
The International Journal of Engineering and Science (IJES)
|| Volume || 7 || Issue || 11 Ver.II || Pages || PP 70-76 || 2018 ||
ISSN (e): 2319 – 1813 ISSN (p): 23-19 – 1805

DOI:10.9790/1813-0711027076 www.theijes.com Page 70

Fast Motion Estimation For High Efficiency Video Coding Based
On A Graphics Processing Unit

Yu-Kai Lin, Song-Hui Hong, Tung-Hung Hsieh, Chou-Chen Wang
Department of Electronic Engineering, I-Shou University, Kaohsiung, Taiwan

Corresponding Author: Chou-Chen Wang

---ABSTRACT--
In the newest high efficiency video coding (HEVC) standard, the motion estimation (ME) takes around 70% of
the encoding time in HM encoder. In order to reduce the complexity of the ME module in HEVC, this paper
proposes a flexible coding tree unit (CTU)-level parallel ME method using a graphics processing unit (GPU).
The proposed method can be combined with fast CTU-level multiple reference frame motion estimation (MRF-
ME) to further reduce the encoding time. Firstly, we decompose ME algorithm into three kernels to achieve a
highly parallel computation with a low external memory on GPU. Secondly, the kernel 1 executes a GPU program
of calculating the sum of absolute differences (SAD) of small coding unit (SCU 88). Thirdly, the kernel 2 merges
the variable block size from SCU (88) to large coding unit (LCU 6464). Finally, the kernel 3 compares
minimum SAD to find the best matching block. Simulation results show that the proposed method can achieve an
average time improving ratio of MRF-ME module about 96.68% and 97.78% when compared to HM16.7 under
MRF=4 and MRF=8, respectively.
KEYWORDS: Video coding standard, HEVC, GPU, Motion estimation.

Date of Submission: 10-12-2018 Date of acceptance: 31-12-2018

I. INTRODUCTION
With the advancement of technology, the video panels of 4K2K and 8K2K high-resolution had become

the main specification on digital TV. However, the early video coding standard H.264/AVC [1] is difficult to
support the video applications of high definition (HD) and ultrahigh definition (UHD) resolution. Therefore, the
Joint Collaborative Team on Video Coding (JCT-VC) consists of ITU-T and ISO/IEC which developed a newest
high efficiency video coding (HEVC) for satisfying the UHD requirement in 2010, and the first version of HEVC
was approved as ITU-T H.265 and ISO/IEC 23008-2 by JCT-VC in Jan. 2013 [2]. HEVC coding standard is better
than H.264/AVC which can reduce 50% bitrate in the almost same video quality under high profile (HP). HEVC
adopts new coding structure that includes coding unit (CU), prediction unit (PU) and transform unit (TU) in a
quadtree-structured coding tree unit (CTU) and each CTU can be split into four different depth sub-CUs to do
intra prediction and inter prediction. In inter prediction, the well-known most time-consuming part is the motion
estimation (ME) module, it needs to compute thousands of times with the sum of absolute difference (SAD)
algorithm in search window (SW) to achieve the best motion vector (MV). In order to obtain more accurate
prediction and better image quality, HEVC also allows using multiple reference frame (MRF) in ME module
(MRF-ME), but the calculation is getting more and more complexity.

Recently, lots of paper propose hardware methods using graphic process unit (GPU) which developed by
NVIDIA to parallel accelerate the huge calculation of MRF-ME module [3-7]. In these studies, Khemiri et al. [3]
proposed a fast CTU-level parallel ME method to accelerate SAD and sum of square difference (SSD) calculation
process through CPU and GPU collaboration based on functions repeated thousands of times called the SAD and
SSD. They found that there is a same calculation item existing in the SAD and SSD for rate-distortion cost (RDcost)
of ME and RDcost in mode decision (RDmode). Therefore, they proposed parallel difference (PD) and parallel
reduction (PR) algorithm to accelerate SAD and SSD calculation process through CPU and GPU parallel
architecture. But Khemiriet al. didn’t consider that HEVC coding structure will call GPU kernel function most
frequently by CPU and transfer data most frequently from CPU to GPU. This leads to their method occurs an
obstacle to further speed up when HEVC takes MRF-ME module. On the other hand, Lin et al. [4] directly applied
the fast ME algorithm default in H.264 test platform (JM) to H.265 video encoding. They utilized GPU to perform
the computation and merging of SAD for different prediction unit (PU) mode. However, their method encounter
that the shared memory is not enough in GPU when the range of searching window is larger than 32. And, it is
inflexible for HEVC encoder due to frame-based structure.

In order to solve above-mentioned problem, we proposed a fast ME algorithm based on flexible CTU-
level. The proposed method decomposes ME algorithm into three steps, including SAD calculation, SAD merging

Fast Motion Estimation For High Efficiency Video Coding Based On A Graphics Processing Unit

DOI:10.9790/1813-0711027076 www.theijes.com Page 71

and SAD comparing kernels, to achieve a highly parallel computation with a low external memory on GPU. On
the other hand, the proposed method can be combined with fast CTU-level multiple reference frame motion
estimation (MRF-ME) or fast mode decision algorithms to further reduce the encoding time.

II. BRIEF OVERVIEW OF MRF-ME MODULE AND GPU ARCHITECTURE
ME is a key module in the HEVC encoder. In other words, it is one of the critical and the most time-

consuming module in video coding.ME is performed by using block matching algorithm (BMA) to find MV at
the encoder and supports variable block sizes in HEVC. Generally, there are two kinds of search methods for ME
to get a best matched predicted block. The first one is full search by checking all points in a SW, which is simple
but time-consuming. The second one is fast motion search by checking several points in several iterations.
Therefore, it is faster than the full search way and is more common used in software encoder. However, the full
search is more suitable for hardware implementation or some heterogeneous computing (e.g. CPU+GPU) due to
its regularity.

3.1 MRF-ME module

HEVC adopts some new coding structures including CU, PU and TU. The CU is the basic unit of region
splitting used for inter/intra prediction, which allows recursive subdividing into four equally sized blocks. The
CU can be split by coding quadtree structure of 4 level depths, which CU size ranges from largest CU size of
64×64 pixels to the smallest CU size of 8×8 pixels. At each depth level (CU size), HEVC performs ME with
different size. In general, inter-coded CUs have eight PU types including symmetric blocks (2N×2N,2N×N, N×2N,
N×N) and asymmetric blocks (2N×nU, 2N×nD, nL×2N, nR×2N) [1]. The RDcost needs be calculated by
performing the PUs and TUs to select the optimal partition mode under all partition modes for each CU size. In
the PU structure, HEVC adopts ME module to choose the optimal inter prediction mode. In order to improve the
accuracy of PU prediction, MRF interframe prediction is performed in the ME module for HEVC.

Figure 1 shows the computational process for a CU to find the optimal partition mode from MRF-ME
module in HEVC. Although the MRF-ME can enhance the PU performance and allow the encoder to search a
better reference frame from several previous pictures, the computational complexity of the MRF-ME dramatically
increases. Table 1 shows the complexity of MRF-ME in HM 16.7 [11] test platform using 3,840×2,160 video
sequence and four reference frames. From Table1, we can find the total number of ME calculations required in
MRF-ME is up to 27,450,240 times. Therefore, the very high computational complexity becomes a main
bottleneck for the real-time applications of HEVC in UHD videos

Fig. 1. MRF-ME module in HEVC.

Fast Motion Estimation For High Efficiency Video Coding Based On A Graphics Processing Unit

DOI:10.9790/1813-0711027076 www.theijes.com Page 72

Table 1. Complexity of MRF-ME in HM 16.7.

Depth CU/CTU modes/CU MEs/modes CTUs /frame MRF (frame)
ME calculation

times
0 1 3 5 8,160 4 163,200

1 4 7 13 8,160 4 1,697,280

2 16 7 13 8,160 4 6,789,120

3 64 4 9 8,160 4 18,800,640

Total calculations of MRF-ME 27,450,240

On the other hand, we can find that the ME module takes around 70% encoding time of inter frame

prediction from the study report of [8], as shown in Fig. 2. Specially, inter prediction requires a high heavy
computational burden in the entire HEVC encoding procedure, so it is a big challenge in the real-time ME by
software encoder in CPU. Therefore, it is a very important issue how to speed up the searching process of ME
module.

Fig. 2. Encoding time distribution of inter frame prediction.

3.2 GPU architecture

Nowadays, due to the rapid development of GPU processing capability, there has been a strong demand
of using GPU as a co-processor to assist CPU to deal with data-intensive application [9]. GPU consists of hundreds
of streaming process (SP) which is designed for achieving high performance. These SP are grouped into streaming
multiprocessor (SM) in order to perform single instruction multiple data (SIMD) which is suitable for arithmetic
intensive application. The SP offers special function unit for float-point and integer operations, the SM includes
shared memory and register.

Fortunately, NVIDIA has announced a programming friendly GPU architecture called “Compute Unified
Device Architecture” (CUDA) [10] to make massive data parallel processing easier. CUDA is an extension
application with C/C++ languages that it can allows programmer to develop parallel process codes for GPU. In
the GPU product, there are some architecture proposed by NVIDIA: Tesla, Fermi, Kepler, Maxwell, Pascal and
Volta. Those architectures depend on different number of core compute capability and produce technique.

For a 64×64 CTU, the number of total combinations of ME calculations is very huge, as shown in Table
1. It is impossible to evaluate every possible CU and PU combination using RDO. This is the main reason why
the HEVC encoding is so slow. Therefore, the cooperation mechanism for the CPU and GPU is a very efficient
operation for hardware encoder of HEVC, as shown in Fig. 3. One CPU thread controls the GPU for data exchange,
while the other CPU threads perform normal module is implemented in the GPU, and the GPU returns the best
MV and the lowest MC cost of every possible PU to the CPU memory through PCI-Express port. When the CPU
thread needs the ME data for the mode decision, it can get them directly from the memory and derive the PU and
CU cost data to make the final decision. However, if the ME search is a full search for UHD resolution, even with
a powerful GPU, the searching speed is still slow. Therefore, how to develop a ME paralleling computation
algorithm on CPU plus GPU platform has been widely studied to realize real-time applications in HEVC. In this
paper, we adopt the Pascal architecture to implement the proposed fast ME-MRF module.

Fast Motion Estimation For High Efficiency Video Coding Based On A Graphics Processing Unit

DOI:10.9790/1813-0711027076 www.theijes.com Page 73

Fig. 3. CPU and GPU cooperation mechanism.

III. PROPOSED PARALLEL ME MODULE

In order to solve some problems including transfer data most frequently from CPU to GPU [3] and
insufficient shared memory in GPU [4], we proposed a fast MRF-ME parallel algorithm based on flexible CTU-
level. In the proposed algorithm, an image is divided into lots of CTU, and each CTU will call the GPU function
to do 88 block SAD calculation, and then merge all different mode and find out minimum SAD for all mode.
After finishing GPU parallel process, we will return minimum SAD and MV with all different mode to different
depth CU. Figure 4 shows the proposed Fast CTU-level MRF-ME architecture on GPU.

Fig. 4. Fast CTU-level MRF-ME architecture on GPU.

To further speed up the hardware encoder of HEVC, we decompose ME module into three kernels to

achieve a highly parallel computation with a low external memory on GPU. The proposed three GPU kernel
functions can be described as follows:

(1) Kernel 1 computes all 88 block SAD calculation in CTU
(2) Kernel 2 merges all different mode in CTU
(3) Kernel 3 finds out the minimum SADs for all mode

Fast Motion Estimation For High Efficiency Video Coding Based On A Graphics Processing Unit

DOI:10.9790/1813-0711027076 www.theijes.com Page 74

The flowchart of the proposed parallel computation is shown in Fig.5. At first, it needs to transfer
reference frame pixel data and current frame pixel data from CPU to GPU’s texture memory, and then start to
launch Kernel 1, it will transfer all 88 block in CTU to shared memory in order to accelerate GPU computation
time. After that it computes all 88 block’s SAD within SW, and then saves all the SAD within SW to global
memory. Secondly, launching Kernel 2 and fetching SAD which are obtained by Kernel 1, and then start to merge
in 8 kinds of mode and save them to global memory. Thirdly, launching Kernel 3 and fetching the SAD which are
merged by Kernel 2, and find out the minimum SAD from each mode and then save them to global memory.
Finally, returning 8 kinds of minimum SAD with different mode to CPU. So, it will take a loop for all CTU by
using the three kernel functions to perform parallel MRF-ME in HEVC structure of different reference frame.

Fig. 5. The flowchart of proposed parallel ME algorithm.

IV. EXPERIMENTAL RESULTS

In this paper, we have implemented a CTU-level fast MRF-ME algorithm based on GPU in HM16.7[11]
encoder test model, the encoding configuration is low delay P with (1) QP = 22, 27, 32, 37, (2) Max partition
depth equals 3, (3) Fast search equals 0 (full search), (4) Motion search range equals 16 and 32, (5)MRF equals 4
and 8, (6) Intra period equals -1 (IPPPP...), (7) AMP equals 0, (8) Frame to be encoded equals 24 frames. In
addition, the standard sequences are used as test frames including Traffic (25601600), Kimono (19201080) and
ParkScene (19201080).

Simulations are conducted on a desktop with (1) Intel Core i5-3470, (2) NVIDIA GeForce GTX 1060-
6GB, (3) Window 10-64bit, (4) CUDA Toolkit 9.1, (5) CUDA Compute Capability 6.1. The coding performance
is evaluated based on speedup and ME time improving ratio (TIR), which are defined as follows:

	݌ݑ݀݁݁݌ܵ ൌ 	
ொಹಾభల.ళ	௧௜௠௘

ொ೘೐೟೓೚೏	௧௜௠௘
 (1)

	ܴܫܶ ൌ 	
ொಹಾభల.ళ௧௜௠௘	ି	ொ೘೐೟೓೚೏	௧௜௠௘

ொಹಾభల.ళ	௧௜௠௘
	ൈ 100% (2)

Table 2 and Table 3 show the accelerating performance obtained by Khemiri’s [3], Lin’s [4] and proposed
method when performing 4 and 8 multiple reference frames (MRF=4 and MRF=8), respectively. Simulation
results show that the proposed method can achieve an average speedup and TIR about 45.73% and 96.68% as
MRF=4, and 44.81% and 97.76% as MRF=8, respectively. From Tables 2 and 3, we can observe that the proposed
method far surpasses Khemiri’s method in speedup and TIR using MRF=4 and MRF=8. In addition, we also can
find that the accelerating performances of proposed algorithm are lower than those of Lin’s method. However,

CPU GPU

PCI-Express

start

Copy current and
reference Frame to

Texture memory

CPU-Mem

Global-Mem

Texture-Mem

Image data Image data

The last
CTU ?

Launch Kernel 1

Launch Kernel 2

Launch Kernel 3

Calculate all 8x8 blocks
within search window

in CTU

Merge all mode SAD in
CTU

Find out all mode
minimum SAD in CTU

Kernel 1

Kernel 2

Kernel 3

Shared
Memory

Shared
Memory

Get current and reference 8x8 block in CTU

all 8x8 blocks
SAD in CTU

Get 8x8 blocks in CTU

all mode SAD
in CTU

Get variable size SAD in CTU

all mode
minimum

SAD and MV
in CTU

Get all mode size
minimum SAD and

MV

all mode
minimum

SAD and MV
in CTU

end

N

Y

ME module

Mode Decision

MC

Fast Motion Estimation For High Efficiency Video Coding Based On A Graphics Processing Unit

DOI:10.9790/1813-0711027076 www.theijes.com Page 75

Lin’s method will not be performed when the search window is larger than SW=32, this is because the shared
memory is insufficient. On the other hand, our proposed fast MRF-ME module can operate smoothly at the same
conditions.

Table 4compares the total global memory size (GMS) and shared memory size (SMS) are required by
Lin’s and proposed algorithm as SW=16. From Table4, we can find that the required GMS and SMS of our
proposed is 1.85 MB and 4 KB, respectively. However, there are a very high memory which is used by Lin’s
method. It is obvious the required GMS and SMS in our method only occupy0.16% and 12.5% of Lin’s,
respectively. In addition, it is clear the proposed GPU-based fast ME algorithm can highly increase the speed of
HEVC encoder with insignificant loss of image quality.

Table 2. The accelerating performance as MRF=4, SW=16.

Sequence QP
Speedup TIR(%)

Khemiri [3] Lin [4] Proposed Khemiri [3] Lin [4] Proposed

 Traffic

22 11.66 68.85 48.43 23.59 98.55 97.94

27 11.61 66.79 48.16 23.61 98.50 97.92

32 11.81 66.78 48.96 23.62 98.50 97.96
37 12.55 74.12 52.03 23.65 98.65 98.08

Kimono

22 10.37 51.84 42.99 23.11 98.07 95.81

27 10.16 50.29 42.11 23.10 98.01 95.74

32 10.55 50.28 43.73 23.11 98.01 95.80

37 9.89 55.81 40.98 23.18 98.21 96.08

 ParkScene

22 11.70 56.76 45.92 24.49 98.24 96.15
27 11.47 55.06 44.98 24.51 98.18 96.09
32 11.91 55.06 46.71 24.52 98.18 96.14
37 11.91 61.11 43.77 24.56 98.36 96.40

Average 11.24 59.40 45.73 23.75 98.29 96.68

Table 3. The accelerating performance as MRF=8, SW=32.

Sequence QP
Speedup TIR(%)

Khemiri [3] Lin [4] Proposed Khemiri [3] Lin [4] Proposed

 Traffic

22 10.84 64.01 47.21 23.58 99.17 97.88

27 10.89 62.62 46.25 23.59 99.14 97.84

32 11.59 65.51 48.02 23.61 99.16 97.92

37 10.31 60.92 45.00 23.58 99.14 97.78

Kimono

22 10.16 50.81 42.99 23.56 98.03 97.67
27 10.04 49.71 42.11 23.56 97.99 97.63
32 10.91 52.00 43.73 23.57 98.08 97.71
37 8.57 48.36 40.98 23.54 97.93 97.56

 ParkScene

22 11.25 54.56 45.92 24.92 98.17 97.82
27 11.12 53.38 44.98 24.94 98.13 97.78
32 12.08 55.84 46.71 24.96 98.21 97.86
37 10.12 51.93 43.77 24.90 98.07 97.72

Average 10.66 55.80 44.81 24.02 98.44 97.76

Table 4. Compare GMS and SMS required by Lin’s and proposed algorithm.

Method
Memory

Lin [4] Proposed

total GMS 1.1 GB 1.85 MB

total SMS 32KB 4KB

V. CONCLUSION

In this paper, we proposed a fast CTU-level MRF-ME algorithm based on GPU to reduce the calculation
complexity of HEVC encoder. Performance evaluations show that the proposed method can efficiently reduce
computation time and calculation complexity in MRF-ME module of HEVC. The TIR is 96.68% and 97.76%
when MRF=4 and MRF=8, separately. In addition, the proposed method is a flexible CTU-level parallel ME by
CPU and GPU pipeline. Therefore, we can combine any fast CTU-level ME or fast mode decision to further
reduce the encoding time of HEVC.

Fast Motion Estimation For High Efficiency Video Coding Based On A Graphics Processing Unit

DOI:10.9790/1813-0711027076 www.theijes.com Page 76

REFERENCES
[1]. T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Transactions

on Circuits and Systems for Video Technology, vol. 13, pp. 560-576, July 2003.
[2]. High Efficiency Video Coding, Rec. ITU-T H.265 and ISO/IEC 23008-2, Jan. 2013.
[3]. R. Khemiri, H. Kibeya, F. E. Sayadi, N. Bahri, M. Atri, and N. Masmoudi, “Optimization of HEVC motion estimation exploiting

SAD and SSD GPU-based implementation,” IET Image Process Institution of Engineering and Technology, vol. 12, lss. 2, pp. 243-
253, Jan. 2018.

[4]. Y. C. Lin, and S. C. Wu, “Parallel motion estimation and GPU-based fast coding unit splitting mechanism for HEVC,” IEEE High
Performance Extreme Computing Conference, pp. 1-7, Dec. 2016.

[5]. X.W. Wang, et al., “Paralleling variable block size motion estimation of HEVC on multi-core CPU plus GPU platform,” IEEE
International Conference on Image Processing, Melbourne, VIC, pp. 1836-1839, Sept. 2013.

[6]. D. Lee, D. Sim, and S.J. Oh, “Integer-pel motion estimation for HEVC on compute unified device architecture (CUDA),” IEEE
Transactions on Smart Processing and Computing, vol. 3, no. 6, pp. 397-403, Dec. 2014.

[7]. S. Radicke, J.-U Hahn, Q. Wang, and C. Grecos, “Bi-predictive motion estimation for HEVC on a graphics processing unit (GPU),”
IEEE Transactions on Consumer Electronics, vol. 60, no. 4, pp. 728-736, Feb. 2015.

[8]. J. Kim, D.S. Jun, S. Jeong, et al. “A SAD-based selective bi-prediction method for fast motion estimation in high efficiency video
coding,” Electronics and Telecommunication Research Institute Journal, vol. 34, no. 5, pp. 753–758, Oct. 2012.

[9]. GPGPU. [Online]. Available: http://www.gpgpu.org/.
[10]. NVIDIA (2018). CUDA Toolkit Documentation [v9.2], https://docs.nvidia.com/cuda/
[11]. HEVC Test Model documentation [HM16.7]. https://hevc.hhi.fraunhofer.de/HM-doc/

Chou-Chen Wang, “Fast Motion Estimation For High Efficiency Video Coding Based On A
Graphics Processing Unit " The International Journal of Engineering and Science (IJES), 7.11
(2018): 70-76

