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--------------------------------------------------------ABSTRACT----------------------------------------------------------- 

Exchange rate is price of a nation’s currency in terms of another currency. The value of exchange rate is 

important as one of the indicators to shows the strength of economic condition for particular country. This paper 

performed data clustering in analyzing the currency exchange rate which is 1 Malaysian Ringgit (MYR) to United 

States Dollar (USD). The method that is implemented in this study is Autoregressive Integrated Moving Average 

(ARIMA) model. This study performed stationary analysis, modeling analysis and diagnostics checking. In 

stationary evaluation process, the integration of order 1, I (1) is validated as stationary variable. The findings 

show ARIMA (1, 1, 1) is suitable for clustering the data between January 2010 until April 2017.The importance of 

this findings is to provide economists and researchers understand the dynamic behavior of currency movement. In 

addition, further study can be implement in evaluating the determinants factors that contributes to the dynamic 

behavior of currency exchange rate. 
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I. INTRODUCTION 
In year of 2014 until 2017, Malaysian currency experienced low value of currency exchange rate with respect to 

United States Dollar. Therefore, in year of 2017, Central Bank of Malaysia (BNM) announced new method to 

improve the liquidity and encourages more domestic trade in Malaysian Ringgit. In process of stabilizing the 

Malaysian Ringgit exchange rate value, BNM mentioned that only retain up to 25% of export can proceeds in a 

foreign currency, while the balance must be converted into ringgit. This regulation gives a significant impact on the 

exchange rate in Malaysian market. In validating this new strategies, the estimation of Malaysian Ringgit exchange 

rate need to be monitor in high accuracy. The purpose of this monitoring is to increase the strength of Malaysia 

economic. 

Exchange rate affect almost everyone in the economics including financial institutions, stock market, and others 

institution. If these various economics player can forecast future changes in exchange rate, they can modify future 

investment and restructure strategic planning. Forecast is one of the methods used to predict the fluctuations in 

exchange rate, but only a few of researches have investigates how statistical technique can improve forecasting 

method. As suggest by Jadevicius and Huston (2015)[1], ARIMA is a useful technique to assess broad market price 

changes. Government and central bank can use ARIMA modeling approach to forecast national house price 

inflation. Developers can employ this methodology to drive successful house-building program. Investor can 

incorporate forecasts from ARIMA models into investment strategy for timing purposes. Besides that, ARIMA 

model is a unique method because it does not construct either a single-equation or a simultaneous-equation model; 

but instead analyzes the probabilistic, or stochastic, properties of an economic time series. The ARIMA procedure 

analyzes and forecasts equally spaced univariate time series data, transfer function data, and intervention data. An 

ARIMA model predicts a value in a response time series as a linear combination of its own past values, past errors 

(also called shocks or innovations), and current and past values of other time series. (Al-Shiab, 2006)[2]. 

Currently, Islamic country was aggressive in promoting Islamic financial products and services. This is because the 

populations of Muslim people are increase and the demand for Islamic financial products and services also 

increase. Non-Muslim countries like Japan, United Kingdom also started introducing Islamic financial products 

and services. Thus, Malaysia as one of the member in Organization of Islamic Cooperation (OIC) countries with 

more than 60% of the population is a Muslim people also aggressive in promoting Islamic financial products and 

services. Apart from this Malaysia also established the world’s first Sharia based commodity trading platform on 

the domestic stock exchange (Bursa Malaysia). This platform gives a significant impact on the sharia-compliant 
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companies. Moreover, Islamic finance is also on the rise in new markets such as Syria, Lebanon, the U.K., Turkey 

and Canada (Abdul Razak and Abd Karim, 2008)[3]. This phenomenon gives high opportunities to the huge pool 

of Islamic capital. International Islamic banking assets with commercial banks were set to exceed US$778bn in 

2014. In particular, six markets – Qatar, Indonesia, Saudi Arabia, Malaysia, the United Arab Emirates (UAE) and 

Turkey – are heading toward touching US$1.8tn by 2019 (Zarrouk, El Ghak and Al Haija, 2017)[4]. 

Islamic financial transaction must follow shariah law. All the transaction must be in line with Al-Quran and 

Al-Sunnah. Abu Bakar and Uzaki (2013)[5] mention that the basic understanding of Islamic financial transaction is 

the transaction must be free from any prohibited element of usury, uncertainty and gambling. Usury (riba) defines 

as an increase or excess in any exchange or sale of good or by virtue of loan without providing equivalent value to 

the other party. Uncertainty (gharar) refers to the activities that have elements of uncertainty in measure weight of 

goods, price of goods or deceiving the buyer on the price of goods. Gambling (maysir) is refers to the any activity 

that involves betting. The winner will take the entire bet and loser will lose his bet. Others prohibited elements, 

such as non-halal foods, drinks and immoral activities also must be absent. Thus it is important for Islamic financial 

institutional to understand the principles in shariah law. As highlight by Hussain et al. (2015)[6] three principles 

govern on Islamic financial transaction are principle of equity; principle of participation; and principle of 

ownership.  Generally, there is no consensus neither in theoretical nor in empirical level regarding the direction of 

this relationship albeit the theory focus on unidirectional causality from exchange rates to stock prices (Tsagkanos 

and Siriopoulos, 2013)[7]. As investors, there are interested to forecast future trends for the economy fluctuation in 

order to determine the investment strategic. In the economic literature, there are many research papers that 

investigate the relationship between stock prices and exchange rates either in theoretical or empirical level.  

However, no prior academic work has analyzed the currency exchange rate between Malaysian Ringgit and United 

States Dollar. Therefore this study performs the ARIMA model in order to investigate the data clustering for 

currency exchange rate. The selected data of currency exchange rate which is 1 Malaysian Ringgit (MYR) to 

United States Dollar (USD). The period of analysis is arranged from January 2010 until April 2017.The total 

observations that involved in this analysis is 88 months observations. 

 

II. LITERATURE REVIEW 
Exchange rate is price of a nation’s currency in terms of another currency. The value of exchange rate is important 

as one of the indicators to shows the strength of economic condition for particular country. Since the breakdown of 

the Bretton Woods system of fixed exchange rates in the early 1970s, forecast currency values has become crucial 

for many purposes such as international comparisons of incomes, earnings and the costs of living by international 

agencies, management and alignment of exchange rates by governments, and corporate financial decision making 

(Clements and Lan, 2010)[8]. Even though, it is widely agreed that forecast of exchange rate is difficult task 

because it was influenced by many factors. According to Meese and Rogoff (1983)[9] a random walk model would 

have predicted major-country exchange rate during the recent floating rate period.  Random walk model has 

occupied center phase for many years, practitioners and researchers continue to employ a variety of techniques in 

an effort to beat the random walk. Clements and Lan (2010)[8] highlight three approaches of exchange rate 

forecasting; surveys, model-based approaches and the composite forecast approaches.      

Forecasting is important part in economic analysis especially when it was involved with the fluctuation of price. 

There are many methods in forecasting models. One of the models applied in this study is ARIMA model. Al-Shiab 

(2006)[2] found that Amman Stock Exchange would continue to grow by 0.195% for the next seven days as the 

ARIMA model predicted. However, looking at the actual data over the same forecasted period, it seems that the 

Amman Stock Exchange performance declined on average by –0.003%, thus the prediction is failed to match 

market performance.  

Balli and Elsamadisy (2012)[10] suggested the ARIMA model provides better estimates for short-term forecasts, 

because their finding show that this model are less than 100 million Qatari riayal for the short term currency in 

circulation forecast. El-Masry and Abdel-Salam (2007)[11] examine the effect of firm size and foreign operations 

on the exchange rate exposure of UK non-financial companies. They found that a higher percentage of UK firms 

are exposed to contemporaneous exchange rate changes than those reported in previous studies. UK firms’ stock 

returns are more affected by changes in the Equally Weighted (EQW), and US$ European currency unit exchange 

rate, and respond less significantly to the basket of 20 countries’ currencies relative to the UK pound exchange rate. 

It is found that exchange rate exposure has more significant impact on stock returns of the large firms compared 

with the small and medium-sized companies.  

 

III. RESEARCH METHODOLOGY 
This study using an autoregressive integrated moving average (ARIMA) model to perform data clustering. 

3.1 Autoregressive (AR) model 



Data Clustering using Autoregressive Integrated Moving Average (ARIMA) model for Islamic Country Currency 

DOI: 10.9790/1813-0606022231                                       www.theijes.com                                               Page 24 

An autoregressive (AR) model is a representation of a type of random process. It is used to describe certain 

time-varying processes in time series data. The autoregressive model specifies that the output variable depends 

linearly on its own previous values and on a stochastic term (an imperfectly predictable term). Thus, the model is in 

the form of a stochastic difference equation. 

In probability and statistics, a random variable, random quantity or stochastic variable is a variable quantity whose 

value depends on possible outcomes. As a function, a random variable is required to be measurable, which rules out 

certain pathological cases where the quantity which the random variable returns is infinitely sensitive to small 

changes in the outcome. 

A random variable is defined as a function that maps outcomes to numerical quantities, typically real numbers. In 

this sense, it is a procedure for assigning a numerical quantity to each physical outcome, and, contrary to its name, 

this procedure itself is neither random nor variable. 

A random variable has a probability distribution, which specifies the probability that its value falls in any given 

interval. Random variables can be discrete, that is, taking any of a specified finite or countable list of values, 

endowed with a probability mass function characteristic of the random variable's probability distribution; or 

continuous, taking any numerical value in an interval or collection of intervals, via a probability density function 

that is characteristic of the random variable's probability distribution; or a mixture of both types. 

The notation AR (p) indicates an autoregressive model of order p. The AR (p) model is defined as: 

1 1
. . .

t t p t p t
X c X X  

 
    

 

1
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t i t i t
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X c X 

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                                                                                                                                              (1) 

where , . . . ,
i p

  the parameters of the model, c  is constant, and 
t

  is white noise. 

An autoregressive model can thus be viewed as the output of an all-pole infinite impulse response filter whose input 

is white noise. Some parameter constraints are necessary for the model to remain wide-sense stationary. For 

example, processes in the AR (1) model with 
1

1   are not stationary. More generally, for an AR (p) model to be 

wide-sense stationary, the roots of the polynomial 
1

p

p p i

i

i

z z




   must lie within the unit circle. Each root 
i

z  

must satisfy the condition of 1
i

z   .  

3.2 Moving average (MA) model 

In time series analysis, the moving-average (MA) model is a common approach for modeling univariate time series. 

The moving-average model specifies that the output variable depends linearly on the current and various past 

values of a stochastic (imperfectly predictable) term. 

The notation MA (q) refers to the moving average model of order q: 

1 1
. . .

t t t q t q
X      
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             
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where   is the mean of the series, 
1
, . . . ,

q
   are the parameters of the model, and 

1
, , . . . ,

t t t q
  

 
  are white 

noise error terms. The value of q is called the order of the MA model. 

In discrete time, white noise is a discrete signal whose samples are regarded as a sequence of serially uncorrelated 

random variables with zero mean and finite variance; a single realization of white noise is a random shock. 

Depending on the context, one may also require that the samples be independent and have identical probability 

distribution (in other words i.i.d. is the simplest representative of the white noise). In particular, if each sample has 

a normal distribution with zero mean, the signal is said to be Gaussian white noise. 

Thus, a moving-average model is conceptually a linear regression of the current value of the series against current 

and previous (unobserved) white noise error terms or random shocks. The random shocks at each point are 

assumed to be mutually independent and to come from the same distribution, typically a normal distribution, with 

location at zero and constant scale. 

The moving-average model is essentially a finite impulse response filter applied to white noise, with some 

additional interpretation placed on it. The role of the random shocks in the MA model differs from their role in the 

autoregressive (AR) model in two ways. First, they are propagated to future values of the time series directly: for 

example, 
1t




appears directly on the right side of the equation for 
t

X  . In contrast, in an AR model 
1t




  does not 
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appear on the right side of the equation, but it does appear on the right side of the 
1t

X


 equation, and 
1t

X


appears 

on the right side of the 
t

X equation, giving only an indirect effect of 
1t




on 
t

X . Second, in the MA model a 

shock affects X  values only for the current period and q periods into the future; in contrast, in the AR model a 

shock affects X values infinitely far into the future, because 
t

  affects 
t

X  until 
t p

X


. 

In statistics and econometrics one often assumes that an observed series of data values is the sum of a series of 

values generated by a deterministic linear process, depending on certain independent (explanatory) variables, and 

on a series of random noise values. Then regression analysis is used to infer the parameters of the model process 

from the observed data, e.g. by ordinary least squares, and to test the null hypothesis that each of the parameters is 

zero against the alternative hypothesis that it is non-zero. Hypothesis testing typically assumes that the noise values 

are mutually uncorrelated with zero mean and the same Gaussian probability distribution – in other words, that the 

noise is white. If there is non-zero correlation between the noise values underlying different observations then the 

estimated model parameters are still unbiased, but estimates of their uncertainties (such as confidence intervals) 

will be biased (not accurate on average). This is also true if the noise is exhibits heteroskedasticity – that is, if it has 

different variances for different data points. 

 

3.3 Autoregressive–moving-average (ARMA) model 

In the statistical analysis of time series, autoregressive–moving-average (ARMA) models provide a parsimonious 

description of a (weakly) stationary stochastic process in terms of two polynomials, one for the autoregression and 

the second for the moving average. 

Given a time series of data
t

X , the ARMA model is a tool for understanding and predicting future values in this 

series. The model consists of two parts, an autoregressive (AR) part and a moving average (MA) part. The AR part 

involves regress the variable on its own lagged values. The MA part involves modeling the error term as a linear 

combination of error terms occurring contemporaneously and at various times in the past.  

The notation ARMA (p, q) refers to the model with p autoregressive terms and q moving-average terms. This 

model contains the AR (p) and MA (q) models, 
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where   is the mean of the series is expected as zero, 
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where , . . . ,
i p

  the parameters of the AR model, 
1
, . . . ,

q
   are the parameters of the MA model, c  is constant, 

and 
t

  is white noise. The white noise 
t

  is independent and has identical probability normal distribution. The 

model is usually referred to as the ARMA (p,q) model where p is the order of the autoregressive (AR) part and q is 

the order of the moving average (MA) part.  

The error terms 
t

  are generally assumed to be independent identically distributed random variables (i.i.d.) 

sampled from a normal distribution with zero mean: 
2

N ( 0 , σ )
t

   where  
2

σ  is the variance. 

 

3.4 Autoregressive integrated moving average (ARIMA) model 

In statistics and econometrics, and in particular in time series analysis, an autoregressive integrated moving 

average (ARIMA) model is a generalization of an autoregressive moving average (ARMA) model. Both of these 

models are fitted to time series data either to better understand the data or to predict future points in the series 

(forecasting). ARIMA models are applied in some cases where data show evidence of non-stationarity, where an 

initial differencing step (corresponding to the "integrated" part of the model) can be applied one or more times to 

eliminate the non-stationarity. 

The AR part of ARIMA indicates that the evolving variable of interest is regressed on its own lagged (i.e., prior) 

values. The MA part indicates that the regression error is actually a linear combination of error terms whose values 

occurred contemporaneously and at various times in the past. The I (for "integrated") indicates that the data values 

have been replaced with the difference between their values and the previous values (and this differencing process 

may have been performed more than once). The purpose of each of these features is to make the model fit the data 

as well as possible. 
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Non-seasonal ARIMA models are generally denoted ARIMA (p,d,q) where parameters p, d, and q are 

non-negative integers, p is the order (number of time lags) of the autoregressive model, d is the degree of 

differencing (the number of times the data have had past values subtracted), and q is the order of the 

moving-average model.  

The derivation of ARIMA model is described as below procedure. 

Given a time series of data 
t

X   where t  is an integer index and the 
t

X are real numbers. An ARMA (p, q) model 

is given by Equation (3). 
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where L  is the lag operator, 
i

  are the parameters of the autoregressive part of the model, 
i

  are the parameters 

of the moving average part and 
t

  are error terms. The error terms 
t

  are generally assumed to be independent, 

identically distributed variables sampled from a normal distribution with zero mean. 

In time series analysis, the lag operator, L  or backshift operator operates on an element of a time series to produce 

the previous element. For example, given some time series: 

 1 2
, , ...X X X   

Then, 

1t t
L X X


  for all 1t   . 

where L   is the lag operator. Note that the lag operator can be raised to arbitrary integer powers so that: 
k
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Referring to Equation (4), assume now that the polynomial 
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An ARIMA (p,d,q) process expresses this polynomial factorization property with p = p'−d, and is given by: 
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The Equation (7) can be generalized as follows, 
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This defines an ARIMA (p,d,q) process with drift δ/(1 − Σφi). 

 

3.5 Diagnostics checking 

The function of diagnostic checking is to determine whether the assumptions underlying the innovation series are 

satisfied by the residuals of the calibrated autoregressive-moving average (ARMA) or autoregressive integrated 

moving average (ARIMA) model. Diagnostic checks only have meaning if the parameters of the model are 

efficiently estimated using the maximum likelihood approach at the estimation stage. For the diagnostic checks in 

this paper, it is assumed that a maximum likelihood estimator is used to estimate the model parameters. A random 

pattern of residuals supports a linear model. 

The difference between the observed value of the dependent variable (y) and the predicted value (ŷ) is called 

the residual (e). Each data point has one residual. 

Residual = Observed value - Predicted value  

e = y – ŷ                                                                                                                                                                    (9) 

Both the sum and the mean of the residuals are equal to zero. That is, Σ e = 0 and e = 0. 

In discrete time, white noise is a discrete signal whose samples are regarded as a sequence of serially uncorrelated 

random variables with zero mean and finite variance 
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IV. RESULT AND DISCUSSIONS 
4.1 Currency exchange rate  

In this study, data of currency exchange rate which are 1 Malaysian Ringgit (MYR) to United States Dollar (USD) 

is selected. The period of analysis is determined from January 2010 until April 2017.The analysis is involved with 

88 months observations. Figure 1 shows the dynamic movement of currency exchange rate. The maximum value is 

0.335 in August 2011. At this point, Malaysian Ringgit currency is strong with respect to USD. Meanwhile, the 

minimum value is 0.224 in December 2016. At this point, Malaysian Ringgit currency is weak with respect to USD. 
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Figure 1: Dynamic currency exchange rate (1 MYR to USD) 

 

Then, this study performed the autocorrelation and partial autocorrelation test. Table 1 shows slow exponentially 

decay in autocorrelation (AC) value. Therefore, this concluded that this time series data is non-stationary. The 

mean and variance data of 1 MYR to USD is not constant over time. 

 

Table 1: Autocorrelation and partial correlation analysis 

  
 

4.2  Differencing  currency exchange rate data  

In developing stationary data from non-stationary, one of the common solutions is to use differenced variable for 

first differences: 

1t t t
y y y


                                                                                                                                               (10) 

where variable 
t

y  is value of currency exchange rate at period t. The variable 
t

y is integrated of order one, 

denoted I (1). 

Table 2 shows the autocorrelation and partial correlation analysis for variable
t

y . Table 2 show the significant 

spike in autocorrelation diagram. Therefore, the variable 
t

y is a stationary variable. It is concluded that mean and 

variance for variable 
t

y is constant over time. 

 



Data Clustering using Autoregressive Integrated Moving Average (ARIMA) model for Islamic Country Currency 

DOI: 10.9790/1813-0606022231                                       www.theijes.com                                               Page 28 

 

 

 

 

Table 2: Autocorrelation and partial correlation analysis 

   
 

Then, the characteristics of stationary for variable,
t

y  validated with plotting the dynamic behavior of Integration 

of order 1, I (1) as shown in Figure 2.The mean is -0.00079 and standard deviation is 0.00562. Therefore, the 

variable 
t

y is validated as stationary variable. 
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Figure 2: Dynamic behavior of Integration of order 1, I (1) 

 

4.3 An autoregressive integrated moving average (ARIMA) model 

From correlogram in Table 2, the estimated ARIMA model is ARIMA (1, 1, 1). Then, ARIMA model for currency 

exchange rate with first difference is described as next equation: 

From equation (8), we define currency exchange rate as 
t

y   
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 Therefore, ARIMA (1, 1, 1) indicates p=1, d=1and q=1.The equation is derived as below procedure: 
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1 1

1 1
1 1

t t
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1 1t t t
y L y c L        

 
1 1 1 1t t t t

y y c   
 

       

1 1 1 1t t t t
y c y   

 
                                                                                                                        (11) 

From the analysis of data in Table 3, ARIMA (1, 1, 1) equation can be represented by below equation: 

1 1
0 .0 0 0 8 0 2 0 .0 2 8 9 3 8 0 .3 4 6 5 1 9 0 .0 0 0 0 2 7 3

t t t
y y 

 
                                                                    (12) 

 

Table 3: ARIMA analysis 

 
 

4.4 Diagnostics checking 

Then, diagnostics checking was carried out to assess the appropriateness of the model ARIMA (1, 1, 1) by defining 

residuals and examining residual plots. Residual is the difference between the observed value of the dependent 

variable and the predicted value. 

Figure 3 shows the residual plot for currency exchange rate in first difference. A residual plot is a graph that shows 

the residuals on the vertical axis and the independent variable on the horizontal axis. If the points in a residual plot 

are randomly dispersed around the horizontal axis, a linear regression model is appropriate for the data. Therefore, 

Figure 3 shows a random pattern of residuals supports a linear model. 

 

 
Figure 3: Residual plot for currency exchange rate in first difference 

 

To validate this finding, correlogram for residual was performed. Table 4 shows that ARIMA (1, 1 1) has no 

significance spike for Autocorrelation function (ACF) and Partial autocorrelation function (PACF).Therefore, the 
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residuals estimated are purely random. This implies data of exchange rate currency 1 MYR to USD in first 

difference are suitable to represent in ARIMA (1, 1, 1). 

 

Table 4: Correlogram for residuals analysis 

 
 

V. CONCLUSION 
This research if focus on data clustering using autoregressive integrated moving average (ARIMA) model. The 

selected data that involved in this study is data of currency exchange rate which are 1 Malaysian Ringgit (MYR) to 

United States Dollar (USD). The period of analysis is arranged from January 2010 until April 2017.The total 

observations that involved in this analysis is 88 months observations. The main findings from this study are: 

1.    The maximum value of currency exchange rate for 1 Malaysian Ringgit (MYR) to United States Dollar (USD) 

is 0.335 in August 2011. At this point, Malaysian Ringgit currency is strong with respect to USD. Meanwhile, 

the minimum value is 0.224 in December 2016. At this point, Malaysian Ringgit currency is weak with respect 

to USD. 

2.    This study performed the autocorrelation and partial autocorrelation test. Result shows slow exponentially 

decay in autocorrelation (AC) value. Therefore, this concluded that this time series data is non-stationary. The 

mean and variance data of 1MYR to USD is not constant over time. 

3.    Integration of order 1, I (1) for exchange rate currency show stationary characteristics. The value of mean is 

-0.00079 and standard deviation is 0.00562. Therefore, the Integration of order 1, I (1) is validated as 

stationary variable. 

4.    ARIMA(1,1,1) model for currency exchange rate with first difference is described as next equation: 

      
1 1

0 .0 0 0 8 0 2 0 .0 2 8 9 3 8 0 .3 4 6 5 1 9 0 .0 0 0 0 2 7 3
t t t

y y 
 

        

5.    In diagnostics checking process, correlogram evaluation for residual was performed. ARIMA (1, 1 1) model 

show no significance spike for Autocorrelation function (ACF) and Partial autocorrelation function 

(PACF).Therefore, the residuals estimated are purely random. As the conclusion, the data of exchange rate 

currency 1 MYR to USD in first difference are suitable to represent in model of ARIMA (1, 1, 1). 

The importance of this study is to develop data clustering method for currency exchange rate that can help 

economists understand the dynamic behavior of currency movement. 

 

VI. FURTHER RESEARCH 
The further research can be implementing in forecasting the future value of currency exchange rate with different 

data sets. In addition, further research can be implementing in evaluating the determinants that contributes to the 

behavior of currency exchange rate movement. 
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