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--------------------------------------------------------ABSTRACT--------------------------------------------------------------- 

The most commonly used method to describe the relationship between response and independent variables is a 

linear model with Gaussian distributed errors.   In practical components, the variables examined might not be 

mesokurtic and the populace values probably finitely limited. In this paper, we introduce a multiple linear 

regression models with two-parameter doubly truncated new symmetric distributed (DTNSD) errors for the first 

time. To estimate the model parameters we used the method of maximum likelihood (ML) and ordinary least 

squares (OLS). The model desires criteria such as Akaike information criteria (AIC) and Bayesian information 

criteria (BIC) for the models are used. A simulation study is performed to analysis the properties of the model 

parameters. A comparative study of doubly truncated new symmetric linear regression models on the Gaussian 

model showed that the proposed model gives good fit to the data sets for the error term follow DTNSD. 
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I. INTRODUCTION 
The estimation of parameters in a regression model has got importance in many fields of studies used for 

realizing practical relationships between variables. The regression model theories and applications are studied 

by many authors. This method is basically grounded on statistical model wherein the error terms are assumed to 

be independent and identically distributed Gaussian random variables with zero mean vector and positive 

covariance matrix (Srivastava, MS, 2002). Recently, there have been an enormous kind of studies on the 

influences of non-Gaussian in several linear regression analyses. Bell-shaped or roughly bell-shaped 

distributions are encountered with a big form of applications and, through the Central Limit Theorem, provide 

the underpinning for the characteristics of sampling distributions upon which statistical inference is primarily 

based. Regardless of this application, the range of a normally distributed variate   to  . But in data sets 

where the varaite is having finite range may not fit well to regression models with Gaussian error. This problem 

has stimulated to consider truncated distributions.  

The parameter estimates of a singly truncated normal distribution formulae have developed by Pearson and Lee 

(1908). They used the method of moments. Different papers on this subject include encompassing Cohen 

(1950), in which cases of doubly truncated and censored samples have been considered. The moment generating 

function of the lower truncated multivariate normal distribution had in Tallis (1961) and, in principle; it could be 

used to compute all the product moments for the lower truncated multivariate normal. Tallis (1961) provides 

explicit expressions of some lower order moments for the 2n  and 3n cases. Cohen (1949, 1950a, 1950b) 

has studied the problem of estimating the mean and variance of normal populations from singly truncated 

samples. Moreover Cohen (1961) found the tables for maximum likelihood estimators of singly truncated and 

singly censored samples.  

J.J. Sharples and J.C.V.Pezzey (2007) stated results of multivariate normal distributions which consider 

truncation by means of a hyperplane. They presented results by calculating the expected values of the features 

used in environmental modeling, when the underlying distribution is taken to be multivariate normal. They 

illustrated the concept of truncated multivariate normal distributions may be employed within the environmental 

sciences through an example of the economics of climate change control. Karlsson M. et al. (2009) derived an 

estimator from a moment condition. The studied estimators are for semi-parametric linear regression models 

with left truncated and right censored dependent variables. 

 The truncated mean and the truncated variance in multivariate normal distribution of arbitrary rectangular 

double truncation is derived by Manjunath B.G. and Stefan Wilhelm (2012). For most comprehensive account 

of the theory and applications of the truncated distributions, on can refer the books by N. Balakrishnan and A. 

Clifford Cohen (1990), A. Clifford Cohen (1991), and Samuel Kotzet. al. (1993).  
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For some instances, even though the shape of the sample frequency curve is symmetric and bell shaped the 

normal approximation may badly fit the distribution. This may be due to the peakedness of the data which might 

not be mesokurtc. To resolve this trouble new symmetrical distribution was derived by Srinivasa Rao, et al. 

(1997) and studied their distributional properties by A. Asrat and Srinivasa Rao (2013). Utilized it for linear 

model with new symmetric distribution the range of the variate infinite having the values between   to  . 

For instance of double truncation can be determined soundwave frequencies. Frequency of a soundwave can be 

any non-negative number. However, we cannot listen all sounds. Only those sounds generated from soundwaves 

with frequencies greater than 20 Hertz and less than 20, 000 Hertz are audible to human ears. Right here, the 

truncation point at the left is 20 Hertz and that on the right is 20, 000 Hertz. 

However, for constrained response variable the usage of such interval my fit the model badly. Hence in this 

paper we study the multiple regression model with truncated new symmetric distributed errors. Very little work 

has been reported in literature regarding multiple regression model follows a truncated distributions.  

The linear regression model is of the form: 
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where iy is an observed response variable of the regression, ikx are observed independent variables, 

k ,...,, 21 are unknown regression coefficients to be estimated, and iu are independently and identically 

distributed error terms. It is assumed that the error term follows a two parameter doubly truncated new 

symmetric distribution.  

The rest of the paper is organized as follows: In Section 2, the distributional properties of a two- parameter 

doubly truncated new symmetric distribution are derived. The maximum likelihood estimation of the model 

parameters is studied in Section 3. In Section 4, simulation studies are performed and the results are discussed. 

Least square estimation of the model parameters are studied in Section 5. In Section 6, comparison of maximum 

likelihood estimators and OLS estimators is given. In Section 7, comparison of the suggested model with that of 

New Symmetric distributed errors and Gaussian model errors are presented. Section 8, the conclusions are 

given.  

 

II. PROPORTIES OF DOUBLY TRUNCATED NEW SYMMETRIC DISTRIBUTION 
The doubly truncated new symmetric distribution was defined by equation (2) specifying its probability density 

function. There are many properties of doubly truncated new symmetric distribution. Some of the most 

important properties are: 

A random variable Y  follows a MDTNS distribution if its probability density function is 
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the parametersa ≤ μ ≤b and 0  are location and scale parameters, respectively. 

 Figure 1 shows the frequency curves of the variate under study     
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The distribution function of the random variable Y is:  
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The Mean of the variable is: 
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If 0  and the truncation is both sides, i.e., 0)(   the mean of the truncated variable is greater than 

the original mean. )( is the mean of the truncated normal distribution.  

The characteristic function  tY of a random variable Y  is: 
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The moment generating function is: 
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  The cumulant generating function is: 
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All higher-order cumulants are equal to zero. 
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III. MAXIMUM LIKELIHOOD ESTIMATION OF THE MODEL PARAMETERS 

In this section, we consider the regression model  IXY 2,,   with  IDTNSu 2,0~  . The unknown 

parameters of the model  IXY 2,,   are coefficient vector   and the error variance 
2 . The MLEs of  and 

2  are computed as: the parameter values that maximize the likelihood function:  
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The log-likelihood function is 
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The maximum likelihood estimators  2ˆ,ˆˆ  MLE  are that which maximizes the log-likelihood function. 

Taking the partial derivatives of the log of the likelihood with respect to the   11 xk   vector   are nxn  matrix 

of I2  and placing the result equal to zero will give (11). The maximum likelihood estimators are the solutions 

of the equations 

0






l
 and 0

2








l
 

(11)  

Since there are no closed form solutions to the likelihood equations, numerical methods such as Fisher Scoring 

or Newton-Raphson iterative method can be used to obtain the MLEs. The standard procedure for implementing 

this solution was to use Newton- Raphson iterative method we have, 

                                          ',, 2)(1)()()1(  
 nnnn SH                                                                          (12) 

Here we begin with some starting value, 
)0( say, and improve it by finding some better approximation )1( to 

the required root. This procedure can be iterated to go from a current approximation )(n to a better 

approximation )1( n . 

IV. SIMULATION AND RESULTS 
The proposed model was evaluated through Monte Carlo experiments in which the data is generated from model 

(1) using Wolfram Mathematica 10.4.  To facilitate exposition of the method of estimation, a several data set 

with two explanatory variables and one dependent variable are simulated from a model with prespecified 

parameters for various sample sizes ,5000,3000,1000,100n and 10000 . The dependent variable Y  is 

simulated using doubly truncated new symmetric distribution with mean 2 and variance 1 using the following 

procedures: 

Step 1: Generates the uniform random numbers )1,0(~ Udi , ni ,...,2,1 , 

Step 2: Given ,1,1,2  a and 5b ; solve 
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The solution for a random variable iy , ni ,...,2,1 , will have the standard  DTNS distribution. 

Step 3: We then generate the 2 predictors  1X  and 2X  variables respectively using the simulation protocol and 

use as explanatory variablesfor the regression model.        
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                                                                (14) 

MDTNS error regressions were applied to the simulated datasets and the estimated parameters were compared 

to the true parameters. This process was repeated for sample sizes of ,5000,3000,1000,100n and 10000 . In the 

first Monte Carlo experiment we generate the datasets 1X  and 2X  from (14) and Y  from the model defined in 

(1) and 914) . Keeping generality, we took the values of the model parameters to 
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The error terms generated from a doubly truncated new symmetric distribution, that is   ,~ MDTNSui . 

Table 1. Summary of Simulations for the Maximum Likelihood (ML) estimation of the regression model 
Sample 

Size 
Parameter Estimate  Standard 

Error  
Wald 95% Confidence Limits  Chi-Square Pr>ChiSq 

Lower Upper  

100 

 

 

0  1.6330 0.1612 1.3170 1.9491 102.56 <.0001 

1  3.0385 0.0908 2.8606 3.2164 1120.89 <.0001 

2  4.1333 0.0460 4.0432 4.2235 8079.28 <.0001 

  0.8938 0.0632 0.7781 1.0267   

1000 
0  

2.0082 0.0477 1.9147 2.1017 1772.47 <.0001 

1  
2.9967 0.0313 2.9354 3.0579 9187.75 <.0001 

2  3.9997 0.0096 3.9808 4.0185 172753 <.0001 

  0.9776 0.0219 0.9357 1.0214   

3000 
0  1.9931 0.0299 1.9346 2.0516 4458.15 <.0001 

1  3.0231 0.0179 2.9880 3.0583 28448.2 <.0001 

2  3.9942 0.0098 3.9750 4.0134 166318 <.0001 

  0.9922 0.0128 0.9674 1.0176   

5000 
0  1.9784 0.0228 1.93337 2.0232 7506.31 <.0001 

1  3.0094 0.0140 2.9820 3.0367 46519.3 <.0001 

2  4.0069 0.0069 3.9934 4.0205 335462 <.0001 

  
0.9937 0.0099 0.9744 1.0134   

10000 
0  

1.9792 0.0164 1.9471 2.0112 14650.0 <.0001 

1  3.0138 0.0101 2.9940 3.0335 89406.3 <.0001 

2  4.0022 0.0048 3.9928 4.0116 692365 <.0001 

  1.0080 0.0071 0.9941 1.0220   

 

Table 1 results suggest that as the size of the sample increases, the estimates of the parameters become more 

precise.  Increasing the sample sizes from 100 to 1000, and then to 10, 000 observations, the estimators all move 

closer to the true parameter values, and the dispersion of the estimator distributions notably decreases.  The 

fitted linear regression model with MDTNS error terms to the simulated data, based on  000,10n  is,  

21 0022.43.01381.9792ˆ XXY                                          (16) 

And their estimated standard errors are: 

0.0164)ˆ.(. 0 es , 0.0101)ˆ.(. 1 es , 0.0048)ˆ.(. 2 es and 0.0071)ˆ.(. es              (17) 
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V. LEAST SQUARES ESTIMATION OF THE MODEL PARAMETERS 

The commonly used method for estimating the regression coefficients in a standard linear regression model is 

the method of ordinary least squares (OLS). The OLS estimator, OLS̂ , minimizes the sum of squared residuals 

(18). It can be defined by (19), where   is a   11 xk   parameter vector. The equation is  (19) follows by 

i) differentiating equation (13) with respect to  , where )',,( 210   ,  

ii) setting the resultant matrix equation equal to zero, and  

iii) replacing   by OLS̂  and rearranging for OLS̂ .  

Suppose nyyy ,..., 21   are observations of a random variable y . The estimates of k ,...,, 10  are the values 

which reduce 

      XYXYxySS

b

aii

ii 


'

1

'   (18) 

 

The resulting OLS estimator of β is: 

                              YXXX '''ˆ                                                                                                                        (19)                                                                                                                                                                          

Provided that the inversed   1
'


XX exists. 

The predicted values of the dependent variable are given by XY ̂ˆ   and the residuals are calculated using 

YYe ˆ .                                                                                                                                                            (20) 

Properties of the Estimates 

Some of the properties of Ordinary Least squares (OLS) estimates are presented as:  assuming that 0)( uE ,  

  ,2
nIuVar  and    12 ')(


 XXVar                                                                                                           (21) 

 

Table 2 presents the properties of OLS estimations using the data simulated in Section4. 

 

Table 2. OLS estimation output for the simulation data 
Equation  DF model DF error SSE MSE Root MSE R-Square Adjusted R-Square 

y 3 9997 10149.6 1.0153 1.0076 0.9873 0.9873 

 
Parameter  Estimate Approximate standard error t-value Approximate  

β0 1.978464 0.0163 121.03 <.0001 

β1 3.013995 0.0101 298.97 <.0001 

β2 4.002315 0.00481 832.41 <.0001 

 

Table 2 revealed that the Ordinary Least Squares )(OLS  estimates vary significantly from the Maximum 

likelihood )(ML  estimates and the ML estimators are closer to the true values of the parameters compared to 

the OLS estimators. 

VI. COMPARSION OF MAXIMUM LIKELIHOOD AND OLS ESTIMATORS 
For fitting the multiple linear regression model with two parameter doubly truncated new symmetric error terms 

comparison of MLEs and LSEs were done. For every estimation methods bias and mean square error (MSE) are 

computed for 000,10n   where 

      2ˆˆˆ  biasVarMLE   

The computational result is presented in Table 3. 

Table 3. Comparison of the LSEs and MLEs of Doubly Truncated New Symmetric Regression Model 

 
  OLS ML 

0̂  
Bias -0.021536 -0.0208 

MSE 0.000729489 0.0007016 

1̂  

Bias 0.013995 0.0138 

MSE 0.00029787 0.00029245 

2̂  

Bias 0.002315 0.0022 

MSE 2.84953E-05 2.788E-05 
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From Table 3, it is observed that results for comparison criteria approving that deviations from normality causes 

LSEs to be poor estimators. As the results reported in Table 3 also shown that MLEs have both smaller bias and 

Mean Square Error (MSE) than the Least Square (LS) estimators. The results confirmed that ML estimation 

method shows better overall performance than OLS. 

 

VII. COMPARSION OF THE MDTNS-LM WITH THE N-LM 
 In this paper, the performance of linear regression model with doubly truncated new symmetric distributed error 

terms with that of normal error terms were examined using simulated data. To choose the best model the 

Akaike’s information criteria (AIC) and the Bayesian information criteria (BIC) with model diagnostics root 

mean square error (RMSE) were computed. The output of simulation studies using various sample sizes 

presented in Table 4.  

 

Table 4. Summary for information criteria and model diagnostics for normal and doubly truncated new 

symmetric error model. 
Model Sample Size (n) Information Criteria Model Diagnostics 

AIC BIC 

MDTNSD 100 -16.4545     -14.2708      0.90752      

1000 -39.24445 -37.2264 0.97910 

3000 -41.0639 -39.0579 0.99268 

5000 -57.0270 -55.0234 0.99402 

10000 -154.5126 -156.5144 0.99576 

Normal 100 2.5315 4.7151 0.99789 

1000 -6.0051 -3.9871 0.99551 

3000 -3.7005 -1.6945 0.99888 

5000 -26.9597 -24.9561 0.99701 

10000 -75.2408 -73.2390 0.99610 

  

The model with the smallest AIC or BIC amongst all competing models is deemed to be good model where it 

can be seen that the MDTNS distribution provides the better fit to the data. That is, both the information criteria 

techniques (AIC and BIC) and the model diagnostics (RMSE) indicate that linear model with doubly truncated 

new symmetrically distributed error terms consistently performed better across all the sample sizes of the 

simulation. This can also be consistently noticed from Figure 2 through Figure 4. 

 

 
Figure 2. Comparison of Multiple Doubly Truncated New Symmetric (MDTNS) linear model versus Normal 

Linear Model using AIC. 

 

 
Figure 3. Comparison of Multiple Doubly Truncated New Symmetric (MDTNS) linear model versus Normal 

Linear Model using BIC. 
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Figure 4. Comparison of Multiple Doubly Truncated New Symmetric (MDTNS) linear model versus Normal 

Linear Model using RMSE. 

Clearly, from Fig. 2 through 4, we note that the MDTNS is better than the normal.  

VIII. SUMMARY AND CONCLUSIONS 
In this paper, we introduced the multiple regression model with doubly truncated new symmetric distributed 

errors. The doubly truncated new symmetric distribution serves as an alternative to the new symmetric 

distribution. The maximum likelihood estimators of the model parameters are derived. Via simulation studies, 

the properties of these estimators are studied. OLS estimation is carried out in parallel and the results are 

compared. The simulated results reveal that the ML estimators are more efficient than the OLS. A comparative 

study of the developed regression model, doubly truncated new symmetric linear regression model, with the 

Gaussian model showed that this model gives good fit to some data sets. The properties of the maximum 

likelihood estimators are studied. This regression model is much more useful for analyzing data sets raising that 

reliability, lifetime data analysis, engineering, survival analysis, and a wide range of other practical problems. 

This paper can be further extended to the case of non-linear regression with doubly truncated new symmetric 

distributed errors which will be taken elsewhere. 
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