

Using VSM to Improve Manufacturing Efficiency in Developing **Countries: A Case Study of a Beverage Manufacturing Company** in the Caribbean

Terrence Lalla, Nadine Sangster, Shalana Jahoor

Department of Mechanical and Manufacturing Engineering, The University of the West Indies Design and Manufacturing Engineering, The University of Trinidad and Tobago Graduate, Department of Mechanical and Manufacturing Engineering, The University of the West Indies

Corresponding Author: Nadine Sangster

-----ABSTRACT-----Lean manufacturing concepts have been successfully applied in many manufacturing organizations to reduce the lead time, decrease cost and improve quality. One lean tool utilized to eliminate non-value adding activities is value stream mapping (VSM). A beverage manufacturing company, operating in a Caribbean island was looked at as they were faced with the challenge of producing higher quality, low cost products to their customers within a shorter timeframe in order to enhance their competitive advantage. This work thus looked towards determining how VSM could be effectively used within the company to improve performance and reduce lead time. Process observations, time studies and informal employees' interviews were utilized to obtain data for the map generation. The current state was developed and analyzed using appropriate software. From the findings obtained, seven (7) categories of waste were identified. Improvement initiatives, which were supported by an extensive literature of most of the techniques, were suggested and the future state map was developed. The findings revealed that the lead time could be reduced from twenty six (26) days to fourteen (14) days and the value added ratio could be increased from 0.50% to 0.88%. The expected costing saving per year is approximately four million, twenty nine thousand, five hundred and forty two dollars (USD 4,029,542.00). **KEYWORDS** -Lean Manufacturing, Value Stream Mapping (VSM), seven wastes, manufacturing

Date of Submission: 06-04-2018

Date of acceptance: 21-04-2018 _____

I. INTRODUCTION

Manufacturing companies in the Caribbean are subjected to the challenge of competing with various multinational companies due to increased globalization. The manufacturing company chosen for this work is one of the oldest and largest manufacturers of nonalcoholic beverages within the English speaking Caribbean. They are now required to produce varying quantities of high quality product within a shorter manufacturing period in order to remain competitive within their respective markets. In response to this global challenge, the company is desirous of reducing waste elements within its operating processes thereby reducing the lead time and thus the cost of the finished product. Over the past two years, the number of competitors within the beverage market has significantly increased. The variations in the customer demands have also been amplified and the acceptable lead time reduced. In order to ensure the company does not lose its customers to competitors, it is critical that their customers are provided with an affordable, high quality product within a shorter timeline.

Currently, one of the company's main problems is the inability to deliver the customer orders in a timely manner resulting in the loss of sales. Its fill rate, which is a measure of the ability to satisfy the customers, was at 70%. Another major problem was the overstocking of items leading to expired products or products being damaged due to excessive material handling. As a result, it was forced to condemn fourteen thousand dollars (US\$14,000) in raw materials and finished goods inventory. Apart from this problem, the overstocking of unnecessary items resulted in the rental of warehouses for the storage of these items. The company spent thirty thousand dollars (US\$30, 000) per year for the rental of storage space. The high inventories as well as the rental cost for warehouses resulted in lower cash flow within the organization.

This study therefore examined how VSM could be used to improve the performance and reduce the lead time to manufacture. It was geared towards the identification of the various waste elements within the manufacturing company's current processes.

II. METHODOLOGY

Data was collected via process observations, time studies and informal interviews with employees at the company. The VSM was developed using Minitab Companion. Areas of waste were identified using this and a future state VSM was done focusing on areas for improvement. Trial testing and surveys were administered to determine the practical implementation of the improvement initiatives and the cost benefits of the initiatives were examined.

III. CURRENT STATE VSM

An overview of the manufacturing process for the beverage manufacturer is shown in Figure 1 below.

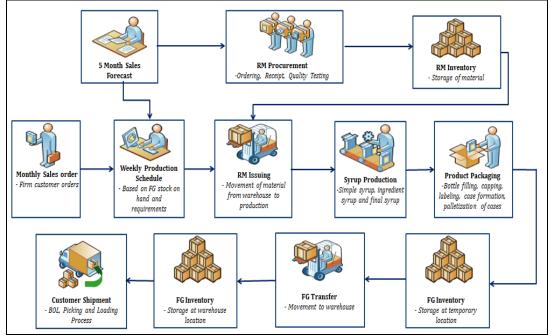


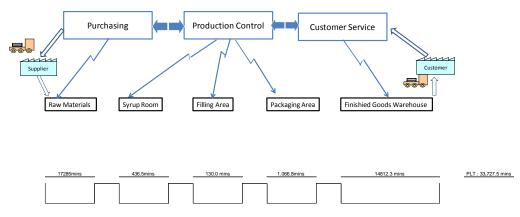
Fig 1: Process Flow Map Overview

From the data collected (Tables 1 and 2) the process lead time, (time taken for a case to make its way through the entire process) was 26.35 working days. The following assumptions were made:

> Available working Days per month = 22 days ;Number of shifts per day in the production department = 2 shifts ;Days per week = 5 days ;Number of hours per shift = 12 hours ;Actual Available working hours per day = 21.33 hours

> The raw materials department and the finished goods warehouse have the largest process lead time of 17, 282 minutes and 14,812 minutes respectively.

> The time spent executing work, also known as processing time was calculated by summing the cycle times in the current VSM. This was determined to be 920 minutes. However, only 169 minutes of the processing time could be categorized as value added time.


The current state VSM is thus shown in Figure 2.

Section	Activity Overview	Current VSM
Section	Activity Overview	Time (mins)
	RM Processing	1,077.0
DM Department	RM Storage	15,360.0
RM Department	RM Issuing	845.0
	Sub Total	17,282.0
	Simple Syrup Mixing	150.5
Syrup Room	Ingredient Mixing	286.0
	Sub Total	436.5
	Syrup Carbonation	56.4
Filling Area	Bottling Product	73.6
	Sub Total	130.0
	Case Packaging	34.9
De alea alea Alean	Palletizing Cases	120.0
Packaging Area	Temporary Storage	911.8
	Sub Total	1,066.8
	Pallet Receipt and Storage	14,103.0
FG Warehouse	Order Processing	94.0
ro warehouse	Order Picking	615.3
	Sub Total	14,812.3
Total Processing Lead	lime	33,727.5

Table 1:	process	Lead	time	for	the	current	VSM
I upic I.	process	Licuu	unit	101	unc	current	V DIVE

Table 2:	Cycle	time	for	the	current	VSM
I able 2.	Cycic	unic	101	unc	current	1 DIVI

		Time (mins)			
Section	Activity Overview	Current			
Section	Activity Overview	Cycle Time	Value Added Cycle Time		
Raw Materials	RM Processing	357	0		
Kaw Materials	RM Issuing	125	0		
Syrup Room	Syrup Mixing	232.5	147		
	Product Carbonation	9.75	2.95		
Filling Area	Product Bottling	5.6	4.1		
	Case Packaging	0.38	0.38		
Packaging Area	Palletizing Cases	6.05	4.62		
	Temporary Storage	42	0		
	Pallet Receipt and Storage	23	0		
FG Warehouse	Order Processing	12	5		
	Order Picking	106.25	5		
Total		919.53	169.05		

Figure 2 : Current State VSM

IV. WASTE IDENTIFIED

Table 3 shows the waste elements within the process. These include defects such as incorrect data entry, failures to meet the required syrup specification resulting in the dumping of product and unacceptable carbonation levels of the beverage. There is a high waiting time between processes such as quality testing and the receipt of finished goods within the warehouse. Wasted motion occurs frequently within the syrup and filling areas since there are tasks which incorporate excessive bending when the panels and displays are not easily

accessible. Over processing occurs when syrups are blended for excessive periods and quality checks are done at an increased frequency but does not add value. Large distances are travelled within the compound during the receipt of raw materials from suppliers and issuing of materials to the production area. This results in unnecessary transportation. There is large inventory accumulation in areas such as the packaging and temporary storage. Due to the significant amount of inventory within the warehouse, there is definitely overproduction within the facility. In total there were fifty-four (54) problems or areas for improvement found. The following was found with respect to the seven (7) categories of wastes : Defects -17; Waiting -9; Motion- 16; Overprocessing -4; Transportation- 2; Inventory- 5; Overproduction- 1.

V. FUTURE VSM AND AREAS IDENTIFIED FOR IMPROVEMENT: KAIZEN BLITZS

Table 4 summarizes the suggested improvement strategies or Kaizen Blitzs (KBs) of the Future VSM based on the seven (7) waste factors of: defects, waiting time, excess motion, over processing, transportation, excess inventory and overproduction.

Some of the general observations which were made included the untidy working areas especially within the operation areas, showing the lack of 5S (Upadhye N., Deshmukh S.G. 2010). Few visual management controls were implemented within the manufacturing area such as the overall target efficiency of the entire plant. However, the individual efficiency for the lines and machines were not visible and unknown to operators. This is a critical area of improvement especially in the attempt to implement lean manufacturing principles (Ortiz, Chris A. and Park 2010). Employee engagement and empowerment is a key factor to ensure the successful implementation of lean manufacturing tools within organizations (James P. Womack and Jones 2003). One of the overall suggested improvements is the implementation of performance measurement boards in each division. These can take the form of Safety, Quality, Delivery and Cost (SQCD) boards (Ross, Graham and Jeffrey 2011). Figure 3 shows the future state VSM.

	Section			
Waste Defect	Area Raw	Activity AX RM	Area for Improvement Incorrect data entry into the ERP	Current Measurement Inventory Accuracy- 90.5%
Delect	Materials	Receipt Process	system	inventory Accuracy- 90.5%
		Material	Generation of manual picking list	Incurred downtime- 1.2%
		Issuing to Production	leading to incorrect material delivered to the production area	Acceptable: 0.3%
	Syrup	Simple	High defect rate resulting in the	Defect Rate- 0.81%
	Room	Syrup Testing	reworking or dumping of syrup	Acceptable: 0.65%
		Syrup	High defect rate resulting in the	Defect Rate- 1.25%
		Testing	reworking or dumping of syrup	Acceptable: 0.65%
	Filling	Syrup	High defect rate resulting in the	Defect Rate- 0.96%
		Carbonation	dumping of syrup	Acceptable: 0.65%
		Product	High defect rate resulting in excess	Defect Rate- 1.10%
		Filling and Capping	wastage	Acceptable: 0.76%
		Bottle	High defect rate due to incorrectly	Defect Rate- 1.74%
		Coding	coded bottles and no coded bottles	Acceptable: 0.5%
	Packaging	Stretch	Poor stretch wrapped pallets	Defect Rate- 1.28%
		Wrapping of Pallets		Acceptable: 0.5%
Waiting	Raw Materials	QA Testing	Delay in testing due to unavailability of COA and poor	Acids, sugar, sweeteners waiting time: 6 hours
			communication	Raw sugar waiting time: 11 hours
	Syrup Room	Simple and Final Syrup Testing and Transfer	Delay in poor communication between compounders and QA technician	Waiting Time: 30.4 hours per month
		Inspection of Batched Ingredients	Delay in poor communication between compounders and QA technician	Waiting Time: 6.9 hours per month
	Filling	Bottle Filling	Delay in the carbonation and filling	Waiting Time: 16.2 hours per month
	Finished	Receipt into	Unavailability of designated	Waiting Time: 21 hours per

Table 3: Summary of the Identified waste and respective measurements based on the analysis of the Current VSM

Waste	Section Area	Activity	Area for Improvement	Current Measurement
Waste	Goods	warehouse	personnel for the process	month
	Warehouse	Goods Picking and	Generation of batches of picking list	Waiting Time: 49 hours per month
		Inspection	Delay in final inspection	Waiting Time: 27 hours per month
	Bottle Coding	Inputting the relevant data into the machine control to generate the required code	a) Machine's keypad is difficult to access and not stored at height levelb) Difficult to obtain the knife and orientate the bag to cut the seal	Cycle Time 5
	Bottle Warmer	Adjust the temperature settings to control the overall bottle temperature	a) Location of the machine's control results in excess bendingb) System monitor extremely small resulting in strained eye-sight to view icons	Cycle Time1.5
Motion Over- processing	Bottle Labelling	Operator is required to obtain the material and adjust machine settings	 a) Tools are difficult to access due to disorganized work area b) Excess bending required for obtaining material 	Cycle Time15
	Picking of finished goods	Forklift driver must search for the required items by viewing the week number sticker and the pallet tag	 a) Weekly sticker difficult to view since the orientation of some pallets obstruct the viewing of the sticker b) Pallet difficult to locate within warehouse to the disorganized layout 	Cycle Time-95
	Raw Materials	Adjust AX Inventory	Repetitive task due to current inaccuracies	Cycle Time: 65 mins
	Syrup Room	Simple Syrup and Ingredient Mixing	Excessive blending	Blending Time: 130 mins Recommended Time: 100 mins
	Filling and Packaging	Quality Checks	Occur every 1 hour	Cycle Time: 7 mins
	Packaging	Application of Weekly Pallet Sticker	Use of 2 stickers	Cycle Time: 0.55 mins
Transportation	Raw Materials	Transfer to Staging Area	Excessive transportation between staging and storage area	Cycle Time: 45 mins Damaged RM: \$23,224 per
		Material Issuing to Production	Lengthy picking process between warehouses and FIFO principles not applied	month Cycle Time: 90 mins
				Damaged RM: \$23,224 per month
Excess Inventory	Raw Materials	Raw Material Ordering	Excess inventory within warehouses	Damaged RM: \$23,224 per month
				Obsolete RM: \$15,876 per month
	Packaging Area	Stretch Wrapping of Pallets	Accumulation of WIP inventory - Waiting time for forklift to move the pallets from 1 machine to another	Inventory Time: 78 mins
		Loading pallets onto	Batch transportation	Inventory Time: 13 hrs

Waste	Section Area	Activity	Area for Improvement	Current Measurement
		truck		
	Finished Goods Warehouse	Shipment of FG	Accumulation of FG inventory within warehouse	Inventory Time: 11 days
Overproductio n	Overall Process	-	Batch production	Inventory Time: 11 days

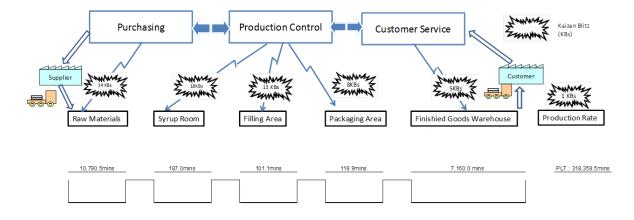


Figure 3: Future State VSM

r	Fable 4:	Suggested	I Improvements	or Kaizen	Blitz (KB)	

		Table 4: Sugges	led improvement.	s or Kaizen Blitz (.	KD)
KB	Area	Waste	Problem	Lean Tool used for	Improvement
No.		Category		improvement	
1	RM – Inventory Accuracy	Defects	Inconsistency	Cross functional teams	Identification of Problem
2	RM – Inventory Accuracy	Defects	Inconsistency	Standardization	Modify Standard Operating Procedure (SOP)
3	RM- Materials issuing to Production	Defects	Incorrect Materials issued;	Poke-Yoke	Picking list automatically generated
4	RM- Materials issuing to Production	Defects	Cycle time to issue materials	Poke-Yoke	Picking list automatically generated
5	Simple Syrup Testing	Defects	Variation of recipes	Cause and effect	Standardization – Standard Recipe
6	Simple Syrup Testing	Defects	Variation of recipes	Poke-Yoke	Adjusted Equipment
7	Simple Syrup Testing	Defects	Variation of recipes	Employee Involvement- Training	Trained operators in Standardized Recipe
8	Simple Syrup Testing	Defects	Unawareness of Defect Rate	Visual Management- Boards	Implement Visual Board to trend abnormalities
9	Simple Syrup Testing	Defects	Defective raw sugar	Supply chain management	Customer –Supplier agreement
10	Syrup Room –Syrup Testing	Defects	Dumping of product	Lean Supermarket	Reduction in Human Error
11	Filling – Syrup Carbonation	Defects	High defect rate	5 Why Analysis	Implementation of Centerlining
12	Filling – Product Filling and Capping	Defects	Low filled bottles	Fishbone Diagram	Improved valve maintenance,
13	Filling – Product Filling and Capping	Defects	Low filled bottles	Fishbone Diagram	Implementation of Centerlining,
14	Filling – Product Filling and Capping	Defects	Low filled bottles	Fishbone Diagram	Modified SOP and associated training
15	Filling – Bottle Coding	Defects	Incorrect Coding on bottles	Visual Management- Inspector	Verification of inputted code

KB	Area	Waste	Problem	Lean Tool used for	Improvement
No. 16	Packaging – Stretch	Category Defects	Inconsistent	improvement Standardization	SOP generated and associated
10	Wrapping of pallets	Defects	machine settings	Standardization	training
17	Packaging – Stretch	Defects	Inconsistent	Visual	Reduction in defect identification
	Wrapping of pallets		machine settings	Management-	
				Inspector	
18	Raw Materials – QA	Waiting	Delay in	5- Why Analysis	Certificate of Analysis from a
10	Testing Raw Materials – QA	W/-:4:	conducting tests	5 XVI A	Customer Supplier Agreement Electronic mail
18	Testing	Waiting	Delay in conducting tests	5- Why Analysis	Electronic mail
20	Syrup Room- Simple,	Waiting	Delay in testing	Employee	Self-checking by compounders
	Testing and Transfer	, and g	and transfer	Involvement-	sen eneering of compounders
	Ç			feedback and	
				observation	
21	Syrup Room- Final	Waiting	Delay in testing	Visual management	Improved communication
22	Testing and Transfer	XX7	and transfer	 Andon lights Kanban – Active 	XX7 ',' ' 1 1' ' , 1
22	Syrup Room – Inspection of Batched	Waiting	Delay between weighing and	Decoupler Active	Waiting periods eliminated
	Ingredients		inspection	Unitizing room	
23	Filling –Bottle Filling	Waiting	Delay between	Visual Management	Waiting time eliminated
	6 6	e	carbonation and	- Andon Lights	5
			filling		
24	Finished Goods	Waiting	Delay in receipt of	Employee	Waiting time eliminated
	Warehouse		pallets	involvement –new job	
25	Finished Goods	Waiting	Delay between	Job Continuous Flow	Waiting Time eliminated
25	Warehouse	wannig	manufacture and	Continuous 1 low	waiting Time eminiated
			picking		
26	Finished Goods	Waiting	Delay between	Employee	Waiting Time eliminated
	Warehouse		picking and	involvement –	
07	C D C' 1		inspection	Visual Management	D 1 1 1' 11'6'
27	Syrup Room- Simple Syrup Mixing	Motion	Excess bending and lifting	One Point Lesson (OPL) to use	Reduce bending and lifting
	Syrup wirxing		and mung	forklift	
28	Syrup Room- Simple	Motion	Unavailability of	On-Site location-	Reduced Cycle time
	Syrup Mixing		cutting tool and	locating knife on	2
			orientation of bag	site	
20			to cut		
29	Syrup Room – Transfer of mixtures	Motion	Operators must stretch to access	SMED- Stand put in place	Reduced Cycle time
	of mixtures		machinery	place	
30	Syrup Room – Transfer	Motion	Small monitor	SMED – Large	Reduced Cycle time
	of mixtures		resulting in	Monitor	
			strained eyes	50	
31	Syrup Room— Ingredient Weighing	Motion	Congested and disorganized	58	Reduced Cycle time
	ingreatent wergning		layout		
32	Syrup Room-Ingredient	Motion	Excess bending	One Point Lesson	Reduce bending and lifting
	Mixing		and lifting	(OPL) to use	
				forklift	
33	Syrup Room-Transfer	Motion	Hose clamps	SMED- Designated,	Reduced Cycle time
	to Storage, Carbo		difficult to access	easy to access containers	
34	Syrup Room- Transfer	Motion	Location of	SMED –relocation	Reduced cycle time
2.	to Storage, Carbo		manifold –excess	of manifold	
	_		bending		
35	Filling and Packaging	Motion	Control panel	SMED – Stand	Reduced cycle time
	Area- Syrup Carbo		difficult to	installed/Panel	
26	Filling and Destroit	Motion	access/not labeled	labelled SMED Install	Paduaad avala tima
36	Filling and Packaging Area-Bottle coding	Motion	Machine keypad difficult to access	SMED – Install shorter stand	Reduced cycle time
37	Filling and Packaging	Motion	Excess bending	SMED – Relocation	Reduced cycle time
2.	Area-Bottle warmer		due to location of	of machine's	
			machine's control	control panel	
			panel		
			Tools difficult to	SMED, 5S –	Reduced cycle time
38	Filling and Packaging	Motion			
38	Filling and Packaging Area – Bottle labelling	Motion	access due to	Reorganization ,	
38		Motion	access due to disorganized work		
38 39		Motion	access due to	Reorganization , Cleanliness	Reduced cycle time

DOI:10.9790/1813-0704030110

KB No.	Area	Waste Category	Problem	Lean Tool used for improvement	Improvement
	Area – Bottle labelling		material – Excess bending	Reorganization of processes	
40	Filling and Packaging Area – Bottle labelling	Motion	Manifold location results in excess bending	SMED – Relocation of manifold	Reduced cycle time
41	Finished Goods Warehouse- Picking	Motion	Weekly sticker difficult to see	Visual Management Creation of OPL to ensure visibility	Reduced cycle time
42	Finished Goods Warehouse- Picking	Motion	Pallet difficult to locate	5S- improved layout	Reduced cycle time Reduced cycle time
43	Raw Materials – AX Inventory	Over Processing	Adjustment of AX Inventory due to inaccuracy	Standardization (See KB 2)	Removal of NVAT
44	Syrup Room- Simple Syrup and Ingredient Mixing	Over Processing	Blending process too long	Standardization- blending process can be reduced	Reduced cycle time thru reduction in VAT
45	Filling and Packaging	Over Processing	Too many unnecessary quality checks	Standardization- reduce number of quality checks	Reduced cycle time thru reduction in NVA/ET
46	Packaging – Application of Weekly and AX Pallet Sticker	Over Processing	Two pallet stickers are currently use when only one is necessary	Standardization- Reduce number of pallet stickers	Reduced cycle time
47	Raw Materials – Transfer to Staging Area	Transportation	Unnecessary transportation between warehouses	Standardization of movement of Raw Materials	Reduced Cycle time
48	Raw Materials – Material Issuing to Production	Transportation	Unnecessary transportation between warehouses, disorganization	5S – Improvement of Material Flow – Layout	Reduced Cycle time
49	Raw Materials – Incoming	Inventory	Excess Incoming inventory	Reduced Lot Sizes	Reduced Inventory Cost
50	Raw Materials – Incoming	Inventory	Damaged and expired materials	Customer Supplier Agreement	Reduced reject rate
51	Raw Materials- Incoming	Inventory	Long Lead time for materials	Improved ERP	Shorter Lead time
52	Raw Materials – In process	Inventory	Bottle neck of stretch wrapped pallets	Flow – Instrallation of conveyor	Reduced cycle time
53	Raw Materials – Finished Goods	Inventory	Buildup of Finished goods	Pull – Increase frequency of delivery	Reduced inventory cost
54	Production Rate	Over Production	Batch Processing leading to over production	SMED -Smaller batch sizes	

Table 5 summarizes the expected VSM parameters for the future state. As seen, there is a 46%, 32%, 46% and 30% reduction in the processing leading time, total cycle time, WIP Inventory and changeover time respectively. There is also a 30% reduction in the changeover time. Overall there is a 38.4% improvement in the Value Added Ratio. Taking these into account, Table 6 shows that there is a cost savings of approximately four million, twenty nine thousand , five hundred and forty two dollars.(\$4,029,542.00US) which equates to a 55% decrease in the cost. The major reductions were as a result on the decreased inventory levels from the elimination of the temporary storage area.

Tuble 2. Comparison of Current and Future VSM							
Parameter	Current VSM	Future VSM	% Reduction	% Improvement			
Processing Lead Time	33,742 mins	18,358 mins	46%				
Total Cycle Time	919 mins	636 mins	32%				
WIP Inventory Time	32,808 mins	17,721 mins	46%				
Changeover Time	271 mins	191 mins	30%				
Value Added Ratio	0.501%	0.885%		38.4%			

Table 5: Comparison of Current and Future VSM

Table 6: Yearly Cost Benefit before and after the implementation of the improvement initiative

Waste	Cost Before Improvement Initiative (TT\$)	Cost After Improvement Initiative (TT\$)
Defect	\$1,197,734	\$589,910
Waiting	\$5,635,548	\$729,626
Motion	\$5,387,184	\$4,008,168
Over processing	\$1,425,654	\$360,864
Transportation	\$769,500	\$488,430
Excess Inventory	\$27,938,328	\$10,408,358
Overproduction	\$8,190,000	\$6,142,500
Total	\$50,543,948	\$22,727,856

VI. CONCLUSION

Based on the current VSM, the process lead time is approximately four (4) weeks (27 days) and the value added ratio is 0.50%. There are several elements of waste within the process such as defects, transportation, over processing and overproduction which increases the lead time. Some examples of these forms of waste include: errors in inventory accuracy and material issuing to production, long waiting periods for quality testing and inspection, excessive operator motion, unnecessary mixing operation and quality checks, redundant movement of materials within warehouses and production area, excessive raw materials and finished goods inventory.

In order to reduce the lead time, improve quality and lower cost several improvement initiatives were proposed which the company can consider implementing. These approaches include: 1) 5S implementation throughout the plant to reduce excess motion in current task and changeovers, 2) SMED concept to reduce and simplify the changeover process, 3) standardization to decrease the variances in task execution and defects, 4) operators as visual inspectors to minimize the number of defects, 5) continuous flow to ensure constant movement of inventory throughout the process, 6) visual controls to lower the waiting times, 7) poka-yoke to eliminate non-conformances and 8) customer supplier agreement to reduce defects and raw material inventory.

From the findings in the development of the future VSM based on the potential improvement initiatives, the following were noted: 1) value added ratio was increased from 0.50% to 0.89%, 2) processing lead time was reduced by 46%, from twenty seven (27) days to fifteen (15) days, 3) decrease of 32% in the total cycle time for the process, 4) minimization in the WIP inventory time from 32,808 minutes to 17,721 minutes and 5) 30% reduction in the changeover time.

Several quick win items were implemented within the organization during this study. These include: 1) standardization, through the use of standard operating procedures, one point lessons and centerlining, 2) operators self-check and visual operators to reduce waiting time and non-conformances and 3) visual controls to minimize stoppages. The following long term initiatives were tested to identify the potential impact: 1) poka yoke, though the use of ERP software adjustments, 2) elimination of over processing steps and 3) continuous flow to reduce inventory accumulation. From the results obtained, the majority of the suggested initiatives can

have a significant effect on the VSM parameters. For the long term improvement initiatives, a survey was conducted among the employees or trial test, to identify the feasibility of implementation and the expected impact. These includes: 1) visual controls, 2) continuous flow which were very practical to implement based on the cost analysis, 3) transportation reduction initiatives 4) 5S and SMED principles and 6) CSA were implementable based on the surveys. The expected cost savings per year from these improvements was twenty seven million, eight hundred and sixteen thousand dollars (TT\$27,816,000).

Many companies consider it challenging to identify the key areas of waste within their processes. However, based on the study conducted it can be seen that VSM can be effectively applied to the beverage industry as the initial step of waste identification. One of the main contributions of this study is that other food or beverage industries can use the outcome of this research as a knowledge base to recognize their waste elements and propose suitable solutions to eliminate them. Additionally, the proposed improvement initiatives which were recommended for beverage manufacturing process can be implemented in these industries to achieve the aimed benefits. It can also be used by organizations which have the intention to implement lean manufacturing in the near future.

Some of the recommendations for the future work in this study are:

- To utilize the VSM for different product families such as other CSD's, juices and water. The only product type which was considered during this study was the 8oz carbonated soft drink. However, the other product families should also be considered since they can impact the overall operations within the company. To utilize other lean manufacturing tools to eliminate waste within SMJ's current process. Additional research can be conducted to identify other lean manufacturing tools which can be used to eliminate the waste factors.
- To increase the number of employees involved in the process of developing the VSM. In this study, a cross functional team was involved in the creation of the VSM. However, all employees should be part of the event to not only learn the concept and tools of lean manufacturing but to provide their input and expertise in their area of work. It would also allow the employees to recognize waste elements which can be eliminated through continuous improvement.
- To consider the eighth type of waste, underutilized employees within the study. Only the seven (7) types of waste were taken into consideration for this study. The additional waste should also be explored.
- To identify the behaviours required to facilitate a continuous improvement mind-set within SMJ This study did not take into consideration the behaviours required to implement lean manufacturing principles within SMJ. Therefore, further work can be done to identify the intangible requirements to create an enthusiastic environment in eliminating any waste that is found within the organization.

REFERENCES

- Abdul Wahab, A. N., Mukhtar, M. and Sulaiman, R. 2013. "A Conceptual Model of Lean Manufacturing Dimensions." Procedia Technology 11: 1292–98.
- [2]. Belokar, R.M., Kumar, V. and Kharb, S.S. 2012. "An Application of Value Stream Mapping in Automotive Industry: A Case Study."." International Journal of Innovative Technology and Exploring Engineering 1 (2): 152–57.
- [3]. Bragalia, M., Carmignani, G. & Zammori, F. 2006. "A New Value Stream Mapping Approach for Complex Production Systems." International Journal of Production Research 44: 3929–52.
- [4]. Cachon, G. and, and C. Terwiesch. 2013. "Matching Supply with Demand," no. January 2006. doi:10.1071/SHv10n5toc.
- [5]. Capital, M. 2004. "Introduction to Lean Manufacturing for Vietnam." International Journal of Industries 4: 1–21.
- [6]. El-Namrouty, Khalil A. 2013. "Seven Wastes Elimination Targeted by Lean Manufacturing Case Study "Gaza Strip Manufacturing Firms"."
- [7]. Goodson, R. E. 2002. "Read a Plant-Fast." Harvard Business Review.
- [8]. Hines, P. and Rich, N. 1997. "The Seven Value Stream Mapping Tools." International Journal of Operations and Production Management 17 (1): 46–64.
- [9]. Irani, J. and Zhou, S. n.d. "Value Stream Mapping of a Complete Product."
- [10]. King, P. 2010. "Valve Stream Mapping: Process Industry Operations." *Lean Dynamics LLC*.
- [11]. Lasa C., Laburu C. and de Castro Vila R. 2008. "An Evaluation of the Valve Stream Mapping Tool." Business Process Management Journal 14 (1): 39-52.
- [12]. Lean Manufacturing Tools. 2010. "7 Wastes of Lean Manufacturing." http://leanmanufacturingtools.org/77/the-seven-wastes-7-mudas/.
- [13]. Lee, B. 2001. "Value Stream Mapping." Industrial and Manufacturing Engineering Department Widuta Sta.
- [14]. Liker, J.K. and Meier, D. 2007. The Toyota Way, Field Book. New Delhi: Mcgraw-hill.
- [15]. Mcbride, D. 2017. "The 7 Manufacturing Wastes 2003." Accessed June 2. http://www.emsstrategies.com/dm090203article2.html.
- [16]. Ohno, T. 1988. Toyota Production System: Beyond Large-Scale Production. Taylor & Francis. https://books.google.tt/books?id=7_-67SshOy8C.
- [17]. Ortiz, Chris A. and Park, Murry. 2010. Visual Controls: Applying Visual Management to the Factory. New York: Productivity Press.
- [18]. Ptak, C, and C Smith. 2011. Orlicky's Material Requirements Planning, Third Edition. McGraw-Hill Education. https://books.google.tt/books?id=lRsULeiVTroC.
- [19]. Rawabdeh, I. 2005. "A Model for the Assessment of Waste in Job Shop Environments." International Journal of Operations and Production Management 25 (8): 800–822.
- [20]. Ross, Graham and Jeffrey, Barry. 2011. *Practical Quality*

- [21]. Rother, M., & Shook, J. 2003. Learning to See: Value Stream Mapping to Add Value and Eliminate Muda. Cambridge, MA: Lean Enterprise Institute.
- [22]. Shingo, S. 1986. Zero Quality Control: Source Inspection and the Poka-Yoke System. Taylor & Francis. https://books.google.com.uy/books?id=gkE8K7axQbYC.
- [23]. Silva, S.K.P.N. 2012. "Applicability of Value Stream Mapping (WSM) in the Apparel Industry in Sri Lanka." *International Journal of Lean Thinking* 3 (1).
- [24]. Simboli, Alberto, Raffaella Taddeo, and Anna Morgante. 2014. "Value and Wastes in Manufacturing. An Overview and a New Perspective Based on Eco-Efficiency." Administrative Sciences 4 (3): 173–91. doi:10.3390/admsci4030173.
- [25]. Upadhye N., Deshmukh S.G., Garg S. 2010. "Lean Manufacturing in Biscuit Manufacturing Plant: A Case." Int. J. Advanced Operations Management 2 (1): 108–39.
- [26]. Womack, J. P. 2006. "Value Stream Mapping." Manufacturing Engineering 136: 145–56.
- [27]. Womack, J. P. & Jones, D. T. 1996. Lean Thinking: Banish Waste and Create Wealth in Your Corporation. New York: Simon & Schuster.

Terrence Lalla." Using VSM to Improve Manufacturing Efficiency in Developing Countries: A Case Study of a Beverage Manufacturing Company in the Caribbean " The International Journal of Engineering and Science (IJES) 7.4 (2018): 01-10