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--------------------------------------------------------ABSTRACT----------------------------------------------------------- 

In the present study, a finite strip method for geometric non-linear static analysis based on the tangential 

stiffness matrix has been developed using the new concept of polynomial finite strip elements, with Reissner 

(higher order shear deformable element) plate-bending theory for composite faceted shells. A finite strip 

analysis programming package which is capable of performing non-linear analysis for composite folded plates 

has also been developed with Reissner plate bending element. Good agreement with the finite element analysis 

(ABAQUS) results has been observed through various test cases, confirming the accuracy and reliability of the 

new developed finite strip method. 
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I INTRODUCTION 

The finite strip method (FSM) can be regarded generally as a specialization of the finite element 

method (FEM). The properties of a strip are based on the use of an assumed displacement field in conjunction 

with the potential energy or virtual work principles. The first publication on the FSM was by Cheung [2], which 

concerned only the linear static analysis of single rectangular plates having a pair of opposite ends that were 

simply supported. Kermanidis and Labeas [3] developed an anisotropic finite strip element based on the semi-

analytical method, for static and stability analysis of thin composite laminates. Wang et al. [4] investigated the 

critical buckling load of composite laminated plates using a developed higher order shear deformable plate finite 

strip element. The warping of cross-section and transverse shear deformation can be predicted by the higher 

order plate theories. Akhras et al. [5] have developed a new finite strip method for the large deflection analysis 

of composite laminates. The method incorporates additional degrees of freedom for each nodal line and uses the 

higher order shear deformation theory. Loughlan [6] employed semi-analytical finite strip method to investigate 

the effect of bend-twist coupling on a square anti-symmetric angle-ply laminated plate under compressive 

buckling. 

In this work, the finite strip analysis of composite laminated facetted shells, which is based on a new 

derivation of the higher order shear element (Reissner type element [7], is presented taking into account the 

geometric non-linearity. This derivation follows concepts similar to those employed in the finite element analysis 

using the tangential stiffness matrix approach. The formulation of the finite strip equations are based on a new 

Reissner-type finite strip element [1] in which one-dimensional Lagrangian interpolation employed along both 

the length and the width of the plate. One the other hand, Hermitian interpolation is employed for the lateral 

deflection components together with appropriate reduced integration schemes. In this research, a new rotation 

matrix based on seven degrees of freedom per node has been derived for the facetted shell finite strip element. 

 

II DERIVATIONS OF FINITE STRIP EQUATIONS 

Displacement and strain components 
Consider a composite laminated plate which is parallel to the x-y plane. The upper and lower surfaces 

of the plate are defined by z = h/2 and z = - h/2 respectively, where h is the thickness of the plate Based on 

Reissner’s theory [7] the transverse shear strains at any point (x, y ,z) inside a plate can be represented by 

parabolic distributions across the thickness of the plate as follows: 
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where   and γγ
yzxz

are the average values of the transverse shear strains over plate thickness.  

From Mindlin’s plate bending theory [8], the average slope angles are defined as follows: 
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Where  
xzyyzx

  ,  

 

The average values of the transverse shear can be used to define the displacement components, which leads to 
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Equations (4), (5), and (6) represent the displacement components at any point (x, y, z) inside the plate, where 


vu ,  represent the values of u, v at the mid-plane z = 0.  

 

In this work the transverse shear strains are always assumed infinitesimal while for non-linear static analysis, the 

x-y strain components are assumed finite. Using Green’s strain displacement equations [10], the strain tensor at 

any point inside the plate can be obtained using appropriate engineering notations [11].  

 

Interpolated Displacement Equations 

The interpolation of the lateral displacement w both in the x and y-directions requires the 
1

C continuity [9]. In 

order to maintain 
1

C  continuity over the whole plate, only Hermitian-type can be used. All other displacement 

components are interpolated in the x and y-directions by means of Lagrangian interpolation, as there is no need 

for more than 


C continuity required. Hence, the full x-y interpolated displacement equations can be expressed 

for an n-node finite strip, with m y-terms ( harmonics) as follows [1]: 
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where the shape functions )(  and )( μ 
rr

N  are  
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which represent one dimensional  Lagrangian shape functions and 
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which represent the hermitian interpolation in x and y where ξ, η are non-dimensional representation of x, y 

coordinates of the midplane. 

 

Stress Components 

The stress components at a point in the 
th

l   layer, can also be partitioned and represented by the following 

vectors [1]: 
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Using stress-strain relations for the 
th

l  layer, then: 
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where D
l )(

, 
)( l

 are material stiffness matrices with respect to plate axes, for the 
th

l  layer. 

 
III DERIVATION OF ELEMENT STIFFNESS MATRICES  

Using the principle of virtual work, the work done by actual loads is equal to the work done by equivalent nodal 

loading [8], i.e.: 

 

0 dWdUd                                                                                            (17) 

 

We then arrived at the following linearized non-linear equations [10] which are defined as: 
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where 
srsr
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

and are the tangential and non-linear stiffness matrices respectively which can be partitioned for 

a strip as follows : 
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and 
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The residual force and nodal displacement vectors 
rs

R  and respectively are defined as follows  
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The tangential stiffness matrix and non-linear stiffness matrices terms of equation (19) and (20) have been 

defined in [11]. 
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FACETTED SHELL FINITE STRIP ELEMENTS 
Local and Global Axes [9] 

 

Each component (plate) forming a box structure or a stiffened plate may have different individual local axes 

(defined here as 
LLL

zyx ,, axes) and it is advantageous to use just one unique global system of axes for the 

whole structure, such as that shown in figure 1. For finite strip analysis, the y-axis will remain the same for all 

axes systems, i.e. the local y-axis is assumed parallel to the global y-axis. As an example, a folded plate may 

have three different local axes and may be as shown in figure 2. 

 

 
Figure 1. Plate local and global axis 

 

 
Figure 2. Local and global axes of a folded plate 

 

Local axes for a finite strip element are defined in terms of the two end points of the strip such that: 

 

  The local x axis is from the first end to the second end. 

  The local y-axis is in the midplane of the strip, and normal to the x-axis. 

  The local z-axis is normal to the
LL

yx   plane (the midplane 0
L

z ), across the thickness. 

If  ( x1, y1, z1 ), ( x2, y2, z2 ) are the global coordinates of the two end points of the strip on the 
LL

zx   plane, i.e. 

with y1 = y2 = 0, then the angle β between the local x-axis and the global x-axis can be defined, as shown in 

figure 1, hence 
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where    
2
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which represents the length of the finite strip in the 
L

x  – direction. Hence, the directional cosines 

 
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,, nml  of the local x-axis with respect to the global axes can be defined as follows: 
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and from geometry, the directional cosines,  
333

,, nml of the local z-axis are: 
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Also, the directional cosines   
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,, nml  of the local y-axis are: 
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Hence, the rotation matrix R of the local axes can be defined as the following: 
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 ROTATION VECTOR [9] 

Notice that if kji ˆ,ˆ,ˆ   are unit vectors in the global x, y, z directions, and 
LLL

kji ˆ,ˆ,ˆ  are unit vectors in the 

local 
LLL

zyx
,

, directions then it can be deduced that: 
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which can be written in a matrix form as follows: 
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A Cartesian vector V


 can be represented by its local components   LLL

zyx
vvv ,,  or global 

components  
zyx

vvv ,, , i.e. 
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which can also be represented in a matrix form as follows 
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Hence, it can be deduced that: 
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Similarly it can be proved that: 
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Degrees of Freedom and Rotation Matrix for Reissner-Type elements 

The interpolation equations of Reissner-type element are based upon six degress of freedom per node i and per y 

term r;    
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Figure 3. Degrees of freedom for Reissner-type finite strip element 
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Similarly, for facetted elements additional degrees of freedom  
i

r

z
  is needed with the following 

considerations: 

 

 For co-planar nodes: 
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 For node  i at the intersection of two plates: 

The global 
z

  may not be equal to zero and we use the following equation: 
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Hence, the rotation, matrix of the Reissner-type element at any node i and y value r can be defined such that: 
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where for a co-planar node j: 
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and for node i at the intersection of two plates: 
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Finally, for all the components of an n-node finite strip element at the rth y term or harmonic, we can deduce 

that: 
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r
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where   is the element rotation matrix defined as follows: 
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An additional boundary condition should be implemented for every co-planar node j: 
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From the derivations of the stiffness matrices in the previous chapters, it can be deduced that: 
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and 
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IV NUMERICAL EXAMPLES  

The first paragraph under each heading or subheading should be flush left, and subsequent paragraphs 

should have a five-space indentation. A colon is inserted before an equation is presented, but there is no 

punctuation following the equation. All equations are numbered and referred to in the text solely by a number 

enclosed in a round bracket (i.e., (3) reads as "equation 3"). Ensure that any miscellaneous numbering system 

you use in your paper cannot be confused with a reference [4] or an equation (3) designation. 

An analysis of a stiffened plate is considered in this case in order to demonstrate the ability of the newly 

derived finite strips methods to deal with folded plates problems. In this test case, a simple stiffened plate, which 

is shown schematically in figure 4 is considered, where 

 

Length in x-direction L = 2 m, 

Width in y-direction, B =1 m, 

Height of the stiffener in z-direction S = 0.5 m. 

 

L/2

 S

Clamped

Edge
Clamped

Edge

Clamped

Edge

  Finite Strip 

Mesh

 B

z
y

x

 
Figure 4. Geometry and boundary conditions of Stiffened plate. 
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Figure 5. Stiffened plate under uniform distributed load. 
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Figure 6. Stiffened plate under uniform line loading. 

 

The plates consist of 12-ply ([-45/0/45]2S) Carbon-Epoxy composite whose material properties are given in 

Table 1. 

 

TABLE I. Mechanical Properties of the stiffened plates 
 

Parameter 

 

Value 

 

Longitudinal Modulus E11 [GPa] 

 

12.61 

 

Transverse Modulus E22 [GPa] 

 

12.61 

 

Shear Modulus in x-y plane G12 [GPa] 

 

2.15 

 

Shear Modulus in y-z plane G23 [GPa] 

 

2.15 

 

Shear Modulus in z-x plane G31 [GPa] 

 

2.15 

 

Major Poisson’s Ratio v12 

 

0.29 

 

Thickness of each layer [mm] 

 

0.6 

 

 The stiffened plate has been tested by using two types of load cases: 

1)  Case with distributed loading (figure 5) on the upper surface, along –z –direction (thickness), with intensity 

of 2.0 x 10
5
 N/m

2
. 

2)  Case with out-of-plane line loading (figure 6), with load intensity of 2.0 x 10
6
 N/m.

  
 

 
Figure 7. ABAQUS stiffened plate finite element mesh and boundary conditions under uniform 

distributed load. 
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Figure 8. ABAQUS stiffened plate finite element mesh and boundary conditions under uniform line 

loading. 

 

For validation purposes, 11 finite strip elements based on Reissner (Hermitian) type of element were 

used to model the plate whereas 6 elements were used for the stiffener for both test cases. On the other hand, 

finite element mesh and boundary conditions were modelled using the ABAQUS S4 shell element [11]. Figures 

7 and 8 show the mesh and boundary conditions for cases with distributed loading and line loading respectively. 

The results for the load increment (reaction force in z-direction measured at the bottom of the stiffener) 

versus the out-of-plane deflections, w at mid-point of the stiffened plate, i.e. at (L/2, B/2) were compared with 

the results obtained from ABAQUS for both cases. As can be seen in figures 9 and 10 excellent agreement 

between the finite strip and finite element results has been achieved.  

 

 
Figure 9. Load vs central deflection of

 
stiffened

 
plate under uniform distributed. 

 

 
Figure 10. Load vs central deflection of

 
stiffened

 
plate under uniform line loading. 

 
 

V CONCLUSION 

The work presented in this research contributes to the development of a finite strip method capable of 

performing a non-linear static analysis of composite laminated plates based on a higher order finite strip element, 

which may be used in the design and analysis of prismatic shape composite laminated structures. Validation of 

the developed finite strip package has been successfully carried out by comparing the results with the finite 

element analysis using ABAQUS. Good agreement with the finite element results (ABAQUS) were observed 
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from previous test cases, confirming the accuracy and reliability of the new derivations and the programming 

package. A reduction in the modelling effort and time can be achieved as a result of only one-dimensional mesh 

required to model facetted shells by using the package built-in mesh generator as compared to the conventional 

2-dimensional finite element mesh. 
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