] + riD   (52) 

Vd= (ω - 2ωr) λq + ρ [2(LL + Lmq) id  + (Lmd- Lmq) (iD + id +idr )] + rid  (53) 

Vdr  = (ω - 2ωr) λqr + [ρ (LLdr + 2Lmq) idr  + (Lmd - Lmq) (id + id + idr )]+ridr    (54) 

Also for O-variables; 

VO = λO+riO           

     = (2LLiO) + riO        (55) 

VO = λo+rio 

     = (2LLio) + rio        (56) 

Vor  = λor  +  rior  

     = (Lrior ) + ior         (57) 

 

Equations 49 - 51 result the equivalent circuit shown in figure 15. 

 

 
Figure 15 Arbitrary reference frame equivalent circuit for a 3-phase symmetrical transfer field machine 

with cage (rotor) winding in the q-variable. 

 

Also, equations 52 - 54 result the equivalent circuit shown in figure 16 

 

 

 

 
Figure 16 Arbitrary reference frame equivalent circuit for a 3-phase symmetrical transfer field machine with 

cage (rotor) winding in the d-variable 
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Similarly, equation 55 - 57 combines to yield the equivalent circuit shown in figure 17 

 

 
Figure 17 Arbitrary reference frame equivalent circuit for a 3-phase symmetrical transfer field machine 

with cage (rotor) winding in the O-variable. 

 

15.  Rotor to stator winding inductances 

 Obviously, both rotors of the machine halves are identical. Therefore, they possess equal and similar 

parameters. Let us consider the complying between the rotor winding, and the stator windings of machine A. 

The winding placements are depicted in figure 18 below  

 

 
Figure 18. Rotor to Stator winding inductances 

 

From figure 18 

LGRA = LRAG =  

LAq LAd

LBq LBd

LCq LCd

          (58) 
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LHRB = LRBH =  

Laq Lad

Lbq Lbd

Lcq Lcd

  

NB LGRA = LHRB on the account if the identity of the two machine halves.  

Also 

Laq = LAq = Lmqcosθr 

Lad = LAd = Lmd sin θr 

Lbq = LBq= Lmqcos (θr- 
2π

3
) 

Lbd = LBd = Lmd sin (θr- 
2π

3
)        (59) 

Lcq = LCq = Lmqcos (θr- 
4π

3
) 

Lcd = LCd = Lmdsin (θr- 
4π

3
) 

 

16.  Rotor to Rotor Winding inductances 

On the account of identity of the two machine halves;  

LRARA = LRBRB = 
Lldr + Lmd O
OLldr + Lmd

       (60) 

 

 

17. The torque equation of the 3-phase transfer field machine with cage (rotor) winding  

The torque equation of the configured machine is obtained by integrating the rotor winding parameters into the 

derived torque equation of the conventional 3-phase transfer field machine with no rotor winding. 

The expression for the torque equation of the cage winding transfer field machine is given as; 

Te = 
3

2
 

P

2
   iQs +  iqs Xmq (iDs + ids +  id s  

  -   iDs +  ids  Xmq (iQs + iqs +  iq s)        (61) 

Where, 

iQs is the q-axis stator current in the main winding of TF machine, iqs is the q-axis stator current in the auxiliary 

winding of T.F machine, iDs is the d-axis stator current in the main winding of T.F machine  

ids is the d-axis stator current in the auxiliary winding of TF machine id r is the d axis rotor current in the (cage) 

rotor of T.F machine.  

iq r is the q-axis rotor current in the (cage) rotor of T.F machine. 

 

 
Figure 19 Rotor speed run up plot for the configured machine 
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Figure 20 A Plot of Electromagnetic magnetic torque verses Time 

 

The graphs/plots of rotor speed run up and Electromagnetic magnetic torque verses time are shown in figure 19 

and 20 above respectively.   

 

18. Result analysis of the configured three phase transfer field machine with cage (rotor) windings 

 For the dynamic operation of the machine, the rotor speed run-up plot against time for the configured 

(cage) machine is shown in figure 19. There was a little transient at different stages while rotor speed builds up 

before an application of load at 7 seconds. After another little transient, the rotor speed now settles to a steady-

state at about 1410N-m. 

 Also the graph of electromagnetic torque against time for the caged machine with oscillations noticed 

at different stages are shown in figure 20. It is observed that on no-load, value for electromagnetic torque is 

zero. On application of load torque at 6.9 seconds to the machine, it oscillates and settled to a steady-state of 

3.4N. 

 Morestill, from the steady-state electromagnetic torque versus slip characteristics curve of figure 11, 

the result reveals a good similarity with improved output characteristics to those of the conventional three phase 

transfer field machine with no cage windings. At slip (S) = 1, the injected voltage at the auxiliary and rotor 

windings is zero. Hence, necessitating  a zero torque. However, torque may be developed at this slip, if the two 

windings are excited with direct current, hence, making the machine run at synchronous mode.  

 Due to the incorporation of rotor windings to the rotor circuit of the conventional transfer field (T.F.) 

machine, the machine efficiency improved tremendously due to reduction in overall impedance of the machine. 

 Further-still, due to additional winding (rotor winding connected in parallel with the auxiliary 

winding), induced rotor current at start improved, leading to concomitant boost in maximum and starting torque 

of the machine at better and improved power factor. For the machine, at synchronous speed, (Ns = Nr, s = 0.5) 

current decayed to zero, but at zero speed (Nr = 0, S = 1), starting current is maximum. This is a feature also 

obtainable in conventional cage-less T.F. machine. 

 

III. CONCLUSION 
 From the analysis, the inclusion of rotor winding into the conventional machine provides a better 

output performance characteristics, necessary for its wider applications in engineering industries. 
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