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ABSTRACT
In this work we use a numerical scheme based on fractional step method to solve the initial-boundary value
problem arising from the modeling of the plane Couette flow by the eight velocity spatial Broadwell model. We
show that the scheme is convergent and we perform a comparison with an exact solution. A good agreement is
observed.
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I. INTRODUCTION
The plane Couette flow is the flow of a gas between two parallel moving plates. In transitional or
slip flow regimes the study of Couette flows deserves the resolution of the Boltzmann equation. However the
complexity of the Boltzmann equation leads to develop simpler models having its main properties. Among those
the discrete kinetic models have interesting conceptual and mathematical features. The aim of this work is to
present a numerical scheme based on the fractional step method to compute the solution of the problem for the
eight velocity model of Broadwell [1]. The paper is organised as follow : in section Il we state the physical
problem, the scheme is then described and its numerical convergence is proved in the section Ill, then we
present some numerical results in section 1V and end with a comparison with the exact solution in section V.

Il. STATEMENT OF THE PROBLEM
The physical space is related to the orthonormal reference R = (O, x’,y', z'). The plates are located at
y'=-h/2 and y’' = h/2, (h > 0). The velocities of the eight spatial velocity Broadwell model in the basis basis (x',
y',z')areup=c(—1,1, 1), u,=c(1, 1, 1), us=c(-1,-1, 1), us=c(1, -1, 1), us=c(-1, 1, 1), ug=c(1, 1, —1),
u; =c(-1,-1,-1), ug=c¢(1, -1, —1), where ¢ is an arbitrary constant. We assume that the flow depends only on
the space variable y ' and the time t ' . We denote by N; (t ', y ') the number density of particles of velocity u; in
point M(y ') at time t '. The kinetic equations of this model with binary collisions are the equations (1.1)-(1.8)

[2]:

a—N}+ca—N}=cs\/§(N2N3 ~N,N, + N,N, —N,N; + N,N; —N,N,) +
a » (1.1)
%(sz +N,N, + N, N, —3N,N,),
aglt—f+cﬂf:cs\/§(NlN4 —N,N, +N,N, —N,N, +N,N, —N,N,)+
» (1.2)
#(NlN8 +N,N, +N,N, —3N,N.),
8—N?—ca—'\'?=cs\/§(NlN4 —N,N; +N;N; —=N;N; +N,N, —N;N,) +
a » (1.3)

csv3

T(N2N7 +N;Ng +N,N, —3N;N,),
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%—c—f‘:cs\/i(NzNB—NlN4+NzN8—N4N6+N3N5—N4N7)+
% N (1.4)
Cs—(N N, + NN, +N,N, —3N,N.),
%Jrc%:cs\/E(NlNS—N2N5+N1N7—N3N5+N6N7—N5N8)+
73 (1.5)
CS—(N N, +N,N, + N, N, —3N,N,),
ag't—fwc@ayi?:cs 2(N,N, —N,N; +N,Ng = N,N, + NN, — N N,)+
5 (1.6)
CST(N N, +N,N, + NN, —3N;N,),
%—c—j:cs\/i(NE;Ns—N6N7+N3N5—N1N7+N N, —N,N,)+
2 7 (1.7)
CS—(N N, + NN, + NN, —3N,N,),
a;? c—=2 =csv/2(N,Ng = N,N, + N, N, — NN, + NN, — NN, ) +
v (1.8)
cs+/3

—(N N, +N,N, +N,N; —3N,N,).

We assume that N; = N5 N, = Ng, N3 = N5, N; = Ng according to the symmetry of the model and that
of the physical problem. The macroscopic variables of the flow are the mean density N , the longitudinal
velocity U and the transversal velocity V given by :

N =2(N,+N,+N,+N,),
NU =2c(—N; + N, =N, +N,), )
NV =2c(N, +N, =N, —N,).

The Maxwelliandensities of the model associated with the macroscopic variables N, U and V are

N U V N U Vv

S e G AR o Gy 5
N U V N U V

) G AT () (B

The microscopic densities of the discrete gas in Maxwellian equilibrium with a wall, denoted N~ are

+
the Maxwellian densities associated with 1 and the longitudinal and transversal velocities of the wall
respectively denoted by U,* and V,*

. Let A* the respective accommodation coefficients. The boundary
conditions of diffuse reflection [2, 3] are :
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N, (t'=h/2) = & ()N, “t)[ ]{1+VWJ,
8 c

c

N, (t'—h/2) = & (t)N;. “t)(+ ][uv_),
8 c c

N, (t',h/2) = 2 ()N, ”(t)( ][1—VW+],
8 c c

NL(©.h12) = 2 O, =2 [1+ e J(l—vw+ ]

)

c

The impermeability of the plates means that the normal velocity near the plates vanishes. Therefore :
U-n =0 U"-n"=0 (®)
where n” and n* denote the inward-pointing (i.e. into the gas) unit vectors normal to the plates and U
and U the velocities of the discrete gas at M(-h/2) and M(h/2) respectively. We assume that initially the gas is

in the Maxwellian state with a total density Ny , a longitudinal and transverse velocity respectively Uy and Vo,
We have:

, N U V, , N, U, Vv,
Nl(o'y):Nf:?o(l_ToJ[“?o]’ N,(0,y)=N? = i [1+ . IH cj

N U V, N U V
N.(O,y)=N2=—2|1-=2]1--2| N,(0,y)=N’=—2|1+20|1--2]|
:(0,¥") 3 8[ CJ( CJ 2(0,y") 4 8( Cj( C)

We choose the reference quantities Ny , h and c respectively for the density, the lenght and the velocity and
introduce the following dimensionless variables and parameters :

y=y'/ht=ct'/h, Kn=(sN,h)™*,n, =N, /Ng,n; =N, n’ =N/N,

(6)

u, =U;/cv, =V, /c,u,=U,/c,v, =V, /c,u=U/c,v=V/c. "
The problem is put in the dimensionless form :
%-F%:M(n n, —nn,)
at 8y Kn 2°73 174 )
on, | én, :\/E+J§(nn nny)
ot oy Kn 1 2R2
%—%:—\/5+\/§(n n, —n,n;)
ot oy Kn “t RS
on, on, :\/E+\/§(n N —nn )
ot oy Kn ~2° **
n(0,y)=n’, ye[-1/21/2],1=1234 ®)
n(t,—1/2)= A (t)n,,, n,(t,-1/2)=2(t)n,,
n,(t1/2)= A (t)ns,, i (t1/2)=2" (g,
n,(t,—1/2)+n,(t,~1/2)—n,(t,~1/2)-n,(t,~1/2)=0,
n,(t1/2)+n,(t1/2)-n,(t1/2)-n,(t1/2)=0.

IH1. NUMERICAL SCHEME
The numerical scheme used to solve the problem is based on fractional step method. First the problem
is solved in spatial homogeneous flow (equations (9)), and secondly it is solved in free molecular regime
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(equations (10)). The time step is At and n™
the middle time :

™2 _np" J2+4/3

_ nm+1/2nm+1/2
At Kn ( ? ?
n;n+l/2 _ n;n '\/_ + '\/_ (n m+1/2nm+1/2
At Kn )
r];n+1/2 n;“ _ \/§+ 3 (nm+1/2nm+l/2
At Kn ' *
n[{”“z n;“ _ \/E—i— 3 (nm+1/2nm+1/2
At Kn ? ?
o o o o)
At o
n;m,l n£n+1/2 . 6ng1+1 _ O (102)
At o |
n:;nJrl n:;nJrl/Z ~ angwl 0 (103)
At o
n£n+1 n[rln+1/2 8n;n+l :O (104)
At o

L - M+l
n,,n —nyn, =0, y=-1/2,

n; it —ni n =0, y=1/2,
v™ =0, y==+1/2.

The equations (11) are the boundary conditions taken at the time t = (m + 1)At . After an explicit

computation we deduce from equations (9) :

m m m m m
mes2 My +a(n1 +N, an +n3)

n, =

m+l/ 2 m+1/ 2

m+l/ 2 m+1/ 2

m+l/ 2 m+1/ 2

)

/2 m+1/2) (9.2)
)
)

m m m m m
meti2 Ny +a(n1 + Ny an +N, )

1+a(n™ +nf +nl +nr)’

1+a(n™ +nf +nl +nr)’

(9.1)

(9.3)

(9.4)

m m m m m
a2 _ n, +a(n1 +N, an +N, )

1+a(nlm +n; +ng +n,

_ng +a(n;“ +nj”Xn;“ +n;“)

1+a(n +nf +nl +n7)’

is the density n; at time t=mAt, (m=0,1,2,...), n,"**2 the density in

©)

(10)

(1)

(12)

where o = (\/5 + \/§)At/ Kn. The quantities ™ and n™™*? depend upon y. We perform a regular grid of the

domain [-1/2,1/2] with the step Ay = 1/(K —
point Yy, €[-1/21/2]. One has:

1) where K € IN\ {0, 1}. Let nJ;* be the value of n/"**

at the
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r]erl _ r]m+1/2 r]m+1 _ r]m+1
1,k 1,k 1,k 1,k-1 — 01 k — 2,‘ ., K
At Ay
1 1/2 1 1
N ongtt el
A‘t Ay H 1 H
(13)
nm+l -n ml-(¢—l/2 r]mli—l1 -n ml-:l
3,k 3, _ 3.k+ 3, =O, k:l,"',K_l
At Ay
nm+l _nm+l/2 r]m+1 _nm+l
4,k 4,k _ 4,k+l 4,k — 0’ k :1’”., K _1
At Ay
nZ_Wner]lJrl - n;Wn?Il = 0’
NaNzk —NauNik =0, (14)
nit gyt —nt—nt =0,
N+ Ny =Ny =Ny =0.
Consistency
We obtain by addition of the equation (9.1) and the equations (10.1):
m+1 m m+1 m+1
N =N Ny =Ny \/E + \/§ m+l/2 . ml/2 M+L/2 o m+1/2
+ = ny Ny —n"on, . (15)
At Ay Kn
Making a Taylor serie expansion we have :
nlr?l:rl B nlr,nk anl
= (L0, Y, )+ O(A),
At ot
nm+1 _ nm+1 an (16)
1,k k-1 —1(t ) O(A )
- m+11 yk + y g
Ay oy
Then
r]m+1 _ nm r]m+1 _ nm+1 an an
2 | (Vi) + (s Vi) [ = O(A + Ay) (17)
At Ay ot oy

The same argument holds for | € {2,3,4}. We thus conclude that the scheme is accurate of order 1 in time and
space.

Stability
We use Fourier analysis to study the stability of the scheme. We put :

i =n" (r7)exp (irkAy ),
4

P = 22 iy = Em(U)EXp (i UkAY)
=

with p™(17)= Z(ﬁlm (n)+0y () + A7 () + 1) (77)) where 77 is an arbitrary wave number and i is the

(18)

complex number such that i2 =—1. The boundedness of n" (77), l e {1, 2,3, 4} is equivalent to that of
(7)=p"(17). we have :

5m (77) Using the conservation of mass in equations (10), one can write ,5"”1/2

nIIT]k—l = nlr?k EXp (_ i UAy)'

N = NPy X (i UAY)-
We replace these relations in the equations (13) to get:

(19)
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F ()l =ni?, 1234} (20)
with

F.(7)=F,(n)=1+0 - oep(-iny)

F.(7)=F.(7)=1+ 0 - cep(iny) @
and o = At/ Ay. By taking the modulus, we can write :

) =[F. () =2+ o-costany)F + [orsinGaay)F .

F,()° =|F,(n)" =[+ ol1—cos(pay))f +[-osin(may)f.
For any X € IR,l—COS(X)Z 0, then |FI (771 >1, le {1,2,3,4}. Thus all the amplification factors
1/ F, (1) satisfy /R (77) <1. Then:

") <n™2 (), 1e{l,2,34]. (23)
We obtain by addition :

pm+1(77)g pm+l/2(77), vm

(24)
<p"(n)  vm

Finally

p ()< p°(n),  vm. (25)
We can then conclude to the stability of the scheme and therefore to its convergence.
V. NUMERICAL RESULTS
For the computations we put U, =—U’ =-0.2and V, =0. The time step is At = 0.001 and K = 21. The

transverse velocity vanishes in the flow. The longitudinal velocity profile is linear (Figure 1a) . When Kn tends
towards zero the non slip condition is obtained. The velocity slip tends towards zero for Kn tending towards
zero and tends to a constant value when Kn tends towards +oo (Figure 1b).

elocity sip

{a) {b}

Figure 1 Velocity profile at the steady state: (a) Longitudinal velocity at the steady state (b) Velocity slip

V. COMPARISON WITH EXACT ANALYTICAL SOLUTION
To validate the scheme, we compare the numerical result to the exact analytical solution. We then
consider a Couette flow between two parallel plates and we solve the boundary value problem in the steady
state. The notation are the same as in the above. The problem stated is :
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% = \/E i \/§ (nzns - n1n4)v
oy Kn
anz = ﬁ - \/é (n1n4 —NyNg )'
oy Kn
- an3 = \/E i \/5 (n1n4 - nzns)’
oy Kn 26)
- an4 = \/E—i_ \/§ (n2n3 - n1n4)
oy Kn

~1/2)=A[-uy )8, n,(-1/2)= A ([L+uy)rs,
12)= A" (-u;)i8, n,(2)=2(1+u} )8,
(=1/2)+n,(-1/2)-n,(-1/2)-n,(-1/2)=0,
n,(1/2)+n,([1/2)-n,(1/2)-n,(1/2)=0.

The exact analytical solution (nl, n,,N,, n4) of this equations is given by :

n(W)=22y i ()= F-n) n)="2en ) ny)=1-2enb). e

=
— ~—~
[EEY

n
n3
n

I

4
where
k1=1_uv_v+ﬂ(uv_v_uw), kzzz(uv_v—“w>, ,32*/5“/5_ (28)
8 1653 + 64 p+4 Kn
Then the longitudinal velocity u is :
)=o) () o), = Al )yt -

We find a good agreement of the exact and numerical results as shown on the figure 2 and in the table 1.

0.2
s
01 Oﬂg
/

o 1 i@ﬂ
> 005 ¥ o -
: 8 £
&
c A b
- B e
-] 5 o
- 2 .0 d
51. r;,
5 3 o’g

% g,@ Numencal solution for At=0.001 —d
1 Exact soltion =
015 ok “ f
0 0 0 4 06 04 0.2 0 ( 0 6
y
{bo}

{a)

Figure 2 Comparison with exact analytical solution
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Y

0 | 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Exact 0 | 0.0188 0.0376 0.0564 0.0752 0.0940 0.1128 0.1317 0.1504 0.1692 0.1880
solution

Numerical | 0 | 0.0188 0.0375 0.0563 0.0751 0.0938 0.1126 0.1314 0.1502 0.1689 0.1877
solution

(At

0.001)

Table 1 Comparison value

V1. CONCLUSION
We solve the unsteady Couette flow problem by means of a scheme based on fractional step method.

The scheme converge and we find a good agreement with exact solution. We show the influence of the time step
on the accuracy of the scheme.
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