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--------------------------------------------------------ABSTRACT----------------------------------------------------------- 

In this paper, an analytic homogenization model for the double corrugated cardboard plates under transverse 

loading is presented. This model is essentially based on the theory of stratification and then improved by using 

the theory of sandwich. The proposed analytical homogenization model allows modelling the 3D complex 

double corrugated cardboard by a 2D equivalent homogenized plate. This work helps to significantly reduce 

the computational time as well as time to build the geometry of model. To validate the model, in this work, we 

carry out the simulation for the corrugated cardboard plates in case of transverse loading. A very good 

agreement is obtained between the three-dimensional shell simulations and H-2D model demonstrating the 

accuracy and efficiency of our model. The homogenization model can be used not only for corrugated 

cardboard plates, but also for many types of sandwich panels. 
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I. INTRODUCTION 
Sandwich panels have been successfully used for many years in the aviation and aerospace industries, as well as 

in marine, mechanical and civil engineering applications. This is due to the attendant high stiffness and high 

strength to weight ratios of sandwich systems [1]. The corrugated cardboards are produced by a manufacturing 

process, in which three or more layers are laminated together. They are the orthotropic sandwiches with the flat 

layers (liners) providing bending stiffness, separated by a lightweight corrugated core (flutes) that provides shear 

stiffness [2]. The cores and liners are glued along the edges of the facing plates to form a wide sandwich panel. 

The manufacturing process gives three characteristic directions (Fig. 1): The machine direction (MD) 

corresponds to the direction of manufacturing of the materials coinciding with the x-axis, the cross direction 

(CD) corresponds to the transverse direction coinciding with the y-axis, and the thickness direction (ZD). 

 
 

Fig. 1. The double corrugated cardboard 

 

Corrugated core sandwich plates possess high strength and stiffness per unit weight. A common application of 

this material is in corrugated board boxes for shipment of goods. These boxes are often stacked on top of each 

other during transportation and in storage. Thus, an important design parameter for a box is the top-to-bottom 

compression strength. Before collapse, the vertical sides undergo large out-of-plane deformations with loads 

often exceeding the critical buckling load. The processes of load redistribution and final collapse are governed 
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by the boundary conditions, the transverse shear rigidities and the flexural rigidities of the panel [3]. Several 

approaches to the modeling of these sandwich panels are discussed, in which finite element method is known as 

an effective method and used popularly [4]. When we use the finite element in the commercial software, an 

actual geometry of the model is represented [5]; however, this method can be easily done with a tiny, normal size 

and symmetrical plates. It is much more advantageous to homogenize the sandwiches in order to obtain an 

equivalent orthotropic plate (2D plate or shell modelling) [6]. 

Many homogenization models were obtained by analytical, numerical and experimental methods [5-11]. Luo et 

al. [7] made an analytic study on the bending stiffnesses of corrugated board. Nordstrand et al [8-9] presented 

some homogenized properties of the corrugated board by an analytical method. They have studied the buckling 

and post-buckling behaviors of an orthotropic plate including the transverse shear effect. Aboura et al. [2] also 

developed an analytical homogenization model based on the theory of laminated plate and compared its results 

with numerical and experimental results. Buannic et al. [5] proposed a homogenization theory based on the 

asymptotic expansion method and presented the FE computation of the effective behavior properties. Biancolini 

[10] used a FE numerical approach for evaluating the stiffness parameters. Among the existing analytical 

models, there are still some questionable problems such as the behaviors under the transversal shear efforts and 

the torsion moments. 

In this paper, we present a homogenization model to simulate the mechanical behaviors of corrugated 

cardboards. The homogenization is carried out by calculating analytically the global rigidities of the double 

corrugated cardboards and then this 3D structure is replaced by an equivalent homogenized 2D plate. The 

simulations in case of transverse loading of Abaqus-3D and H-2D model for the corrugated cardboards will be 

studied in this article. This 2D homogenization model is very fast and has close results comparing to the 3D 

model using the Abaqus shell elements. The comparison shown many outstanding advantages of proposed model 

such as reduced time for modeling, time for calculation … We can use this model, of course, for other core 

structures, types of load or many other types of sandwich panels. 

 

II. MINDLIN’S THEORY AND THEORY OF LAMINATED PLATES 
For a thick or composite plate, the Mindlin theory must be used. It assumes that a straight segment perpendicular 

to the mean surface remains straight but not perpendicular to the mean surface after deformation. This hypothesis 

makes it possible to take into account the transverse shear deformations. On the mean surface of a plate, the x 

and y-axes are established in the surface and the z-axis perpendicular to the surface, the Mindlin theory takes the 

following field of displacements: 
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q y
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v v z

w w        
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                                             (1) 

where uq, vq and wq are the displacements of a point q(x, y, z), u, v and w are the displacements of the point  

p(x, y, 0) on the mean surface, x is the angle of rotation of the normal from z to x or the angle of rotation around 

y (x=y), y is the angle of rotation of the normal from z to y or the angle of rotation around -x (y=-x). 

Thus, the following deformation field is obtained: 
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                        (2) 

where the first three expressions are the plane deformations and the 4
th

 and 5
th

 expressions are the transverse 

shear deformations. The plane deformations can be decomposed into membrane parts and bending: 

     m z   
              

                               (3) 

where    is the vector of curvatures. 

The five constraints are defined by the following behavior laws: 
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The membrane forces, the bending and torsion moments and the transverse shear forces are obtained by 

integrating the stresses through the thickness: 

 

h

2x x

y y

h
xy xy

2

N

N( x, y ) N dz

N







   
   

    
   
      

                                (6) 

 

h

2x x

y y

h
xy xy

2

M

M( x, y ) M z dz

M







   
   

    
   
      

                                (7) 

 

h

2
x xz

y yz
h

2

T
T( x, y ) dz

T






   
    
   

                                 (8) 

If we consider a composite panel consisting of several layers, the resulting forces defined above may be 

combined in layers: 
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After the integration along the thickness, we obtain the overall stiffness matrix that links the generalized 

deformations with resultant forces: 
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in which 
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The law of behavior above can be written in matrix form: 
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where {N}, {T} and {M} are the internal forces and moments; [A], [D], [B] and [F] are the stiffness matrices 

related to the membrane forces, the bending-torsion moments, the bending-torsion-membrane coupling effects 

and the transverse shear forces respectively; {εm} is the membrane strain vector, {κ} is the curvature vector and 

{γs} is the transverse shear strain vector. 

 

III. HOMOGENIZATION MODEL FOR THE DOUBLE CORRUGATED CARDBOARD 
The corrugated cardboard panels are made of multilayer including face-sheets and cores that have fluting cores 

and the cavities between layers. To apply the calculation method using the theory of plates, the matrix (9) 

obtained by the theory of laminated plates should be modified [5, 6]. Considering a double corrugated cardboard 

and using a, b, c, d, and e to represent the lower liner, the lower flute, the intermediate liner, the upper flute and 

the upper liner (Fig. 2). The geometry of each flute is defined by the following equations: 
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                                      (15) 

To homogenize a panel corrugated double wall, we consider a representative volume element (RVE). This 

volume must be sufficiently small relative to the dimensions of the entire panel. Once the overall stiffness of 

each slice are obtained by integrating the thickness, homogenization along x is performed to calculate the 

average stiffness of all tranches over a period: 
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Fig. 2. Geometry of a double corrugated cardboard 

 

Noting that the mechanical properties of the core achieved by experiments are valid only in its face, so 

we need to calculate the local coordinate system. Once the overall stiffness of each slice is obtained by 

integrating over the thickness of the plate, homogenization along x will be performed to calculate the average 

stiffness of all slices in one period [5]. 

 

3.1 Traction and bending stiffnesses related to Nx, Mx, Ny, My 

The vertical position (z) of a groove portion (ds) is a function of x and a thickness over its vertical section is a 

function of the angle of inclination of the groove. Eq. (8) can be write: 
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For each of the two grooves, a homogenization on their period (along x) should be calculated 

numerically according to equation (15). 

 

3.2 Transverse shear stiffnesses related to Ty 

In laminate theory, the shear stiffness relative to the shear force Ty on a CD section is calculated by the sum of 

the layers. However, the CD section of the sandwich is not a continuous medium and the transverse shear 

deformation is not constant or linear on the section, so the theory of laminates is no longer valid. The shear force 

Ty on a CD section causes a coupling between bending and transverse shear. Thus, it is very difficult to directly 

determine the transverse shear stiffness on a CD section relating to Ty. 

To avoid the coupling between bending and transverse shear, and to obtain "pure" shear, according to the 

reciprocity theorem, Nordstrand et al. [3] have proposed a horizontal shear model in which transverse shear 

under the force Ty (force along z and per unit length along x) is replaced by shear over the thickness under the 

force T (along y) (Fig. 3). The shear modulus thus obtained is equivalent to the transverse shear modulus. 

 
Fig. 3. The equivalent model to determine shear stiffness on CD section 

 

The deformations due to the shearing of the flat skins are much less than those due to the shearing of the groove, 

and therefore negligible. We make equivalence between one-half period of the corrugated core sandwich (with 

both skins not shown) (Fig. 3a) and a solid with a dimension of P/2 × b × h (Fig. 3b). A pair of shear forces T 

exerted on the groove by the upper and lower faces gives the sliding v. The shear of the homogeneous solid can 

be defined by: 

zy zy

T v
G

0.5Pb h
       (18) 

The shear stress in the 3D corrugated core (Fig. 3a) is equivalent to the shear in the flattened groove 

(Fig. 3c). This gives us: 

12 12 12 12
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T v 0.5Tl
G     G         v=

bt 0.5l G bt
         (19) 

Substituting Eq. (19) in (18), we obtain the shear modulus of the solid: 

*

zy 12

4ht
G G

Pl
        (20) 

In the case of a double corrugated core cardboard, we have: 
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b b
b* b

zy 12 b b

4e h
G G

P l
     ;    

d d
d* d

zy 12 d d

4e h
G G

P l
                                 (21) 

for the lower and upper groove respectively. 

If we replace the lower groove between the faces t
a
 and t

c
 by a homogeneous solid of thickness h

b
 (the 

same for the upper groove), we obtain: 
b db

zy zyb* b b* b d

zy zy zy b b* d*

zy zy

h hv
G G       v idem v

h G G

 
                              (22)  

The effect of shear on the thicknesses of three faces is very low and easy to calculate: 
a c ea

zy zy zya a a a c e

zy zy zy zy a a c e

zy zy zy

e e ev
G . G v idem v and v

e G G G

  
                         (23) 

However, the effect of shear in the plane of the intermediate face t
c
 is significant (5.4% for the considered 

interlayer). This effect can be modeled as shown in Fig. 4 where F = zy.1.P
d
 is the force exerted over a period of 

the face t
c
 by one vertex (or two) of the upper groove. We can define the internal strain energy and calculate the 

following displacement along F as follows: 

d d

d

2 2
d d

P Pzy zy

c c0 P
xy xy

(1 ) P P1 1
U ds ds

2 2G S G S





        
                                    (24)

 

 
 

   
 

2 d 2 d

zy zyd d

c c c cd
xy xyzy

2 2
d d

zy zy2 3 2 3

c c c c

xy xy

1 P PU
v P (1 )P

G .e .1 G .e .1P

P P
v 2 1

G e G e





   
 



 
      


   


         

                             (25) 

 
Fig. 4. Shearing in the plane of the groove t

c
  

 

It should be noted that: 1) It is necessary to take the greatest period between P
b
 and P

d
; 2) If P

b
 ≠ P

d
, on max(P

b
, 

P
d
), we can have 1, 2 or more forces; 3) If P

b
 = n.P

d
 (n = 2,3, ...), we have n forces on P

d
 in different positions, 

we can also calculate 

; 4) We will interpolate if P

b
 is not an integral multiple of P

d
. The shear stiffness on the 

total thickness of the cardboard is obtained as follows: 
a b c d e

* *

zy zy zy zy a b c d e

v v v v v v
G G

t h t h t



 
    

 
   

                                (26) 

By substituting the equations (22, 23, 25) in (26), the shear stiffness is obtained over the total thickness 

of the carton: 

  
*

zy 2
da b c d e

a b* c d* e c c

zy zy zy xy

h
G

1 Pt h t h t

G G G G G G t

 



    

                          (27) 

Finally, transverse shear stiffness is obtained on CD section: 
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  

2
*

22 zy 2
d

a b c d e

a b* c d* e c c

zy zy zy xy

h
F G .h

1 Pt h t h t

G G G G G G t

 
 


    

                       (28)
 

3.3 Transverse shear stiffnesses related to Tx 

In laminate theory, the transverse shear stiffness relative to the shear force Tx on MD section is also calculated 

by the sum of the layers. However, it is also difficult to determine this stiffness because of the coupling between 

the bending and transverse shear. Nordstrand et al. [3] proposed to replace the transverse shear under the force 

Tx (on MD section and along z) by shearing on the thickness under the force T = Tx along x. In fact, this problem 

is not really a problem of shear of the five layers; it is dominated by the flexion of three plane faces and 

especially by the flexion of the two grooves. The shear stiffness can also be determined numerically, the 

equivalent model (for single or double groove) is shown in Fig. 5. The horizontal shear modulus (equal to that of 

transverse shear) for the homogenized plate is defined as follows: 

* zx
zx

zx

F / bL F h
G

u / h u bL




       (29) 

 
Fig. 5. The equivalent model to determine shear stiffness on MD section 

 

The problem is to determine the F/u ratio analytically or numerically. In order to eliminate the edge effect, we 

take a period in the middle of the length of the carton to define F/u instead of F/u. Finally, the transverse 

shear stiffness of the corrugated board is obtained: 
2

*

11 zx

F h
F G h

u bP




                  (30) 

If we assume that a double corrugated cardboard is the superposition of two single corrugated cardboard, then 

the shear moduli of these two cardboards 
b*

zxG  and 
d*

zxG  can be analytically calculated by the analytical formulas 

of Nordstrand et al. [3]. It should be noted that a small error is introduced by the use of the flat layer in the 

middle for both upper and lower parts. Then, equations (29) and (30) give us:  

b* d*zx zx zx zx

zx zxb b b d d d

zx zx

* b d b dzx zx

zx

zx

G    ;   G
u / h u / h

G    ;   u= u u    ;   h=h h
u / h

   

   

 
  

 

   

   

     (31) 

These five equations allow us to analytically obtain the transverse shear stiffness on the MD section (relative to 

Tx) for a double corrugated cardboard: 
1

b d
* 2

11 zx b* d*

zx zx

h h
F G h h

G G



 
   

 
                                  (32) 

IV. VALIDATION OF HOMOGENIZATION MODEL 
To validate our H-model, we first discretize the five layers of corrugated cardboard by shell elements S4R of 

Abaqus to obtain the model Abaqus-3D; Then, we discretize the middle surface of corrugated cardboard by shell 

elements S4R of Abaqus combined with our H-model (using "user's subroutine UGENS") to obtain H-2D model. 

The confrontation of the results allow us to evaluate the efficiency and accuracy of our homogenization model. 

The calculations and comparisons are made on a corrugated panel having CD section illustrated in Fig. 6. 

Geometric data are: period (or step) and height of the lower groove P
b
 = 9 mm and h

b
 = 5.2 mm, those of the 

upper groove P
d
 = 6 mm and h

d
 = 2.9 mm, thicknesses t

a
 = t

c
 = t

e
 = 0.25 mm, t

b
 = t

d
 = 0.26 mm. The properties of 

materials are given in Table 1 [12]. The rigidities of 2D equivalent plate are calculated as shown in Table 2. 
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Fig. 6.  Geometry of the CD section of double corrugated cardboard 

 

Table 1. The material properties of five layers formed corrugated cardboard plate 

Layers 
E1  

(MPa) 

E2 

(MPa) 

E3 

(MPa) 

G12 

(MPa) 

G13 

(MPa) 

G23 

(MPa) 
12 13 23 

a 8250 2900 2900 1890 7 70 0.43 0.01 0.01 

b, d 4500 4500 3000 1500 3.5 35 0.40 0.01 0.01 

c, e 8180 3120 3120 1950 7 70 0.43 0.01 0.01 

 

We use a corrugated panel having length L = 162mm and width B = 162mm. For the simulation of the 

homogenized plate using our H-2D model, the middle surface is discretized into 2916 S4R quadrilateral 

elements and 3025 nodes. However, for the Abaqus-3D simulation, 52116 S4R quadrilateral elements and 48293 

nodes are needed. Indeed, to fully describe the geometry of the groove, it takes at least 16 elements over a period 

of groove. 

Table 2. Rigidities of the 2D equivalent plate 

Rigidities 
A11 

(N/mm) 

A12 

(N/mm) 

A22 

(N/mm) 

B11 

(N) 

B12 

(N) 

B22 

(N) 

Values 6606.2   1055.1    5989.8    2507.1     526.1    2914.5   

Rigidities 
D11 

(N.mm) 

D12 

(N.mm) 

D22 

(N.mm) 

F11 

(N/mm) 

F22 

(N/mm) 

 

Values 75214.1   11870.5   49672.4   8.5 284.5  

 

 
Fig. 7 Simulation of Abaqus-3D and H-2D Model under transverse loading on MD section 
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Fig. 8 Simulation of Abaqus-3D and H-2D Model under transverse loading on CD section 

 

Table 3. Comparison between Abaqus-3D and H-2D model under transverse loading 
Vertical force F3 = 150N Abaqus-3D H-2D Model Error (%) 

MD 
 Displacement U3 (mm) 36.17 36.47 0.83 

CPU time (s) 79.9 2.0 39.95 times 

CD 
 Displacement U3 (mm) 28.40 28.62 0.77 

CPU time (s) 80.2 2.2 36.45 times 

 

We fix the plate at the left end and apply the vertical force (F = 150 N) at the right end. In both types of 

simulations (Abaqus-3D model and H-2D model), a rigid plate is bonded to the MD or CD section at the right 

end of the corrugated cardboard panel to better apply forces. The deformed shapes together with the iso-values 

of displacement of the panel under transverse loading obtained by 3D shell Abaqus and our H-2D model 

simulations are shown in Fig. 7. and Fig. 8. The comparisons of results obtained by the two models and the 

percentages of error in H-2D model compared to Abaqus-3D results for the case of transverse loading are 

presented in Table 3. We observe that the calculations by our H-2D model are very fast while calculations by 

Abaqus-3D are much longer (~40 times) and we note that the numerical results given by the two models are very close. 
 
 

V. CONCLUSION 
In this paper, we have proposed an analytic homogenization model for the bending and transverse shear 

problems of the double corrugated core sandwich panels. The comparison of the results obtained by the Abaqus 

3D and the H-2D simulations have proved the validation of the present homogenization model for bending and 

transverse shear problems. The present H-2D model allows us to largely reduce not only the time for the 

geometry creation and FEM calculation, but also the computational hardware requirements for the large 

sandwich panels. This homogenization model can be used not only for corrugated cardboard plates, but also for 

naval and aeronautic composite structures. 
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