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ABSTRACT

In this study, we provide the Lie symmetries and a classification of plane symmetric static space-times. Based on
the invariance of the Lagrange equations of plane symmetries static space-time systems under the transformation
Lie group, we provide the Lie symmetry determination equation, Lie symmetry theorem, and the conserved
quantity of the systems; by utilizing theLie symmetry methodto solute the system, we give complete classification
of the plane symmetric static space-times systems.The research results indicate that using the Lie symmetry
method to study plane symmetric static spacetime can identify a series of conserved quantities that exist in the
system; Discovered 5 basic Lie symmetries in the system; When the metric parameters of the system are
appropriately selected, the plane symmetric static spacetime can have 6, 7, 8, 9, 11, and 17 Lie symmetric
symmetries and conserved quantities.
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. Introduction
It is generally known that space-time symmetries play a significant role in the motion of particles, specifically in
gravity theories. The classification of space-time symmetry has become a hot topic in general relativity
[1-7].These classifications not only classify space-times according to such space-time symmetries, but also
provide new solutions to the Einstein field equations, which are given in standard gravitational unitsc =G =1 as
1

R. 3 Rg,, = kT#V
The classification of Einstein field equations (EFE) constitutes a significant part of generalrelativity research. It is
practically impossible to find general solutions for the EFE in a closed analytic form. These are non-linear partial
differential equations, and it is not easy to obtain the exact solutions of these equations.

In 1974, Lie introduced infinitesimal transformations into differential equations and proposed a
symmetric solution for solving differential equations [8]. The symmetry method is a fundamental method for
solving differential equations [9-15]. By using the symmetry-solving method, we can solve the dynamical
equations, reduce the order of the differential equations, and linearize nonlinear the dynamical equations. These
methods are used to reduce the number of variables in partial differential equations. There are two basic symmetry
methods under the transformation of the Lie group. One is based on the invariance of the Hamiltonian action of the
dynamic system under the transformation Lie group, which is called the Noether symmetry method [16]; Other is
based on the invariance of dynamical equations of system under the transformation Lie group, which is called the
Lie symmetry method [8,16].

Symmetries help to find solutions of the 4 dimensional space-time. Various approaches have been used
to classify space-times and to find solutions to Einstein field equations [17-23]. However, in previous studies, the
classification and exact solutions of four-dimensional space-time were mostly based on the invariance of the
Lagrange function describing the system under the transformation Lie group;that is, the Noether symmetry of a
four-dimensional space-time system to give the conservation of the system's existence and classify the system.

In the theoretical study of symmetry, some important results have also been achieved in the classification
of Lie symmetry in physics and mechanics [24-26].Tiwar et al studied Lie point symmetries classification of the
mixed Liénard-type equation [24]. Baikov et al obtained Lie symmetry classification analysis for nonlinear
coupled diffusion[25].Prince derived classification of dynamical symmetries in classical mechanics [26]. In recent
years, the Lie symmetry method has been successfully applied to solve problems in conservative and non
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conservative, holonomic and non holonomic constrained mechanical systems, as well as in phase space
constrained mechanical systems [27-41]. Scholars have applied the Lie symmetry method to solve
electromechanical coupled dynamic systems and flexible robot systems [42-49].

In this study, theplane symmetric static space-times were classified using Lie symmetries. We introduce
the concepts of generalized coordinates and generalized momentum in four-dimensional space-time, and provide
the corresponding Lagrange equations. Based on the invariance of the Lagrange equations in the transformation
Lie group of the system, we derive the Lie symmetry determination equation for the system, and further solve the
transformation Lie group corresponding to the plane symmetric static space-time. We also propose the Lie
symmetry theorem and conserved quantity (first integral) for plane symmetry static space-time. Lie symmetry
theorem proved that for every symmetry there is a conservation law (conserved quantity). Classification of the
plane symmetry space-times by Lie symmetries provides those symmetries of space-times corresponding to which
there are conserved quantities. Isometries and homotheties also correspond to conserved quantities and they form
subset(s) of the set of Lie symmetries. For the classification. examples of the Lie symmetries are symmetry under
spatial translations implies conservation of linear momentums, the symmetry under time translation implies
conservation of energy, and the symmetry under rotation implies conservation of angular momentum.

Il.  Motion equations of plane symmetrystatic space-time system
Infour-dimensional space,generally the line element of nth dimensional space-time takes the form

ds® =gyox'dx’ i,j=12---n @
The Lagrangian L for the metric (1) is given by [23-26]
vyl
L=g;Xxx". )
The spherically symmetric space-time is an important exact solution of the Einstein fieldequation. It is the

conformally at solution of the Einstein-Maxwell field equations for anonnull electromagnetic field.We take the
Lagrangian of general plane symmetric static space-time [7]

L= %[ev(x)t'z — % —e*™(y? + 2'2)] 3)

where s is the independent variable, x' are the dependent variables on t, x, y,zand X' are theirderivatives with

respect to curve s; and here themetric coefficients V ( X) and u ( X) are functions of coordinate x.

The static space-time of the plane symmetriescan be considered as a holonomicdynamical system. We can
provethat one satisfies Lagrange equations in the following form:

d oL oL
—— - =Q, g =0 (stxV2). @

The Lagrange equations (4) are different from the Lagrange equations in analytical mechanics, as it is the
Lagrange equations in four-dimensional space-time.

Substituting Eq. (3) into Egs. (4), we obtain the Lagrange equations for the plane symmetries static spacetime as
follows

t':-?j—)t)’(fzao, ()
Xzéev(x)z—;fz—%eﬂ(x)z_f(sz“zz):al’ (6)

yz_?j_i‘xyzaz, Y

z:-?j—‘::)'(z'zas- (8)

I11.  Lie symmetries and conserved quantities of the Plane symmetries static space-time
In this section, we perform infinitesimal transformations on the independent and dependent variables of the plane
symmetries static space-time based on the invariance of the Lagrange equation of the plane symmetries static
space-time under infinitesimal transformations.We provide the Lie symmetry determination equation, Lie
symmetry theorem, and this system possesses the conserved quantity (first integral).
3.1 Lie symmetries and its determining equations of the plane symmetries static space-time
Introducing infinitesimal transformations on independent variable s and generalized coordinates,
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S =5+65(5,00, 0,0 ), O =0 +67° (5,00, %+, G) k=01 n (9

k
where ¢ is an infinitesimal parameter, ¢ and 7] are infinitesimal generators, and n=4N-I . Introducing the
following infinitesimal generator vector,

[0] _
+ 10
. Zn 8qk (10)
and, one of its extensmns,
n . 8
XW =X+ (5%~ &) —, 11
kZ_(;(n 6,) Py 1)
and its secondary expansion,
oy . .z O
XE = X3 (i - 20, £ -4, 8) —. (12)
k=0 00,

In this work,we take K=t,x,y,z.
The invariance of differential equation (5)-(8) under infinitesimal transformation (9) is reduced to the following
equations:

i+ 29wz -2 :—Xl(d—v)'(f],(lS)
dx dx

i —(ev(x) o guto d—“(y2 + z'z)jf— x&
dx

dx

1 du ¥ dv . a4
:_Xl - y(x) v —t

[26 dx (y +? ) 2 dx J
. du ... .. du ..
n2+2—”xyc§—y§=—><l(—“xyj. (15)

dx dx
ﬁ3+2d—“xz§'—z§=—x1(d—“xzj, (16)

dx dx

Equations (13)-(16) are called the Lie symmetry determination equations for the plane symmetry static space-time
inrectangular coordinate system.

By expanding Egs.(13)-(16), we obtain the four partial differential equations oftheplane symmetries static
space-timeas follows:
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’

3.2 Five Lie symmetry generators and vector fields of plane symmetry static space-time

This system consists of nine unknowns £and 7]' (i=0,1,2, 3),v, u, A, and G. Solutions of this system give
the Lagrange equations along with the Lie symmetry corresponding to these Lagrange equations.One can easily
write plane symmetries space-time, which are the exact solutions of the EFE. The Egs.(17)-(20) yield the
following solutions:

E=Ln’=n=n*=n=0, Yo=g; (21)
oS
n°=1¢é=n"=n"=n=0, X0=2; (22)
ot
0
n=Lé=n"=n'=n"=0, X,=—; (29
oy
n’=L¢é=n"=n'=n*=0, X3=£; (24)
oz

0 0
3: , 2:—27 = 0: 1:0’ X =V——7—.
=Y. g=1n =1 =Y (25)

In other words, when the metric parameter v, u, A take any value, the planesymmetry static space-timespossess

at least five basic Lie symmetries.
3.3Lie symmetry theorem of plane symmetrystatic space-time

0, 1.2 3 . . .
Theorem: for the generators 5,77 1717 1] of infinitesimal transformation forplane symmetry static
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space-time that satisfies determining equations (13)-(16), if there is a gauge function G (S,t, XY, Z) , satisfies the
following equation:

LEX O+ 3 Q" -G} E =0, 29
then the pIane static spacetime poss:)ses the conserved quantity:
I—L§+Z ( ~G,£)+G = const, @7)
where the Qk are non-potential generalized forces in a plane symmetry static space-time. In this study, we take
lezl%of'
A periés> S -ag) 23 (g e-4,8)+6
ds od, koo O

Using Eq.(25) in this equatlon and making further simplification, we obtain
dl 20k dL oL oL

= = —q — == =0.

55~ qkso( s QKJ

Equation (26) is called the structural equation of Lie symmetries of a plane symmetry static space-time.

3.4 Conserved quantities of the plane symmetry static space-time

The set Egs.(20) —(24) of Lie symmetries for plane symmetry static space-time with a constant value of the gauge
function. This is the minimal set of Lie symmetriesfor plane symmetric static space-times. If the metric
parametersv, w, A of this system are obtain in the following form:

(2} won(2]
© v(x)=[5j2, ,U(X)=Incosh2(§j;
o (2] s3]

0 "“):'”“’52(%) u00=(%]

o s ) ()

o () ()

0 V(%0 (x)% u(x). <)=|ncosh[ Jnoos?( 2,
v ”<X>:'”°°S“2(§)"”°°SZ[§) V(%)% p(x), '(X) %0:

K v (x)=0, y(x)=a|n§;

DOI: 10.9790/1813-1404118140 www.theijes.com Page 130



Lie symmetries and classification of plane symmetric static space-times

() v(x)=2|n(§), u"(x)io,y(x);«talng
(M) v(x) = u(x),v'(x) =0, ,u"(x);tO,,u(x);talng;

(n) v"(x);to,v(x);talng, v(x)#= p(x), 1'(x)=0.

By using Lie's theorem, we can provide conserved quantities for the existence of a plane symmetrystatic
space-time and provide an accurate solution for the system.

By substituting generators (21)-(25) into (26) and (27) respectively, we obtain that the plane symmetry static
space-time possesses conserved quantities in the following forms:

X, 1, =—e"™i=const;
X,: 1, =e"®y=const;
X,: I,=e“"z=const; (28)

X .

3
Yy o 1, =e W —x* —e"™(y? + 27 ) = const.

It has been shown that in these Lie symmetries X0, X1, X2, and X3 are isometries and correspond to the
onservation of energy, linear momentum in y-direction, linear momentum in z-direction, and angular

momentum ,andY0 is the symmetry corresponding to the Lagrange equation. It is important to note that all the
isometries are independent of parameter s.

1, =e“" (29— yz) = const;

IV.  Lie symmetry classification of a plane symmetry static space-time

4.1Theplane symmetry static space-time with sixLie symmetries
From the five basic Lie symmetry groups of a plane symmetry static space-time, it can be observed that the metric
parameters . (x)and «(x) Can take any value; therefore, there may be infinitely many classes for five Lie
symmetries. It can be seen that a plane symmetry static space-time consists of an infinite number of classifications.
However, we provide some examples of metrics with six Lie symmetries of a plane symmetry static space-time in
section.
For the . (x) and . (x) OFf the plane symmetry static space-time with six Lie symmetries, we can give the following
six forms:

a. If the metric parameters v(x) = 2 u(x) :%; a=b, five symmetries X0, X1, X2, X3, and YO0 are the same as

given by Egs.(21)-(25), andwe take sixth symmetry as

o__ U v o 2 Y s Z . g X =——>—yo S22 22
M= oq M= = = e =0 T A o wey e P
The sixth conserved gquantity corresponding tothis system is written as

t e”

Iezgea—ZX—T(yy—zz'):const (30)

b. If the metric parameters v (x) = 0, (x) =2 In cosh” g a = 0; The symmetries X0, X1, X2, X3, and YO0 of
thesystem are the same as given in Egs.(21)-(25),and the sixth symmetry along with the gauge function are

0
nozo,fznlznzznszo;vlzsa_ (31)
This system possesses the sixth conserved quantity as
|, =2(t—st)=const (32)

c. If the metric parameters v(x) = 0, «(x)=21n coszg, a=0; The symmetries X0, X1, X2, X3, and YO of

thesystem are the same as given in Egs.(21)-(25) and the sixth symmetry along with the gauge function and the
sixth conserved quantity also are Eqgs.(30) and (31)
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d. If the metric parameters , (x) - 21n [1)2 () =21 [g]a w0« 2 ,and we take the sixth symmetryas
a

X 2—«a 2—a
c=sp=2 =Ly =" =0;
2 4 4 (33)
0 X0 2-a 0 2 a_ 0
Y,=S—+—-—+——y—+—F7—.
0s 20X 4 ay 4 oz

This system possesses the sixth conserved quantity
x\’ x " 2—a(x)
I, =S5 (aj 2 - x? _[Bj (y2 + 2‘2) + x>'<+—2 (B) (yy+zz)=const  (3a)e. If the metric

parameters V(X):z.n[g)a,/,(X)zz.n(ijz, w+0a+2  the metric admits minimal set of Lie symmetries and
a

following symmetry (homothety)
2— X
Y1:s§+—at£+—£. (35)
0s 4 ot 20X
The plane symmetry static space-time possesses the sixth conserved quantity

2 a a
S (XY 2 w2 (X)) (a2 42 . 2—a X)) ..
ls=S5 (Bj " —X —(g) (y +1 ) +xx+T(gj tt = const (36)

f. If the metric parameters, () - 21 [i)ﬂ a(x)=21n [g)a . 2+ a = p-2,Which it admits a scaling
a

symmetry (homothety)
0 2-B.0 x0 2 0 2-a_0
Y1:S—+— —_—t——F—Yy—+—7—, (37)
& 4 ot 2x 4 Ty 4 @

In addition to the five symmetries given in Egs.(20)-(24). This system possesses the sixth conserved
quantity

B a /] a
XY o . X\ (.o . -p X
| =s|| =] t2=-x*—-| = 2472 +xx+— 2t Z 1 =const
° (aj (bj (y ) 2 [aJ 2 [bj (39

4.2 Theplane symmetry static space-time with seven Lie symmetries
In this section, the classes for seven Lie symmetries are given. There are two classes ofthe plane symmetry static
space-time that admit seven Lie symmetries

Class 1 if V(X) = 2Incosh? X , ﬂ(X) = 2Incosh? X , the Lagrange equations of plane symmetry static
a a

space-time are driven as

g4 1 (1—cosh2§}‘<t':a0,

a cosh = a

a

.. 4 X 2 X -2 4 X 2 X .2 .2
% =—cosh=| 1—cosh? = |t =~ cosh =| 1—cosh? = (y +7 ):al, (39)

a a a a a a
37:—ﬂ L X(l—coshzﬁjxy:az,‘z':—— L X(l—coshzészzas.

a cosh = a cosh — a

a a
Equations (39) admits seven Lie symmetries, four of which are given in Egs.(21)-(25) and the Egs.(17)~(20)
which also possess two additional Lie symmetries in the following forms:
o ,0 o ,0
=y—+t—, X, =Z—+t—. (40
o oy ot oz

Conserved quantities corresponding to these symmetries are given as
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I, = 2Incosh® 5(ty— yt) = const, I = 2In cosh? 5(tz' —zt) = const. (41)
a a

Class 2 if v(x) =2Incos? X , y(x) =2Incos?® X ,the Lagrange equations of plane symmetry static
a a

space-time are driven as

. 4 X .. ., 2 . 2X., 2 . 2X[., .
f=—tan =X =, X =—=sin=t* + Zsin == (y° + 2 ) = a1,
a a a a a a
(42)
L4 X . 4. X,
y=—tan—xy=a,, Z=—tan—Xz = a,
a a a a
Equations (42) admits seven Lie symmetries, four of which are given in Egs.(21)-(25)and the Eqgs.(17)-(20) which
also possess two additional Lie symmetries in the following forms:
o ,0 o ,0
Xe=yY—+t— X, =7—+t—. (43)
o oy ot oz

Conserved quantities corresponding to these symmetries are given as

X . X :
I; = 2Incos® = (ty — yt) =const, I = 2Incos® = (tz — z) = const. (44)
a a

Class 3 if v(x) =0, y(x) =2In (%j , 2% a # 0, the Lagrange equations of plane symmetry static

space-time are driven as

" 20X\ T, . 20, . 2a.,
tzo:%’X:_T(B] (y2+22):a1,y:—7xy:a2,z:—7xz:a3.(45)

Equations (45) admits seven Lie symmetries in clouding five basic Lie symmetries which are given in
Egs.(21)-(25) and two additional Lie symmetries are given as

Y1 :Sg+£g+§g+2_—ayg+2_—azgaYz :SQ,GZ :2t'(46)
0s 20t 20x 4 "oy 4 oz s

Conserved quantities corresponding to two symmetries are given as

(XY e e (XY fu2 e e 2—a( XY
IS_{[bj 2 —x [bj (v +2 )}+xx = (bj (yy+zz)_const,(47)

I, =t—st=const.

Class 4 ifV(X) is arbitrary, and v (x)=aln g ,a=0,v"(x)=0, 1(x)=0, the Lagrange equations

of plane symmetry static space-time are driven as

dV -, . 1 v(x) dV .o .. o
——xt=q,, X==e"" —t°=¢,,y=0=0q,,7=0=q,, (48)

dX 0 2 dX 1 y 2 3
Equations (48) admits the five basic Lie symmetries which are given in Egs.(21)-(25) and two additional Lie

symmetries are given as

t=

0 0
Y1 :Sa, Gl :—Zy,Y2 :SE’GZ =-21. (49)

Conserved quantities corresponding to two additional Liesymmetries are
|, =sy-y=const, | ,=sz-z=const. (50)

4.3 Theplane symmetry static space-time with eight Lie symmetries
In this section, the classes of the eight Lie symmetries presented. There are three classes of plane symmetry static
space-time that admit eight Lie symmetries

o

Class 1 Ifthe metric parametersv(x) =2 In(%j ,,u(X) =2In (%j , the Lagrange equations of plane
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symmetry static space-time are driven as

. 2a . o 2a(xY 7, 2a(X\, L, .,
t:——xt:ao,x:F(Bj t _T(E) (y ) )=0€1,

X (51)

.. 20 .. . 20 ..
J=——Xy =0, I=—"X=q,.
X X

This system possess eight Lie symmetries which including five basic forms of Lie symmetries are given by
Egs.(21)-(25)and three additional Lie symmetries are

X5:yg+t£,xezzg+tﬁ,
oy ot oz (52)
0 2-a,0 X0 2-a 0 2-a_0
Y=S—+—-t—+——+—-VYy—+ zZ—.
0s 4 ot 20X 4 "oy 4 oz

The plane symmetries static space-time possess the threeadditional conserved quantities

o

|5=2(%j (yt—yt)=const, |6=2(§j (2t—zt) =const,

I7:SK%) f2_x2_(§J (y2+zz)}_2_7a(%j tf + xx (53)

+2;a(%) (yy +22) = const.

2
X
Class 2 Ifthe metric parametersv(x) =O,,u(x) = ZIn(—j , the Lagrange equations of plane symmetry
a

static space-time are driven as

. . 4 . , . 4 .. . 4
t=O=a0,x=—¥x(y2+22)=a1,y=—;xy=a2,2=—;xz=a3 (54)

This system possess eight Lie symmetries which including five basic forms of Lie symmetries are given by
Egs.(21)-(25)and three additional Lie symmetries are given as
0 0 to xo 0 0 0
Y,=s—,Y,=s—+——+—-—,Y, =8° — + St — +SX—. (55)
0s 20t 20x 0s ot OX
The plane symmetry static space-time possesses the threeadditional conserved quantities as

a

I5:2(EJ (yt—yt)=const, |e=2(§j (2t —zt) = const,

x\ ., . x\ /. 2—a(x\" .. .
I, = l:(gj tz_xz_(BJ (y2+22):|_7(6] tf + xx (56)

+2—a(§j (yy +22) = const.

2 \b

X a
Class 3 Ifthe metric parametersv(x) =2In (Ej ,y(x) =0, the Lagrange equations of the plane symmetry

static space-time are driven as

. 2a .. . Za(x
f=—Lxi=q, x=2[2
X b \b

This system possesses eight Lie symmetries including five basic forms, which are given by Egs.(21)-(25)and the
three additional Lie symmetries are

a-1
j t*=a,y=0=a,,7=0=a,., (57)
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v sl 270 X0 ¥O 20\ 0 G - 2yG =-22Y,=52.(8)
0s 4 ot 20X 20y 20z oy oz
The plane symmetries static space-time possesses the threeadditional conserved quantities respectively as

I5=5K%j f2_xz_(y2+22)}+xx—2_7“(%j tt'+(yy+zz')=const,’(58)

Il =y—sy=const, |, =z—sz=const.

4.4Theplane symmetry static space-time with nine Lie symmetries

In this section, the classes for nine Lie symmetries are given. There are five classes of the plane symmetry static
space-time that admit nine Lie symmetries

Class 1 Ifthe metric parametersv(x) =0,/¢(x) = 5, the Lagrange equations of plane symmetry static
a
space-time are driven as
t :O=a0,5(:—le§(y2 +2%) =, y:-lxyzaz,zz—lxz =a, (59)
a a a
This system possesses nine Lie symmetries which including five basic forms of Lie symmetries are given by
Eqgs.(21)-(25)and four additional Lie symmetries are writtenas
0 0 70 272 XYo yz o
PSS I VI (0 RS § K N
OX 2ao0y 2acz OX 4a 4a oy 2acz
) 27 XYoo yz o 0
X, =7z—-— y_——+ae a ——y——,Yl =s—,G, =2t
4 oz 2ady oy

The plane symmetries static space-time possesses the fouradditional conserved quantities respectively as
x/a

I =2X—e?(yy—zz'):const;

(60)

x/a

I :2>'<y+ez—a[y(zz—y2+4a2eX/a)—yzz‘}zconst; (61)
g¥a .
I, =2xz +E[Z(_ZZ +y? +4a2e’x/a)— yzy] = const; I, =t —st = const.
Class 2 Ifthe metric parameters v (X :g,/u(x) =0, the Lagrange equations of plane symmetry static
space-time are driven as
fz—i)'(f:ao,i(':éex/afz =a,y=0=a,,Z7=0=q,. (62)

which admits the following four symmetries, in which Xsand Xeare isometries, along with the minimal set

2
XS:E—LQ,Xﬁth— Y oaen |2
ox 2acot ox |\ 4a ot

(63)
0 0
Y,=5—,G, =-2y,Y,=5s—,G, =-21.
oy 0z
This plane symmetry static space-time possesses the fouradditional conserved quantities are

s X/a F
1, =" _2%=const; I, = 2%t +(t%e? +4a2)L = const;

a 2a (64)
|, =sy—y=const; |, =sZ—z = const.
Class 3 Ifthe metric parameters v(x) =2Incosh? X , y(x) =0, the Lagrange equations of plane
a

symmetry static space-time are driven as
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- 4 X .. L, 2 X ).
t =——tanh =Xt = ;X =—| 1+ 2cosh® = |{* =
a a a a
y=0=0a,;Z=0=aq,.
For this metric the plane symmetry static space-time possesses the four additional symmetries are given by

X .t t t t
XS:—tanh—sm—2+cos—£;X = tanh X cos — +sm—i
a adot a ox a a a ox

% (65)

(66)
Y, = S,Q,Gl =-2Y,Y, = SE,G2 =-21.
oy oz

This plane symmetry static space-time possesses the fouradditional conserved quantities are given respectively as

Xt X t .
|, =tsinh—sin—cosh —+ X cos— = const; |, = sy — y = const;
a a a a
(67)
¢ t X ..t ,
|, = —tsinh—cos—cosh—+ xsin— = const; I, = sZ—z = const.
a a a a

Class 4 Ifthe metric parameters v(x) =2Incos? X , ,u(x) =0, the Lagrange equations of plane symmetry
a
static space-time are driven as
- X .. . 2 . 2X. .. .
t=4tan=xt=q,, X=—=sin—t’=a,,y=0=0a,,Z2=0=q,. (68)
a a a

For this metric the plane symmetry static space-time possesses the four additional symmetries are given by
X . to t o t o t o
X =—tanh —sin——+cos——; X, —tanh 2 COS——+Sin——;
a aot a ox a aot a ox

0

P (69)
Y, :sa,Gl =-2Y,Y, = SE,G2 =-21.

This plane symmetry static space-time possesses the fouradditional conserved quantities are

o Xt X . t .
I, =tsin—sin—cos— + Xcos— = const; |, = sy — y = const;
a a a a
(70)
X t X ..t ,
| =—tsin—cos—cos—+ Xsin — = const; |, = sz — z = const.
a a a a

2 2
X X
Class 5 Ifthe metric parametersv(x) =2In (—j ,,u(X) =2 In(gj , the Lagrange equations of plane
a

symmetry static space-time are driven as

- 4 .. ., 4 ., 4 2 L2 . 4 . . 4 ..

t=—Xt=¢,, X=—Xt* ——X +2%)=a,,Yy=—XY=a,, 7 =——XZ = a,.(71)
. o X=X X(V 42 )=, Y =Xy =, . 5

The symmetries X0, X1, X2, X3, and YO of (71) are the same as given in Egs.(21)-(25) and the four additional
symmetries are given by

=y§+t£;xez %Haﬁ'
» ’ (72)
Y, _s 0 X9 Y, —szi+sxﬁ,GZ=—2x2.
0s 20X 0s OX

This plane symmetry static space-time possesses the fouradditional conserved quantities are written as
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2

2
I, = 2[%) (yt—yt)=const; 1 :Z(EJ (2t —zt) = const;

2 2
I, = {(Ej fZ_XZ_[gj (y2+z‘2)}+x>'(=const; (73)

2 2
|, =’ K%) £2 - x? —(gj (y°+ 22)} 25xX — 2x° = const.

4.5 Theplane symmetry static space-time with eleven Lie symmetries
In this section, the classes for eleven Lie symmetries are given.

If the metric parameters v(x) _X , ,u(x) = 5, the Lagrange equations of plane symmetry static space-time
a a

are driven by
f=—£>‘(f=a0,x'=le5t'2—leg(yz+22)=a1,y=—1>'(y=a2,2=—1)'(2=a3.(74)
a a a a a

The symmetries X0, X1, X2, X3, and YO of (74) are the same as given in Egs.(21)-(25) and the six additional
symmetries are given by

X5=—Lg+£—li—igt;xe=Zé+tﬁ;x7=yé+t£;
2aot oOx 2ao0y Z2ao0z ot oz ot oy
x oyl Mo yo (€ y 2 0
® “ox 2aédt 2adz |4a 4a 4da oy’
(75)
2 2 2 X
ngzi_z_tg_ﬂg_ t__y_+z__ae a 2’
OX 2aot 2ao0z |4a 4da 4a oz
2 2 2 X
Xlo:ti_tli_t_zi_ t_+y_+z_+ae a g
Ox 2ao0y 2ao0z (4a 4a 4a t
The sixadditional conserved quantities of the system are
x/a X
I5:2X+e—(tt'—yy—zz'):const;I6:Zea(tz‘—zf):const;
a
|, =2e (ty - yt) = const;
e, 2 2 42 22
I8:2Xy+g 2ytt—2yzz +| z° -y —t*+4a‘e? |y |=const; (76)
x/a_ ] -X
I9:2Xz+2— 27tt —2yzy +| 2° —y* —t* +4a’e @ |z |=const;
a

x/a X
l, = 2>‘<t+ez—{—Zyyt—Zzzu(z2 +y°+t° +4a’%e 2 ]t} = const;
a

4.6 Theplane symmetry static space-time with seventeen Lie symmetries

If the metric parameters V(X) =0, ,u(X) =0, theplane symmetry static space-time is a Minkowski space-time,

the Lagrange equations of the system are driven by

t=0=q,,X=0=,,y=0=0,,Z2=0=c,. (77)
The symmetries X0, X1, X2, X3, and YO of Egs. (77) are the same as those given in Eqs.(21)-(25) and the
12additional symmetries are written in the following forms:
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X5:yg+t£;x6:zg+t£;x7:x2+ti;xgzxi—yi;
ot oy ot oz ot ox oy =~ oX
0 0 0 0

Xg=X—-2Z—; X, =—:Y,=5—,G, =t;

ez oxT Yo ooaxTt Tttt
0 0 0 0 0 . 0

0
Y,=2S—+t—+X—+y—+2—Y,=—S—,G, =V.Y,=-s—,G, =z; (78)
2 os ot y 3 A oz’ *

ox oy o oy
Y, :szﬁJrstg+sx£+syi+szg,G5 =t*-x*-y*-7%
0os ot oX oz

0
Y, =—5— G, =X,
6 8X 6

where, X5, X6, X7, X8, X9, and X10 are isometries and Y2 is homothety. The twelveadditional conserved
quantities of the system are given as

I, =ty — yt =const; |, =tz — zt = const; |, = tx— xt = const;
lg = Xy — Xy = const; |, = X2 — xz = const;l,, = X = const; |, =t —st = const;

l,, = 5(t7 = X* = y* = 2% ) —tt + XX+ yy + 22 = const;

. (79)
|, =Sy +Yy=const;l,, =sz—zy =const;

l s :sz(t'z—)'(z—y2 —2‘2)+23(—tt'+x>'<+ yy +22)+t? —x* —y? — 2% = const;

I, = SX+ X = const.

V.  Conclusion

This article uses the method of analytical mechanics to study the gravitational field problem in
four-dimensional space-time, and provides several important results: firstly, by introducing four-dimensional
space-time coordinates as generalized coordinates and taking curve coordinates as independent variables, the
Lagrangian equations of the plan symmetry static space-time are established; the secondly is to introduce
transformation of the Lie groups and corresponding vector fields related to curve coordinates and
four-dimensional space-time; thirdly, based on the invariance of the Lagrangian equations of the static space-time
of plane symmetry under the transformation of the Lie group, the Lie symmetry determination equations (13) - (16)
and a series of symmetry killing equations (17)-(20) for the four-dimensional static space-time are given; fourthly
proposed and proved the Lie symmetry theorem for the plane symmetry static space-yime, and provided the
structural equation (26) for the existence of the gravitational fields and the form of conserved quantities (27).

We have classified four-dimensional plane symmetry static space-time using the Lagrange equations and

Lie symmetry theorem of the plane symmetric gravitational field, and obtained some useful conclusions; 1. There
are five basic Lie symmetries (21) - (25) and conserved quantitiesin (27) static four-dimensional space-time of the
planar symmetry;2. When the metric coefficients take six different forms, the static four-dimensional space-time
of the planar symmetry has five basic Lie symmetries and an additional symmetry and conservation quantity;3.
When there are four different forms of metric coefficient regions, the planar symmetric four-dimensional
space-time has five basic symmetries and two additional Lie symmetries and conserved quantities;4. When the
metric coefficients take three different forms, a plane symmetric gravitational field not only has five basic Lie
symmetries, but also three additional Lie symmetries and conserved quantities; 5. When the metric coefficients
take five different forms, the plane symmetric gravitational field has nine Lie symmetries and conserved quantities,
including five basic Lie symmetries and four additional Lie symmetries and conserved quantities; 6. There is only
one case where a static space-time of the plane symmetry has 11 Lie symmetries and conserved quantities,
including 6 additional Lie symmetries and conserved quantities; 7. If the metric coefficients are all set to zero, a
planar symmetric static space-time has 12 additional Lie symmetries and conserved quantities, as well as 5 basic
Lie symmetries and conserved quantities in (28).

It should be noted that there are two basic methods to solve the Lie symmetry of differential equations.
Firstly, the characteristic equation is given using the Lie symmetry of the equation, and then the first integral of the
system is obtained by integration, as shown in reference [27]. The second is to solve the generator from the Killing
equation of Lie symmetry, and use the Lie symmetry theorem provide the conserved quantity of the system's
existence. The first method can provide non Noether conservation quantities and Noether form conservation
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quantities for the existence of the system; the second method provides the Noether form conservation for the
existence of the system. This article adopts the second method to study the Lie symmetry properties of plane
symmetric static spacetime, and uses the Lie symmetry theorem to find the Noether type conserved quantity that
exists in the system. The system is classified using the Lie symmetry method and a series of results are obtained.
The conclusion presented in this article is consistent with existing findings.
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