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--------------------------------------------------------ABSTRACT----------------------------------------------------------- 

In this work we use a numerical scheme based on fractional step method to solve the initial-boundary value 

problem arising from the modeling of the plane Couette flow by the eight velocity spatial Broadwell model. We 

show that the scheme is convergent and we perform a comparison with an exact solution. A good agreement is 

observed. 
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I. INTRODUCTION 
              The plane Couette flow is the flow of a gas between two parallel moving plates. In transitional or 

slip flow regimes the study of Couette flows deserves the resolution of the Boltzmann equation. However the 

complexity of the Boltzmann equation leads to develop simpler models having its main properties. Among those 

the discrete kinetic models have interesting conceptual and mathematical features. The aim of this work is to 

present a numerical scheme based on the fractional step method to compute the solution of the problem for the 

eight velocity model of Broadwell [1]. The paper is organised as follow : in section II we state the physical 

problem, the scheme is then described and its numerical convergence is proved in the section III, then we 

present some numerical results in section IV and end with a comparison with the exact solution in section V. 

 

II. STATEMENT OF THE PROBLEM 
 The physical space is related to the orthonormal reference R = (O, x′ , y′ , z′ ). The plates are located at  

y' = −h/2 and y′ = h/2, (h > 0). The velocities of the eight spatial velocity Broadwell model in the basis basis (x′ , 

y′ , z′ ) are u1 = c(−1, 1, 1), u2 = c(1, 1, 1),  u3 = c(−1, −1, 1), u4 = c(1, −1, 1), u5 = c(−1, 1, −1), u6 = c(1, 1, −1), 

u7 = c(−1, −1, −1), u8 = c(1, −1, −1), where c is an arbitrary constant. We assume that the flow depends only on 

the space variable y ′ and the time t ′ . We denote by Ni (t ′ , y ′ ) the number density of particles of velocity ui in 

point M(y ′ ) at time t ′. The kinetic equations of this model with binary collisions are the equations (1.1)-(1.8) 

[2]: 
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 We assume that N1 = N5 , N2 = N6 , N3 = N7 , N4 = N8 according to the symmetry of the model and that 

of the physical problem. The macroscopic variables of the flow are the mean density N , the longitudinal 

velocity U and the transversal velocity V given by :  
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The Maxwellian densities of the model associated with the macroscopic variables N, U and V are: 
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 The microscopic densities of the discrete gas in Maxwellian equilibrium with a wall, denoted N lw
±
 are 

the Maxwellian densities associated with 1 and the longitudinal and transversal velocities of the wall 

respectively denoted by Uw
±
 and Vw

±
 . Let λ

±
 the respective accommodation coefficients. The boundary 

conditions of diffuse reflection [2, 3] are : 
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The impermeability of the plates means that the normal velocity near the plates vanishes. Therefore :  

              0,0  
nUnU                                                                                                     (5)   

 where n
-
  and n

+
 denote the inward-pointing (i.e. into the gas) unit vectors normal to the plates and U

-
  

and U
+
 the velocities of the discrete gas at M(-h/2) and M(h/2) respectively. We assume that initially the gas is 

in the Maxwellian state with a total density N0 , a longitudinal and transverse velocity respectively U0 and V0. 

We have:  
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We choose the reference quantities N0 , h and c respectively for the density, the lenght and the velocity and 

introduce the following dimensionless variables and parameters :      
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The problem is put in the dimensionless form : 
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III. NUMERICAL SCHEME 
 The numerical scheme used to solve the problem is based on fractional step method. First the problem 

is solved in spatial homogeneous flow (equations (9)), and secondly it is solved in free molecular regime 
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(equations (10)). The time step is ∆t and nl
m
   is the density nl at time t=m∆t, (m=0,1,2,...), nl

m+1/2
 the density in 

the middle time : 
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The equations (11) are the boundary conditions taken at the time t = (m + 1)∆t . After an explicit 

computation we deduce from equations (9) : 
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where   Knt /32  . The quantities nl
m
 and nl

m+1/2
 depend upon y. We perform a regular grid of the 

domain [-1/2,1/2] with the step ∆y = 1/(K − 1) where K ∈ IN \ {0, 1}. Let 
1

,

m

kln  be the value of 
1m

ln at the 

point ]2/1,2/1[ky . One has: 
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Consistency 

We obtain by addition of the equation (9.1) and the equations (10.1):  
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Making a Taylor serie expansion we have :  
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Then 
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The same argument holds for  4,3,2l . We thus conclude that the scheme is accurate of order 1 in time and 

space. 

 

Stability 
We use Fourier analysis to study the stability of the scheme. We put : 
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with            mmmmm nnnn 4321
~~~~2~  , where   is an arbitrary wave number and i  is the 

complex number such that 12 i . The boundedness of    4,3,2,1,~ ln m

l   is equivalent to that of  

  m~
. Using the conservation of mass in equations (10), one can write     mm ~~ 2/1 

. We have :  
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We replace these relations in the equations (13) to get: 
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with  
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and yt  / . By taking the modulus, we can write : 

       
          

           .sincos11

,sincos11

222

4

2

3

222

2

2

1

yyFF

yyFF








                                                    (22) 

For any   0cos1,  XIRX , then   1lF ,  4,3,2,1l . Thus all the amplification factors  

 lF/1  satisfy   1/1 lF . Then:  

            4,3,2,1,2/11   lnn m
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We obtain by addition :  
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Finally 

         .,0 mm                                                                                                                       (25) 

We can then conclude to the stability of the scheme and therefore to its convergence. 

IV. NUMERICAL RESULTS 

For the computations we put 2.0 

ww uu and 0

wv . The time step is ∆t = 0.001 and K = 21. The 

transverse velocity vanishes in the flow. The longitudinal velocity profile is linear (Figure 1a) . When Kn tends 

towards zero the non slip condition is obtained. The velocity slip tends towards zero for Kn tending towards 

zero and tends to a constant value when Kn tends towards +∞ (Figure 1b). 

      

 
Figure 1 Velocity profile at the steady state: (a) Longitudinal velocity at the steady state (b) Velocity slip 

 

V. COMPARISON WITH EXACT ANALYTICAL SOLUTION 
 To validate the scheme, we compare the numerical result to the exact analytical solution. We then 

consider a Couette flow between two parallel plates and we solve the boundary value problem in the steady 

state. The notation are the same as in the above. The problem stated is :  
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The exact analytical solution  4321 ,,, nnnn  of this equations is given by :  
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where  
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Then the longitudinal velocity u is :  
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We find a good agreement of the exact and numerical results as shown on the figure 2 and in the table 1.                                       

 

 
Figure 2  Comparison with exact analytical solution 
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Y 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

Exact 

solution 

0 0.0188 0.0376 0.0564 0.0752 0.0940 0.1128 0.1317 0.1504 0.1692 0.1880 

Numerical 

solution 
(∆t = 

0.001) 

0 0.0188 0.0375 0.0563 0.0751 0.0938 0.1126 0.1314 0.1502 0.1689 0.1877 

Table 1 Comparison value 

 

VI. CONCLUSION 
 We solve the unsteady Couette flow problem by means of a scheme based on fractional step method. 

The scheme converge and we find a good agreement with exact solution. We show the influence of the time step 

on the accuracy of the scheme. 
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