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--------------------------------------------------------ABSTRACT---------------------------------------------------------- 
In this study, analytical solutions are obtained to predict laminar heat convection in a plane Couette flow 

between two parallel plates with a zero pressure gradient and an axial movement of the upper plate. A 

Newtonian fluid with constant properties is considered with an emphasis on the viscous dissipation effect. Both 

hydrodynamically and thermally fully developed flow cases are investigated. The axial heat conduction in the 

fluid, and through the wall are neglected. Three different orientations of thermal boundary conditions are 

considered: different constant heat fluxes, equal constant heat fluxes and an insulated lower plate. For different 

values of relative velocity of the upper plate, the effect of the modified Brinkman number and Brinkman number 

on the temperature distribution and the Nusselt number are discussed.  

Key words: Plane Couette Flow, Nusselt Number, Viscous Dissipation, Constant Heat Flux, Brinkman Number.    

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 25-10-2019                                                                          Date Of Acceptance: 10-11-2019 

------------------------------------------------------------------------------------------------------------------------- -------------- 

 

NOMENCLATURE 

1 3a a   Constant      U     Dimensionless velocity 

Br  Brinkman number     pU    Velocity of the moving plate (m/s) 

mBr  Modified Brinkman Number    x       Axial coordinate direction (m) 

pc  Specific heat at constant pressure (J/gK)   y      Vertical coordinate direction (m) 

1h  Heat transfer coefficient at upper plate (W/m
2
-K) Y      Dimensionless vertical coordinate 

H         Channel height (m) Greek Symbols 

k  Thermal conductivity (W/mK)           Dimensionless temperature 

HNu  Nusselt number at the upper plate   m     Dimensionless bulk mean temperature 

1q  Upper wall heat flux (W/m
2
)          Dynamic viscosity (kg/m-s) 

2q  Lower wall heat flux (W/m
2
)          Density (kg/m

3
)   

T          Temperature (K) Subscripts 

1T  Upper wall temperature (K)    f      Uniform fluid 

2T  Lower wall temperature (K)    m      Mean 

u          Velocity (m/s)                                         w       Wall 

*Corresponding Author Email: uwaezuokemartin@gmail.com 

 

I. INTRODUCTION 
 Flow of Newtonian fluids through various channels is of practical importance and heat transfer is 

dependent on flow conditions such as flow geometry and physical properties. Investigations in heat transfer 

behavior through various channels showed that the effect of viscous dissipation cannot be neglected for some 

applications, such as flow through micro-channels, small conduits and extrusion at high speeds. The thermal 

development of forced convection through infinitely long fixed parallel plates, both plates having specified 

constant heat flux had been investigated [1-4]. For the same but filled by a saturated porous medium, heat 

transfer analysis was done where the walls were kept at uniform wall temperature with the effect of viscous 

dissipation and axial conduction taken into account [5]. In [6], it was concluded that in a porous medium, the 

absence of viscous dissipation effect can have great impact. For the horizontal double passage channel, uniform 
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wall temperature with asymmetric and symmetric heating and the effect of viscous dissipation had been 

investigated [7]. 

For the pipe flow, where the walls are kept either at constant heat flux or constant wall temperature, 

analytical solution is obtained for both hydro-dynamically and thermally fully developed and thermally 

developing Newtonian fluid flow, considering the effect of viscous dissipation [8,9]. 

Analytical solution with the effect of viscous dissipation was derived for Couette-Poiseuille flow of 

nonlinear visco-elastic fluids and with the simplified Phan-Thien-Tanner fluid between parallel plates, with 

stationary plate subjected to constant heat flux and the other plate moving with constant velocity but insulated 

[10-12]. Numerical solution of fully developed laminar heat transfer of power-law non-Newtonian fluids in 

plane Couette-Poiseuille flow, with constant heat flux at one wall with other wall insulated had been 

investigated [13] and analytical solution was derived for Newtonian fluid [14].  

A numerical investigation had been done to find the heat transfer for the simultaneously developing 

steady laminar flow, where the fluid was considered to be viscous non-Newtonian described by a power-law 

model flowing between two parallel plates with several different thermal boundary conditions [15]. When a thin 

slab was symmetrically heated on both sides, the hyperbolic heat conduction equation was solved analytically 

[16]. Considering the effect of viscous dissipation and pressure stress work of the fluid, the steady laminar 

boundary layer flow along a vertical stationary isothermal plate was studied. The variation of wall heat transfer 

and wall shear stress along the plate was discussed [17]. 

The Bingham fluid was assumed to be flowing in between two porous parallel plates. With the slip 

effect at the porous walls, the analytical solutions were obtained for the Couette-Poiseuille flow [18]. Numerical 

evaluation for developing temperature profiles by a finite-difference method were carried out for non-

Newtonian fluid through parallel plates and circular ducts. The effects of viscous dissipation and axial heat 

conduction were taken into account. Graphical representation of Nusselt numbers were noted for various 

parameters [19]. The thermal entrance region of a horizontal parallel plate channel, where the lower plate was 

heated isothermally and the upper plate was cooled isothermally was considered. Numerical results were found 

on the onset of instability for longitudinal vortices, with effect of viscous dissipation [20]. A numerical analysis 

was carried out, taking viscous dissipation into account for pseudo-plastic non-Newtonian fluids aligned with a 

semi-infinite plate [21]. 

From the literature survey, it is observed that heat transfer analysis with effect of viscous dissipation is 

not found for the Couette device. The heat transfer analysis with one plate moving is a different fundamental 

problem worth pursuing. This paper is necessary specifically in obtaining analytical results wherever possible 

for benchmarking and for better understanding of the process relative to a recent study by Uwaezuoke and 

Oyesanya [1] where analytical expressions for Nusselt number for fully developed flow between stationary or 

fixed parallel plates were reported. The current study examined systematically the solutions for the simple 

constant heat flux boundary conditions and come to the conclusion that all of the reported results in [1] were 

different from what we have obtained independently. For ease of comparison, we have followed [1] in the use of 

two definitions of the Brinkman number: one in terms of a temperature difference and the other in terms of 

constant heat flux. Temperature distributions are also reported. 

 

II. PROBLEM FORMULATION AND ANALYSIS 
2.1 Physical Considerations  

 Here, a channel between two parallel plates of infinite length, of height H  and width b , with 

b H , is considered as shown in Figure 1. Fluid is flowing in the axial (X) direction, while the flow is 

influenced by the movement of the upper plate. The flow is fully developed - both hydro-dynamically and 

thermally. The no-slip boundary conditions are assumed to be valid at both the plates for both hydro dynamic 

and thermal considerations. In addition to the consideration that the flow is fully developed, few more 

assumptions considered for the study are given below: 

 Newtonian fluids; 

 Incompressible fluid flow; 

 There is no heat generation and thermo-physical properties are constant. 

 Axial heat conduction is neglected in the fluid and through the wall. 
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Figure 1. Schematic diagram describing the problem 

 

2. 2 Analysis of the Problem  

The continuity, momentum and energy equations for incompressible fluid flow are found to be relevant to this 

study. They are as follows: 

Continuity equation: 

0
u

x





          (1) 

Momentum equation: 

2

2
0

d u

dy

 

 
 

          (2) 

Energy equation: 
22

2p

T T u
c u k

x y y
 

   
   

   
        (3) 

where the last term on the right hand side of the above equation denotes the viscous dissipation. 

 

2. 3 Both Plates at Different Constant Heat Fluxes 

 Both plates are kept at different constant heat fluxes. Also, the upper plate is at constant heat flux 1q  

and the lower plate is at constant heat flux 2q . However, in order to express Equations (2) and (3) in a non-

dimensional framework, it is essential to define the non-dimensional parameters suitably. From the physical 

considerations discussed above, following non-dimensional parameters are chosen: 

,
p

u y
U Y

U H
  and 

 1

1

T T

q H

k




 ; 

where 1T  is the temperature of the upper plate. The non-dimensional fully developed velocity profile is 

expressed as: 

U Y            (4) 

However, with the aid of the above non-dimensionless parameters and using Equation (4), Equation (3) may be 

normalized to yield the following: 
22

1

2 2

p p pU c U yq d T

H dY H H x

  
 


        (5) 

Where 
1dTT

x dx





and 

2

1

p

m

U
Br

q H


  is the modified Brinkman Number based on the upper plate heat flux 1q . 

By defining 
1

1

1

p pc U H dT
a

q dx

 
 

 
, Equation (5) can finally be rewritten as: 

2
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d
a Y Br

dY


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However, in order to get the temperature profile, following thermal boundary conditions, imposed on the plates, 

are utilized. In a non-dimensional form, the above set of boundary conditions may be expressed as given below: 

0

1,
1

Y d

dY








 
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

         (7a) 

2

1

0,
qd

Y
dY q


            (7b) 

Solving Equation (6) with the above set of boundary conditions, the general expression of the temperature 

profile is obtained as: 

3 3 2

2 2

1 1

1 2 1
1

3 3 2 6 3 3
m

q qY Y Y
Br Y

q q


     
            

   
    (8) 

In order to obtain a deeper insight into the heat transfer characteristics, the bulk mean fluid temperature mT  is 

defined as: 

0

0

H

y

m H

y

uTdy

T

udy











          (9) 

Heat transfer at the lower plate is expressed as : 

 1 1 1

0

m

y

T
q h T T k

y



  


        (10) 

where 1h  is the convective heat transfer coefficient.  

Hence, the Nusselt number comes out to be: 

 
1 1

1

1
H

m m

h H Hq
Nu

k T T k 
   


       (11) 

The non-dimensional mean temperature is given by: 

1 2

1 1

1
2

/ 15 40 10

m m
m

T T Brq

q H k q


 
    

 
        (12) 

Finally, the expression of Nusselt number using the Equations (11) and (12) is obtained as: 

2

1

60

8 3 12

H

m

Nu
q

Br
q

 
 

  
 

         (13) 

Based on the expression of Nusselt number obtained at the unequal constant heat flux condition as mentioned 

above, the expression of the Nusselt number can now bederived for some limiting cases to understand the heat 

transfer characteristics in a viscous-dissipative environment. Some of the cases are discussed in the next sub-

sections. 

 

2.3.1 Upper Plate at Constant Heat Flux 1q  and Lower Plate Insulated  

The Nusselt number in this condition from Equation (13), for 2 0q   is given below: 

 
20

4
H

m

Nu
Br




          (14) 

The above equation suggests a new way of expressing the Nusselt number as compared to what is available in 

the literature. 
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2.3.2 Both Plates at Equal Constant Heat Flux 1q  

In this case, one can express the Nusselt number from Equation (13), for 1 2q q  , as given below: 

 
60

4 3
H

m

Nu
Br




          (15) 

The above equation also expresses the Nusselt number in a different manner as compared to what is available at 

present in the literature. 

 

2.4 Solution Using Temperature Difference 

Here, a different kind of analytical method is adopted, and the Brinkman number is defined such as to obtain the 

closed-form solution of the temperature difference, and, subsequently, the expression of the Nusselt number. 

 

2.4.1 Upper Plate at Constant Heat Flux and Lower Plate Insulated  

 In this section, a case is considered where the upper plate is at constant heat flux 1q and the lower plate 

is insulated, which resembles Figure 1 with 2 0q  . Moreover, it is assumed that the temperatures of the upper 

and lower plates are 1T  and 2T , respectively, when both temperatures vary along x direction. However, for this 

case, following non-dimensional parameters are defined to obtain the thermal energy equation in a non-

dimensional framework. 

y
Y

H
 ; and 
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 
1
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





        (16) 

With the aid of the above non-dimensional quantities, the energy equation obtained as: 
22

1

2 2 2

p

p p

U dTT d
k c U Y

H dY h dx


 


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The Equation (17) can be simplified as: 
2
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d
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Where  
2

1
2 1 2,p
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
 and the Brinkman Number 

2
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

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          (19) 

However, Equation (18) is subjected to the boundary conditions as below: 

0
0,

1

d

Y dY








 
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         (20a) 

1, 0Y             (20b) 

Solving Equation (18) with the above set of boundary conditions, the temperature profile is obtained as: 

 3 3 2 1
2

Br
Y Y Y             (21) 

However, by using Equation (20) the expression of the mean temperature in a dimensionless form is obtained 

as: 

1

1 2

3

20 5

m
m

T T Br

T T


  
    

  
        (22) 

Now, from the heat flux given at the upper plate, the expression of Nusselt number comes out to be: 
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      (23) 

However, it is interesting to note from the above expression of the Nusselt number that when 0Br  , 

5Nu  . This is identical to the result obtained under different-heat-flux condition when 0mBr  . 

 

2.4.2 Both Plates at Equal Constant Heat Fluxes 

 In this section, a case is considered where both plates are maintained at the same constant heat flux 1q

(Figure 1 with 2 1q q ). Considering symmetry of the problem, the temperature of both plates is assumed to be 

wT , varying along x-direction. However, for this case, following non-dimensional parameters are defined to 

make the thermal energy equation dimensionless. 

y
Y

H
 ;  and 

 

 
w

f w

T T

T T






        (24) 

where fT  is the uniform fluid temperature at the centerline. 

With the aid of the above non-dimensional quantities, the energy equation is obtained as: 
22
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The Equation (25) can be rewritten as: 
2
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d
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           (26) 

Where  
2
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
 and the Brinkman Number 
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However, Equation (25) is subjected to the boundary conditions as below: 

01
,

2
1

d

Y dY








 
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         (28a) 

0, 0Y             (28b) 

The solution of Equation (25) subjected to the above set of boundary conditions is: 

3 3 23 1
2

2 2 4

Br
Y Y Y Y

 
      

 
       (29) 

However, the expression of the mean temperature in the dimensionless form is found to be: 

1

30 5

m w
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
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Now, for the heat flux given at the upper plate, the expression of the Nusselt number reduces to: 

 
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     (31) 

III. RESULTS AND DISCUSSIONS 
 In order to bring out the effect of viscous dissipation on the Nusselt number and the temperature 

profile, three different particular cases are presented to investigate the heat transfer characteristics. Using the 
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analytical technique described above, some expressions of the Nusselt number and the temperature profile are 

obtained. In this section, several plots are presented and discussed in brief. 

 

3.1 Plates at Different Constant Heat Fluxes 1q  and 2q   

 The Brinkman number is an important parameter governing the heat transfer and the fluid flow 

between two parallel plates. Effects of viscous dissipation in a fluid flow and heat transfer phenomenon is 

explained by the Brinkman number. The present study aims in finding out the influence of the viscous 

dissipation effects on the temperature profile, and the resulting Nusselt numbers. Figure 2 depicts the 

dimensionless temperature profile within the flow field for different mBr , pertaining to the case where plates 

are kept at different constant heat flux conditions obtained from Equation (8). One may observe that with 

increasing value of mBr , the temperature increases as expected. Positive values of mBr  are compatible with the 

wall heating case, which indicates heat transfer to the fluid across the wall. Therefore, in the cases with positive 

mBr , the fluid temperature increases as evident from the above figure. However, the temperature profile close 

to the upper plate shows an increasing trend. The increasing trend of temperature profile nearer to the upper 

plate is attributed to the effect of shear in the fluid layer produced by the movement of the upper plate. 

 

Figure 2. Dimensionless temperature profile  
1q Y  for different values of mBr  

 

 

Figure 3(a). The influence of mBr  on the HNu   for different 1 2q q  
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Figure 3(b). The influence of mBr  on the HNu  for 1 2 0q q   

 

 The main physical quantity of interest is the Nusselt number which represents the heat transfer rate at 

the wall of the plate. The variation of the Nusselt number with the Brinkman number needs to be investigated. 

To demonstrate the effect of viscous dissipation on the Nusselt number, Equation (13) is considered. However, 

the variation of the Nusselt number with mBr  is shown in Figures 3a and b for heat flux ratio 

1 2 1,1.25,5q q   and for 1 2 0q q  , respectively. The choice of different heat flux ratios represents 

different cases. The ratio 1 2 1q q   corresponds to the case, where both plates are at equal constant heat flux. 

Similarly, 0 corresponds to the case of an insulated lower plate. The ratio 1.25 indicates the special case 

occurring due to the point of singularity at the origin. 

 One may notice form the above figures that the variation of the Nusselt number with Brm is not 

continuous for all the cases considered in the study; rather a clear existence of the point of singularity is 

observed in each case at a different point at a different mBr , as suggested by Equation (13). The different 

locations of the point of singularity are due to the different ratios of heat flux considered, and, at this point, the 

shear heating balances the heat supplied by the wall. However, from this point of singularity as mBr  increases 

in the positive direction ( 0mBr  ), the Nusselt number decreases because of the decrease in the driving 

potential of the heat transfer, and it finally attains different constant values asymptotically, (when mBr  ), 

for all the cases of heat flux taken into account. The negative value of m Br represents the wall cooling problem 

and with the increasing value of mBr  in the negative direction, the Nusselt number decreases and an asymptote 

appears at different constant values of Nu  for different cases as mBr  . 

 

3.2 Lower Plate Insulated and Upper Plate at Constant Heat Flux  

In this section, the graphical plots of the variation of the dimensionless temperature profile and the Nusselt 

number using the Brinkman number defined in Equation (19) are presented. The temperature variation is plotted 

in Figures 4a - b where as Figure 5 shows the variation of the Nusselt number with Br . 

 
(a) 
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(b) 

Figure 4. Dimensionless temperature profile  Y   versus Y  for different values of Br for the case of 

insulated lower plate: 

(a) hot wall (b) cold wall 

 

 Figure 4a corresponds to the wall-heating case and, as expected, the bulk temperature of the fluid 

increases with increasing values of Br . This indicates that as dissipation increases, the fluid temperature 

increases due to the internal fluid friction. On the contrary, one may observe from Figure 4b that for the wall-

cooling case, with increasing Br , the bulk temperature of the fluid decreases compared to the case with a 

negligible Br . Actually, the wall-cooling case is applied to reduce the fluid temperature, and it is important to 

note from Figure 4b that even at higher value of Br , the temperature of the fluid decreases, which can be 

attributed to the movement of the upper plate. Interestingly, one can make an important observation from 

Figures 4a - b that the viscous dissipation effects become prominent in a zone, close to the upper plate, due to 

the high shear rate over there. 

 The variation of Nusselt number as depicted in Figure 5 shows that Increasing Br makes the bulk 

temperature of the fluid to increase and hence, the driving potential of the heat transfer is reduced, which is 

reflected on the variation of the Nusselt number as Br increases in the positive direction. However, the Nusselt 

number decreases asymptotically as Br . As explained, the negative value of Br represents the wall cooling 

problem, and with the increasing value of Br in the negative direction, the Nusselt number decreases and an 

asymptote appears as Br  . It is important to observe the existence of the point of singularity at 

12Br  , which is quite clear from Equation (23). 

 

3.3 Both Plates at Equal Constant Heat Flux 

 Here, the variation of the dimensionless temperature profile and the Nusselt number using the 

Brinkman number, defined in Equation (27), is discussed through presentation of their graphical plots obtained 

from Equations (29) and (31). The temperature variation is plotted in Figures 6a - b; whereas Figure 7 shows the 

variation of the Nusselt number with Br . 

 Viscous dissipation always generates a distribution of heat source stimulating the internal energy in the 

fluid, and hence the temperature profile gets distorted, which is envisaged from the above figures. Figure 6a 

depicts the dimensionless temperature profile within the flow field for the wall-heating case. As explained 

earlier that for wall-heating case the fluid temperature increases, where as the reverse is true for the wall cooling 

case. Interestingly, one can see from above figure that in case of equal constant heat flux, the dimensionless 

temperature profile exhibits usual trend of increasing temperature with positive values of Br , up to a certain 

distance from the lower plate at 0.3Y  ; then it is followed by a decreasing trend even at positive values of 

Br  up to the upper plate.  
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Figure 5. The influence of Br on the HNu  for the case of insulated lower plate 

 
(a) 

 
(b) 

Figure 6. Dimensionless temperature profile  Y   versus Y  for different values of Br  for the case of equal 

constant heat fluxes: (a) hot wall (b) cold wall 

 

 

Figure 7. The influence of Br  on the HNu  for the case of equal constant heat fluxes 
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 A reverse explanation holds true for negative values of Br , which one can also observe from Figure 

6b. This contradictory behaviour of the temperature profile with Br  for any particular case of wall heating as 

seen from the above figures is owing to the movement of the upper plate, and the thermal boundary condition 

considered in this case. 

 Figure 7 exhibits the variation of the Nusselt number with Br . However, compared to cases with an 

insulated lower plate, the variation of the Nusselt number shows a distinct feature as Br  changes in case of the 

equal constant heat flux condition. It is important to observe the existence of the point of singularity on the 

variation at 6Br   , as expected from Equation (23). However, from the point of singularity the Nusselt 

number reaches a constant value in either direction asymptotically. 

 

IV. CONCLUSIONS 
 In this work, influence of the viscous dissipation on the heat transfer characteristics in a Newtonian 

fluid flowing between two parallel plates is investigated. Here, an analytical approach is presented in an 

exhaustive way to suggest explicit expressions of the Nusselt number, utilizing two definitions of the Brinkman 

number for three different cases of constant heat- flux boundary conditions. To obtain the temperature profile, 

and the resulting Nusselt number, variable separation method has been used twice in the analysis. Also, different 

cases are demonstrated and expressions of the temperature profile and the Nusselt number are presented in 

different sub-sections. The influential role of viscous dissipation is found to be of great importance in the heat 

transfer analysis; hence, an emphasis on the viscous dissipation is given to include the effect of the shear stress 

induced by axial movement of the upper plate in addition to the effect of the viscous dissipation due to the 

internal fluid heating.  
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