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--------------------------------------------------------ABSTRACT---------------------------------------------------- 
Design of Experiments (DOE) is a methodology used for problem-solving in various situations that applies 

multiple notions and techniques to data collected to generate usable, and reliable engineering conclusions, 

inclusive to optimizing the yield of products and minimizing the costs of materials consumed in the process. 

Initiated by Dr. Genichi Taguchi, ‘DOE’ became heavily influenced in industrial manufacturing where it 

introduces efficient methods of studying the relationship between multiple input and output variables. The 

primary objective of the project is applying (DOE) onto wind turbines by using ‘Randomized Complete Block 

Design (RCBD)’ as a method of analyzing the experiment using numerical results. The principle of (RCBD) is to 

group specific factors into ‘Blocks’, which are influenced by a set of ‘Treatments’ to control the variability of 

the output. Implementing the experimental hypothesis allows the experimenter to conclude the significance of 

such factors in an enigma. Predicting where the yield will progress by applying ‘Multiple Linear Regression’ to 

create a model based on the results in the pre-experimentation. Such processes are undergone by ‘Microsoft 

Excel’ and ‘Python’ to generate clarity in studying systems and problems. In the case of VAWTs, factors 

including Tip Speed Ratio, Blades and Pitch angle can mainly affect the Power coefficient of the wind turbine. 

Thus, ‘Stepwise Selection’ is implemented to filter any significant factors and generate predictors to elucidate 

the inclination related to the dependent variable. Due to the significance of concluding solutions by repetition, 

(DOE) can be applied to any heavy industry where a single factor may affect the overall outcome of their 

product.  

KEYWORDS; -Design of Experiments, Random Complete Block Design, Multilinear regression, Stepwise 

Selection, Tip Speed Ratio, Blades, Degrees,VAWTs 
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I. INTRODUCTION 
Design of Experiments (DOE) has portrayed a major contribution in science and technology since the 

time Sir Ronald Aylmer Fisher introduced this concept in the 1940s. [1] 

Scientists and engineers alike made extensive use of this idea for both new product development and 

enhancements. Increasing the yield of information from each experiment that is conducted is its primary goal. 

By implementing "Design of Experiments (DOE)" in a product cycle, development time and expense can be 

significantly decreased. This enables improved process and product design, as well as increased consumer 

reliability. The experimental design philosophy was widely introduced to the chemical and process industries by 

George Edward Pelham Box and his associates in 1950. This approach made it possible to examine and track the 

systems and procedures of a specific product. Typical examples are the production of wafers in the electronics 

industry, manufacturing of engines in the car industry and synthesis of compounds in the pharmaceutical 

industry. [18] 

Over the past decades, after Dr. Genichi Taguchi’s influence, there had been a tremendous increase in 

demand and application of experimental designs techniques in the industrial environment. While applying the 

experimental designs, the ‘Total Quality Management’ had improved and ultimately increased the company’s 

revenue.  

The observation of a system or a process while it is in operation can be one of the most important parts of the 

learning process and is an integral part of understanding how the systems work. However, to understand not 

only the process and the cause-and-effects of the system when changing the input factors but also to observe the 

changes in the system output for which such inputs are produced. Specifically, performing experiments on the 

system will eventually catalyze into theories or hypotheses about what makes the system works.  

Investigators normally perform experiments in a virtual environment, usually to discover the 

particularities about the process or system to confirm whether their previous experience and theories uphold. 

Each of these experiments or runs, are formally defined as a test in which purposefulness changes are made to 
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input variables of a process or a system so that observation and identification of the reasons for changes that 

occurred in the output response. From the analysis of the changes, models relating to the response to the impute 

variables can be developed and used to either improve or derive the system by its model. 

Experimentation has demonstrated to be an important role in ‘Technological Commercialization’ and 

‘Product Realization’ activities such as new product design, formulation, manufacturing process development 

and process improvement. Its main aim in many cases is to develop a ‘Robust’ system, allowing minimal 

variability of external sources affecting the process. Not only such applications may be known but also 

applications namely marketing, service operations, general business operations can be used in a 

nonmanufacturing or non-product-developed settings. 

Explicating that Experimentations is a vital section of a ‘Scientific Engineering Method’ can be 

portrayed as a concept for scientists and engineers for the process development and improvement of yield in 

product design. However, there are circumstances for which the scientific singularities are well understood 

allowing useful mathematical models to be developed by applying these well-understood principles. 

‘Mechanical Models’ provides physical mechanism which follows the scientific principle. For instance, ‘Ohm’s 

Law’ works as a familiar equation for the current flow in an electrical circuit as shown in Equation (1.1). 
𝑉 = 𝐼𝑅                                                                        (1.1) 

Especially, in problems as such nowadays in science and engineering requires observations of the said 

system and several experimentations to clarify information on the reasons on the mechanisms. As such ‘Well-

Designed’ experiments can often lead to a model of system of performance that allows manipulation of 

variables and achieving a desired result is called ‘Empirical Model’. 

Establishing the goals of an experiment and the variables that affect a system or process are the first 

steps in the process of conducting experimental designs. A planned experiment necessitates creating a thorough 

plan for carrying out the experiment, which leads to a more efficient approach to the data gathering phase. The 

yield of information that may be collected for a given amount of experimental work is maximized when an 

appropriate experimental design is used. In general, there are three types of experimental design: the One-

Factor-at-a-Time (OFAT) approach, Factorial Experimental design, and Orthogonal array.[4] 

 

II. MAIN OBJECTIVE 

 
The main motivation of this project is to employ the main 

methodology of DOE in solving problems related to data 

collection and analysis. As there may be less data to be 

collected if the problem proves to be minuscule to impact the 

user, it will take less time to solve the problem. Although, a 

more complex analysis and an extended time is needed to 

unravel the adversity as it has more elements to consider, 

including the environmental, ethical, or physical aspects.  The 

goal is to apply DOE onto heavier projects such as product 

manufacturing and interpretation. This will allow industrial 

related processes to loosen their difficulties and produce much 

more efficient methods of production. The same can be said for 

the improvement of existing products allowing concrete 

showcase of the breakthrough made by the methods of DOE. In 

this case, the problem resides on the how efficient the Vertical 

Axis Wind Turbine is in the presence of multiple factors such as 

‘Tip Speed Ratio’, ‘Number of Blades’, and ‘Angle of Blades’ 

and create a model defining its prediction on where the pattern 

of efficiency is leading to. 

 

 

 

 

 

 

 

 

Figure 1: Darrieus-type Vertical Axis Wind 
Turbine. 
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III. LITERATURE REVIEW 

 

 

Dr. Genichi Taguchi, a Japanese engineer and statistician born on January 1, 1924, is primarily known 

for his development of a statistical method to improve the quality of manufactured goods. His initial interest in 

textile engineering, which led to a family kimono business, was disrupted by the military escalation of World 

War II. This led to his conscription into the ‘Department of Astronomy of the Navigation Institute of the 

Imperial Japanese Army’.After the war, in 1948, he joined the ‘Ministry of Public Health and Social Welfare’, 

serving under the influential politician Matosaburo Masuyama, who fostered Taguchi’s interest in experimental 

design. During this period, he studied at the ‘Institute of Mathematical Statistics’ and contributed to the 

‘Morinaga’ pharmaceutical company’s experimental work on penicillin production.In 1950, he collaborated 

with the ‘Electrical Communication Laboratory of the Nippon Telegraph and Telephone Corporation’ on his 

advancements in ‘Design of Experiment’. This was influenced by Dr. W. Edwards Demming and the Japanese 

Union of Scientists and Engineers, as statistical quality control was gaining popularity in Japan.Dr. Taguchi 

spent 12 years developing strategies to enhance the quality and reliability of the ‘Electrical Communications 

Laboratory’. This led to his consultancy role at ‘Toyota’. In 1962, he completed his Ph.D. at the ‘University of 

Kyushu’ while continuing his work at the ‘Electrical Communication Laboratory’.From 1964 to 1982, Dr. 

Taguchi served as a professor at ‘Aoyama Gakuin University’. During his professorship, he introduced the 

‘Quality Loss Function’, a concept that quantifies quality in monetary terms via a loss function, where greater 

deviation from the nominal value results in higher financial loss to the consumer. 

While he published two volumes of ‘Design of Experiments’ in the 1950s, he added a third book to the series 

later. Despite his technique being largely unrecognized in the West at the time, he had won multiple ‘Deming’ 

medals and served as the Director of the ‘Japanese Academy of Quality’.Dr. Taguchi’s technique was 

extensively adopted by American corporations such as ‘Ford Motor Company,’ ‘Boeing,’ ‘Xerox,’ and ‘ITT 

Corporation’ during his subsequent visit to the United States in 1980.[9] 

 

A. Basic Principles 

The Statistical design of experiments refers to the process of planning the experiment for which the 

appropriate data will be collected and analyzed by statistical methods, resulting in compelling and objective 

closing stages. The statistical approach to experimental design is obligatory for drawing meaningful conclusions 

from the data. When the problem involves data that are subject to experimental errors, statistical methods are the 

only objective approach to analysis. Thus, there are two aspects to any experimental problem: the design of the 

experiment and the statistical analysis of the data. 

The three basic principles of experimental design are ‘Randomization’, ‘Replication’, and ‘Blocking’, 

while using the factorial principle into them. First, ‘Randomization’ is defined as a used of statistical method in 

experimental design. Randomization occurs when both the allocation of the experimental material and the order 

of the randomized performance of the experimenter. This principle usually makes the statement of having 

statistical methods requiring independently distributed random variables to be observed on, to be valid. By 

properly randomizing the experiment, the process of averaging out the effects of numerous factors in the 

experiment can be presented accordingly. Computer software allows the assistance for experimenters in the 

selection and construction of experimental designs. Programs with similar usability enable the presentations of 

tests in the experimental design in random order, based on ‘Random Number Generator (RNG)’. It is still 

necessary to assign the named units of experimental materials, experimenter, gauges, or measurement devices 

used in an experiment. 

Figure 2: Doctor Genichi Taguchi 
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On the other hand, ‘Randomization’ can lead to some difficult situations during experimentation, where 

the controllable factors such as, ambient temperature, shouldn’t be randomized or changed less than other 

factors in a chemical process. 

‘Replication’, or repeated runs, consists of frequent tests of many combinations of factors. Utilizing 

different factors to be combined with each other and repeated multiple times achieving multiple results 

observed. ‘Replication’ has two important properties. First, the principle allows the experimenter to obtain an 

estimate of the experimental error, becoming a basic unit of measurement for determining whether the 

observations of difference in the data can be statistically different. Second, replication allows the experimenter 

to obtain a precise estimate of the parameter of the data given. Although, the difference between ‘Replication’ 

and ‘Repeated Measurements’ have similar meanings but different implications to experimentation. For 

example, etching a silicon wafer in a single wafer plasma etching process and a ‘Critical Dimension (CD)’, 

which is defined as precise measurements of dimensions to a decimal point of a drawing, on the silicon wafer is 

measured three times. The measurements are not replicates but a form of repeated measurements and can be 

observed the variability in the three repeated measurements. This is a direct reflection of the variation in the 

measurement system or gauge and possibly change in the variability in the ‘Critical Dimensions’ at different 

areas on the wafer where the measurements were taken.  

Another instant provides that when four semiconductor wafers being manufactured simultaneously in 

an oxidation furnace at a particular gas flow rate and time and measurements were taken on the thickness of the 

oxide of each wafer. The measurements taken were not replicates but repeated measurements, which meant that 

repeated measurements reflect the differences among the wafers and other sources of variability within the 

furnace testing. However, replication reflects on the sources of variability both between tests and within each 

test. 

‘Blocking’ is a design technique used in improving the precision with comparisons among the factors 

of interest are made. Blocking often is used to reduce (or eliminate) the variability being transmitted from 

‘Nuisance Factors’, for which factors that may influence the experimental response but not related to the 

experiment. For instance, in an experiment for mixing two batches of raw materials in a chemical mixing 

process is ran multiple times. Due to the differences in batches of raw materials which had supplier-to-supplier 

variability was ignored and remained uninterested leaving this batches of raw material as a ‘Nuisance Factor’.  

Each of the batches of raw material are considered as a block, because the variability within the batch 

was expected to be smaller than the variability between each batch.[9] 

 

 

B. Random Complete Block Design (RCBD) 

 

 

 

The ‘Random Complete Block Design (RCBD)’ generally is a statistical technique that is widely used 

in various fields of research, such as agriculture, medicine, and social sciences. The RCBD is a type of 

experimental design that aims to reduce the effect of extraneous variables that may affect the outcome of the 

study. These variables are also known as confounding factors or nuisance factors, and they can introduce 

unwanted variability and bias in the results. 

Figure 3: Illustration of the use of RCBD. 
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The RCBD works by dividing the experimental units (the subjects or objects that receive the 

treatments) into homogeneous groups, called ‘Blocks’. The blocks are formed based on factors that is known or 

suspected to influence the outcome of the study, such as age, gender, location, time, etc. The idea is to create 

blocks that are as similar as possible within each block, but as different as possible between blocks. This way, 

the variability within each block is minimized, while the variability between blocks is maximized as shown in 

Figure 2.[19] 

Within each block, all the treatments are randomly assigned to the experimental units. This means that 

each treatment is tested within each block, and each block contains a complete set of treatments. The 

randomization ensures that the treatments are distributed evenly across the blocks, and that any bias caused by 

the blocking factor is balanced out. The randomization also helps to prevent any systematic errors or 

confounding effects from other factors. 

 

The RCBD has several advantages over other experimental designs. Some of these advantages are: 

• Increased precision: By controlling for the effect of the blocking factor, the RCBD reduces the 

variability in the experimental error, which increases the precision of the experiment. This means that the RCBD 

can detect smaller differences between treatments with a higher level of confidence. 

• Reduced bias: By ensuring that each treatment is tested across different blocks, the RCBD 

reduces the bias caused by the blocking factor. This means that the RCBD can provide more accurate estimates 

of the treatment effects and their standard errors. 

• Efficient use of resources: By reducing the variability in the experimental error, the RCBD 

allows for more efficient use of resources. This means that the RCBD can achieve the same level of precision 

with fewer experimental units or fewer replications than other designs [10]. 

 

The RCBD is commonly used in various industries for different purposes. For example: 

• In agriculture, the RCBD is often used to test different crop varieties, fertilizers, pesticides, 

irrigation methods, etc. The blocks are usually based on soil type, fertility level, slope, aspect, etc. The RCBD 

helps to account for the spatial variability and environmental heterogeneity in agricultural fields. 

In conclusion, the randomized complete block design is a useful statistical technique that can help 

researchers reduce the effect of extraneous variables in their studies. It has several benefits over other 

experimental designs in terms of precision, bias reduction, and resource efficiency. It is widely used in various 

industries for different purposes and applications. However, it also has some limitations and challenges that 

need to be considered before using it [10]. 

C.  MULTIPLE LINEAR REGRESSION 
Multilinear Regression commonly is a statistical technique that uses two or more independent variables to 

predict the outcome of a dependent variable. The independent variables are also known as explanatory variables, 

predictor variables, or regressors, while the dependent variable is also known as the response variable or the 

regressed. The multilinear regression model assumes that there is a linear relationship between the dependent 

variable and each of the independent variables, and that the effects of the independent variables are additive.[23] 

The ‘Multilinear Regression Model’ can be defined as an Equation (1.2) or an empirical model relating to the 

independent variable, represented as the coefficient. 

𝑦 =  𝛽0 +  𝛽1𝑥1 + 𝛽2𝑥2 +  𝜖                                                               (1.2) 

Figure 4: Multiple Linear Regression model example.  
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Where y is the dependent variable, representing the output of the experiment, 𝑥1𝑎𝑛𝑑 𝑥2 shows the named 

independent variables. The parameters, 𝛽0, 𝛽1, 𝛽2 are called the ‘Regression Coefficients’. 

The ‘Multilinear Regression Model’ can be used to analyze the relationship between one dependent and multiple 

independent variables. The dependent variable is the main outcome or the response variables for which it is 

predicted or explained, while the independent variables are main factors that influences the dependent variable, 

affecting it positively or negatively.  

Several features of the ‘Multilinear Regression Model’ can be made useful in various purposes and applications 

in different industries. Some of such features are: 

 Being able to handle more independent variables simultaneously and estimate their relative importance 

and contribution to the dependent variable. 

 Provides a quantitative measure of how befitting the model fits the data and how much variation in the 

dependent variable that can be explained by the independent variables [23]. 

The drawbacks of using the ‘Multilinear Regression Model’ need to be considered when applying to certain 

scenarios, giving some limitations and challenges. Some of which are: 

 When independent variables, that are usually unrelated to each other, shows a highly correlation with 

each other and cause instability and redundancy in the model. This is called, ‘Multicollinearity’. 

 Referring from ‘RCBD’, the ‘Multilinear Regression model’ requires a large amount of data to ensure 

sufficient power and accuracy of the resultant model. 

The multilinear regression model can be used for various purposes and applications in different industries. For 

example, it can be used to analyze how different factors affect the sales, revenue, profit, demand, supply, or cost 

of a product or service; how different physical or chemical properties affect the performance, efficiency, 

reliability, or safety of a system or process; how different biological or environmental factors influence the 

health status, disease risk, or treatment outcome of a patient or population; and so on. 

Singapore is a leading manufacturing hub in Asia and globally. It has a strong and diverse manufacturing base, 

with leadership positions in sectors such as electronics, biomedical sciences, precision engineering, and 

chemicals. Singapore has embraced Industry 4.0, which is a term for the fourth industrial revolution that 

involves digitalization, automation, artificial intelligence, and internet of things. Singapore has established a 

strong base of leading technology and solutions providers that support Industry 4.0 adoption among 

manufacturers. Singapore has also embarked on a series of initiatives to ensure its manufacturing sector is 

prepared for the future.[17] 

One of these initiatives is to promote multilinear regression as a tool for advanced manufacturing. Multilinear 

regression can help manufacturers to achieve various objectives such as: 

 Improving product quality: Multilinear regression can help manufacturers to identify and control the 

critical factors that affect product quality, such as material properties, machine parameters, process 

conditions, and human factors. Multilinear regression can also help manufacturers to monitor product 

quality in real time using sensors and feedback systems. 

 Reducing production cost: Multilinear regression can help manufacturers to optimize their production 

processes by finding the optimal combination of inputs that minimize cost while meeting quality 

standards. Multilinear regression can also help manufacturers to reduce waste and energy consumption 

by identifying inefficiencies and anomalies in their production systems. 

 Increasing production efficiency: Multilinear regression can help manufacturers to increase their 

production output by maximizing their utilization of resources such as machines, materials, labour, and 

time. Multilinear regression can also help manufacturers to improve their production flexibility by 

adapting to changing customer demands and market conditions. 
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 Enhancing production innovation: Multilinear regression can help manufacturers to explore new 

possibilities for product design, development, and improvement by testing different scenarios and 

hypotheses using data analysis. Multilinear regression can also help manufacturers to discover new 

insights and patterns from their production data that can lead to breakthrough innovations.[2] 

To illustrate how multilinear regression is used in Singapore manufacturing and industrial systems, here are 

some examples from different sectors: 

 Electronics: In electronics manufacturing, multilinear regression can be used to optimize chip design 

and fabrication by analysing how various factors such as temperature, voltage, current, pressure, speed, 

etc., affect chip performance and reliability. 

 Biomedical sciences: In biomedical sciences manufacturing, multilinear regression can be used to 

improve drug development and production by analysing how various factors such as chemical 

composition, dosage, formulation, delivery method, etc., affect drug efficacy and safety. 

 Precision engineering: In precision engineering manufacturing, multilinear regression can be used to 

enhance machine performance and maintenance by analyzing how various factors such as vibration, 

noise, wear, tear, etc., affect machine functionality and durability. 

 Chemicals: In chemicals manufacturing, multilinear regression can be used to optimize chemical 

processes and products by analyzing how various factors such as temperature, pressure, flow rate, 

concentration, etc., affect chemical reactions and properties. 

D.  Stepwise Selection Process 

‘Stepwise Selection’ is a system of fitting a regression model which involves selecting the best subset of 

predictor variables from a larger set of potential variables. Regression models themselves are used to describe 

and predict the relationship between response variables and one or more predictor variables, based on the 

observed data. However, having variables that are more than fingers can count, ‘Stepwise Selection’ can help 

reduce the complexity and improve the accuracy of the regression models by eliminating the irrelevant or 

redundant variables [24-31]. 

‘Stepwise Selection’ can be applied to various types of regression models, such as linear regression and 

polynomial regression. Each type of regression model has different applications and assumptions, depending on 

the nature of the response variable and the predictor variables. ‘Stepwise Selection’ has many real-world 

applications which can be practiced in different fields and domains, namely business, medicine, agriculture, 

psychology, economics, and manufacturing. Examples of each domain for which ‘Stepwise Selection’ is 

adapted. 

 Businesses can use ‘Stepwise Selection’ to build linear regression models that measure how advertising 

spending affects revenue. They can also use it to optimize their budget allocation and maximize their 

profits. 

 Agricultural researchers employ stepwise selection to create polynomial regression models. These 

models help quantify the impact of fertilizer and water on crop yields and assist in determining the 

optimal resource allocation for crop growth. 

 Psychologists employ stepwise selection to construct ridge regression models. These models analyze 

the impact of various personality traits on happiness and mitigate the influence of multicollinearity, 

thereby enhancing the accuracy of their estimates. 

 Economists utilize stepwise selection to construct time series regression models [32-41]. These models 

analyze the dynamics of economic indicators over time, enabling them to forecast future trends and 

identify potential disruptions.[24] 

 Manufacturers can improve their suppliers’ performance and predict whether to determine the strategic 

developments based on the model analysis, allowing them to benchmark operation efficiencies and 

importance in components.[24] 
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‘Stepwise Selection’ proves to be a useful technique for building regression models to become simple, accurate 

and interpretable. However, it also has some limitations and challenges. The computational cost can be high, 

especially when there are many possible variables to consider. The variable selection process can depend on the 

sequence, the criterion, and the significance level of the variables. The model can fit the training data too well 

and fail to generalize to the new data, which is called overfitting. The model can disregard the theoretical or 

domain knowledge that may inform the model selection process. The model can produce estimates and 

confidence intervals that are not accurate and do not reflect the uncertainty of the model selection.[24] 

 

E. Vertical Axis Wind Turbine Background Information 

1.  INTRODUCTION 

The ‘Wind’ energy has been a promising source of power generation in recent years due to its potential to be a 

‘Carbon’ free power generation. Most of the wind energy technology is based around on HAWTs (Horizontal 

Axis Wind Turbines), which are the most recognizable utilization of power generation. The HAWTs are 

described as a typical wind turbine spinning around the horizontal axis, parallel to the wind direction. Large 

scale projects such as windfarms on flatlands, offshore and mountain terrains.[13] 

However, VAWTs, which are wind turbines that have blades rotating around a vertical axis, perpendicular to the 

wind direction, also have its advantages. For example, VAWTs can capture wind from any direction, have a 

lower center of gravity, and are easier to install and maintain. They can also be placed near the ground, where 

the generator is located, which reduces the need for a tall tower and makes maintenance easier. VAWTs are 

more suitable for urban areas, where they can reduce the transmission losses by being closer to the demand 

center, as shown in Figure 3. In addition, VAWTs can also be used in remote areas, streetlights, and households, 

because they have an independent power generation system. As well as providing power for portable devices, 

emergency signs in disaster events. Therefore, there is a growing interest in deploying VAWTs in urban areas. 

However, compared to HAWTs, very few VAWTs are commercially available.[13] 

Figure 3 shows the force on the blade in the flap direction for a straight-bladed VAWT. The figure indicates that 

the rotation not only causes a centrifugal force, but also a bending force from the pivot point. The design of a 

VAWT mainly consists of the bending strength of the blade. Moreover, the flow field characteristics of a 

VAWT are different from those of a HAWT. As for a HAWT, the wind flows uniformly into the rotor surface 

and the torque is constant. But for a VAWT, the wind velocity that flows into the rotor surface is disturbed by 

the downstream region. This results in a large fluctuation of torque and fatigue loads on the support structure. 

 

Figure 5: Vertical Axis Wind Turbine.  
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1.1.  FACTORS NEEDED TO CONSIDER 
‘Tip Speed Ratio (TSR)’ is generally defined as the ratio of tangential speed of the tip of the blade to the actual 

velocity of the wind applied. TSR is an important parameter which affects the performance and the efficiency of 

a typical wind turbine. Its optimistic setup depends on the design of the blade and the wind conditions. 

Generally, in a relationship to the wind turbine in this case, the VAWTs allows itself to operate in low and 

turbulent wind, while being an easier assembly in installation and maintenance. While having lower visual and 

acoustic impact, VAWTs also have some disadvantages such as having a lower power coefficient, being 

subjected to cyclic stresses, and having complex aerodynamics.[15] The TSR’s relationship with the VAWTs is 

dependent on the shape and the number of the blades installed on the wind turbine.[8] Compared to HAWTs, the 

VAWTs usually have a lower TSR value as they have higher drag and lower lift coefficients.[12] 

The ‘Blades’ are the one of the main components of the wind turbine which rotates in the wind and captures the 

kinetic energy of the wind. Being shaped like aerofoils, which creates lift and drag forces when the wind flows 

over them. The blades’ effect on the wind turbine can influence its performance and efficiency in several 

ways.[7] 

The ‘Degree’ or the ‘Pitch Angle’ of the blades is the angle between the blade chord and the plane of rotation. 

The ‘Degree’ affects the aerodynamic performance and the output of the wind turbine, which determines the 

angle of attack of the wind applied on the blade and the blade chord. The angle of attack affects the torque and 

rotational speed of the turbine by influencing the lift and drag forces acting on the blade. The ideal pitch angle is 

determined by the blade design, wind speed, and tip speed ratio. The ratio of the blade tip speed to the wind 

speed is known as the tip speed ratio. The form, quantity, length, and profile of the blades are all part of the 

blade design.Various studies investigated that the ‘Degree’s effect on the VAWT affects the aerodynamics 

performance overall [11]. The changes in the ‘Pitch Angle’ with a constant number of blades on a VAWT 

changes with a 60° and 120°, found that a 60° ‘Pitch Angle’ shows the highest ‘Power Coefficient’ [5]. 

The ‘Power Coefficient’ is the ratio of the power extracted by the wind turbine to the total power generated by 

the wind. It reflects the efficiency and performance of the wind turbine. Several factors influence the power 

coefficient, such as the wind speed, the tip speed ratio, the pitch angle, and the blade design. The ‘Power 

Coefficient’ was optimized using the numerical and experimental methods in a study made by ‘Gokhale and 

Dhatrak’. Using the open source CFD solver, they simulated a 2D VAWT with different pitch angles. It was 

observed that the ‘Power Coefficient’ was at its optimal level of 0.18 where with the pitch angle at 0.35 rads. 

(Lee, 2020) The ‘Power Coefficient’ is an important factor for it indicates how well the wind turbine converts 

the wind energy into mechanical energy. It also influences how much energy other wind turbines can generate in 

a wind farm.[14] 

IV. THE APPROACH 
The ‘Statistics’ is a quantitative variable that is derived from a set of data, which is collected and analyzed. This 

also contains both measure of ‘Location’ and ‘Spread’. The ‘Measures of Location’ is defined as quantitative 

values about the center or concentration of data of ‘Mean’, ‘Medium’ and ‘Mode’. 

 

The ‘Mean’ can be emphasized as that the average observations (or data) are drawn from the 

‘Population of all possible measurements. 
The ‘Medium’ is a location of the middle value of a data set. This depends on whether the number of 

data points is odd or even number. Rearranging the data set in an ascending or descending order, the data points 

can be easily observable to find the medium. 
The ‘Mode’ is a type of measurement describing the most common or frequent value in the data set 

collected. The ‘Mode’ can be used in both numerical and categorical data sets. In detecting the mode of the data 

set, the specific data set is counted and identified as the highest frequent value.  

 

The ‘Measure of Spread’ is defined as the variability on the data as it spreads on the model. This shows the 

importance of technicality on the modelling of the data and presents the trend, showing the difference between 

them. 
The ‘Range’ is the difference between the largest and smallest value in the data set.The ‘Mean 

Absolute Deviation (MAD)’ is the average absolute deviation from the sample mean.The ’Standard Deviation’ 

is the method of measuring the typical distance that values are from the mean.Equation (4.1) shows the formula 

for ‘Standard Deviation’. 
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𝜎 =  √
∑(𝑥𝑖 − 𝜇)2

𝑁 − 1
                                                                         (4.1) 

Where 𝜇 is the population mean, 𝑥𝑖is the ith element from the population and the N presents the population size. 

At the essential level, the ’Standard Deviation’ shows how dispersed the data values are in a dataset along with 

their corresponding standard deviations. 

The ‘Variance’ is straightforwardly the squared of the ’Standard Deviation’ giving the Equation (4.2). It is a 

statistical concept that measures how much a set of numbers differs from the mean value. It is also a method of 

quantifying the dispersion of the data.  

𝜎2 =  
∑(𝑥𝑖 − 𝜇)2

𝑁 − 1
                                                                          (4.2) 

 

A.  Random Complete Block Design 

 

The Random Complete Block Design is generally used to reduce the effect of having irrelevant variables in an 

experiment. Dividing the experimental units into blocks and applying each treatment is assigned to them in a 

random order within each block. Based on one factor, the blocks are created which affect the outcome of the 

study, and the main aim of using the RCBD application is to ensure each treatment is tested within each block. 

 

In ‘Random Complete Block Design’, first identify the research problem and experiment’s objective. 

Then,define the dependent (response output) and independent (predictors) factors. Next, determine the treatment 

levels and number, which are single independent factors for end response comparison and decide the number 

and size of blocks, which are similar experimental units’ groups. Assign randomized treatments to each block’s 

experimental units using Microsoft Excel. This ensures each treatment is tested within each block, balancing out 

any ‘Blocking Factor’ bias. Finally, record and analyze the experiment data using ‘Two-way Analysis of 

Variance (ANOVA)’ to test for significant differences among treatments, blocks, and between treatment and 

blocks. 

Sum of Squares: Treatments and Blocks 

∑ 𝑦𝑖𝑗 =  𝑦𝑖.        𝑖 = 1,2,3, … … , 𝑎

𝑎

𝑗=1

 

∑ 𝑦𝑖 =  𝑦.𝑗           𝑗 = 1,2,3, … … , 𝑏

𝑏

𝑖=1

 

∑ ∑ 𝑦𝑖𝑗 = 𝑦..

𝑏

𝑗=1

𝑎

𝑖=1

                                                                               (4.3) 

Similarly, the 𝑦𝑖̅. averageof the observations taken under treatment 𝑖, 𝑦.𝑗̅̅ ̅, is the average of the observation in 

block 𝑗. 𝑦..̅, is the grand average of all the observations. That is, 

𝑦𝑖̅. =
𝑦𝑖.

𝑏
𝑦.𝑗̅̅ ̅ =

𝑦.𝑗

𝑎
𝑦..̅ =

𝑦..

𝑁
                                                 (4.4) 

Expressing the total corrected sum of squares as: 

∑ ∑(𝑦𝑖𝑗 − 𝑦..̅)
2

𝑏

𝑗=1

= ∑ ∑ [(𝑦𝑖. − 𝑦..̅) + (𝑦.𝑗 − 𝑦..̅) + (𝑦̅𝑖𝑗 − 𝑦̅𝑖. − 𝑦̅.𝑗 + 𝑦̅..)
2

]

𝑏

𝑗=1

𝑎

𝑖=1

𝑎

𝑖=1

  (2.17) 

This represents the partition of the total sum of squares. This is a fundamental ANOVA equation for the RCBD. 

Showing the sums of squares in Equation (4.5) symbolically, having 

𝑆𝑆𝑇𝑜𝑡𝑎𝑙 = 𝑆𝑆𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 + 𝑆𝑆𝐵𝑙𝑜𝑐𝑘𝑠 + 𝑆𝑆𝐸𝑟𝑟𝑜𝑟                                      (4.5) 
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Since there are N number of observations, 𝑆𝑆𝑇 has 𝑁 − 1 degrees of freedom. There are 𝑎 treatments and 𝑏 

blocks, so the 𝑆𝑆𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠  and 𝑆𝑆𝐵𝑙𝑜𝑐𝑘𝑠 have 𝑎 − 1 and 𝑏 − 1 digress of freedom, respectively. The ‘Error’ 

sum of squares is a sum of squares between the cells excluding the sum of squares for treatments and blocks, 

giving (𝑎 − 1)(𝑏 − 1 ). 

The ‘Mean Square’ is given by the division of the sum of squares of the ‘Treatments’, ‘Blocks’ and ‘Errors’ by 

their degrees of freedom, as shown in Equation (4.6) 

𝑀𝑆𝑆 =
[𝑆𝑆𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 , 𝑆𝑆𝐵𝑙𝑜𝑐𝑘𝑠 , 𝑆𝑆𝐸𝑟𝑟𝑜𝑟]

(𝑁 − 1)
                                                   (4.6) 

Using the Analysis of Variance for a Randomized Complete Block Design, 

The Sum of Squares for Treatments formula shows, 

𝑆𝑆𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 =
1

𝑏
∑ 𝑦𝑖.

2 −
𝑦..

2

𝑁

𝑎

𝑖=1

                                                              (4.7) 

The Sum of Squares for ‘Blocks’ formula shows. 

𝑆𝑆𝐵𝑙𝑜𝑐𝑘𝑠 =
1

𝑎
∑ 𝑦.𝑗

2 −
𝑦..

2

𝑁

𝑏

𝑗−1

                                                                  (4.8) 

The Sum of Square for Total formula gives, 

𝑆𝑆𝑇𝑜𝑡𝑎𝑙 = ∑ ∑ 𝑦𝑖𝑗
2 −

𝑦..
2

𝑁
                                                             (4.9)

𝑏

𝑗−1

𝑎

𝑖=1

 

The Sum of Square for Error can be presented as 

𝑆𝑆𝐸𝑟𝑟𝑜𝑟 = 𝑆𝑆𝑇𝑜𝑡𝑎𝑙 − 𝑆𝑆𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 − 𝑆𝑆𝐵𝑙𝑜𝑐𝑘                                           (4.10) 

The Mean Square for Treatments, Blocks, and Error gives 

𝑆𝑆𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

𝑎 − 1
                                                                         (4.11) 

 
𝑆𝑆𝐵𝑙𝑜𝑐𝑘

𝑏 − 1
                                                                             (4.12) 

 
𝑆𝑆𝐸𝑟𝑟𝑜𝑟

(𝑎 − 1)(𝑏 − 1)
                                                                    (4.13) 

The F value for Treatment gives, 

(
𝑆𝑆𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

𝑎−1
)

(
𝑆𝑆𝐸𝑟𝑟𝑜𝑟

(𝑎−1)(𝑏−1)
)

                                                                            (4.14) 

The same can be applied to the F value for Blocks gives,  

(
𝑆𝑆𝐵𝑙𝑜𝑐𝑘

𝑏−1
)

(
𝑆𝑆𝐸𝑟𝑟𝑜𝑟

(𝑎−1)(𝑏−1)
)

                                                                           (4.15) 

The F-critical value comes from utilizing the F distribution table or using the in-built function from Microsoft 

Excel, which corresponds to a given level of significance and degrees of freedom for both ‘Treatments’ and 

errors variation. This is further used to test for null hypothesis, whether there is no difference among the ‘Mean’ 
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values of ‘Treatments’. The F-critical value depends on the chosen level of significance (usually 0.05 or 0.15), 

the number of ‘Treatments’ and ‘Blocks’.  

The ‘Coefficient of Determination’ or the ‘𝑅2’ is a measure of the conditions of the good fit of the model. In 

terms of regression analysis, it is a statistical measure of how well the regression line approximates the actual 

data. This is important to predict the future outcomes or testing the hypotheses. The Equation (4.16) shows the 

formula of 𝑅2. 

𝑅2 = 1 −
𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 𝐸𝑟𝑟𝑜𝑟 (𝑆𝑆𝐸𝑟𝑟𝑜𝑟)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒 (𝑆𝑆𝑇𝑜𝑡𝑎𝑙)
                                                 (4.16) 

The ‘Adjusted R-Squared’ or ‘𝑅2adj’ is the corrected model accuracy of measure for linear models that 

accounts for predictors that are not significant in a regression model. Deriving from 𝑅2, the adjusted 

𝑅2increases the effects of the numbers that were overestimated which can lead to having values lower than 𝑅2 if 

the effect doesn’t improve the model. Normally, adjusted 𝑅2 is always less than or equal to 𝑅2, lying between 

values of 1 to zero with the model having a perfect prediction or no prediction at all respectively. The Equation 

(4.17) shows the formula to calculating the adjusted 𝑅2. 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 −
(1 − 𝑅2) ∙ (𝑁 − 1)

(𝑁 − 𝑃 − 1)
                                              (4.17) 

Where N is the amount of data in a predictor’s column, P is the number of coefficients for which the regression 

model contains. 

The P value is the probability value for which the obtained results of the observed F-value, assuming the null 

hypothesis, saying that there is no difference among the ‘Treatments’ is true. The P value is calculated based on 

the F-value along with the degrees of freedom for ‘Treatments’ and errors. The smaller the P value, the stronger 

the statement where the alternative hypothesis is true. In order to find the P value, a ‘T’ test statistics is required. 

The test statistics ‘T’ generally is a number where the number of standard deviations is determined on a 

probability distribution which utilizes a table shown in the formula of the ‘T’ test statistic can be found in 

Equation (4.18). 

𝑇 =  
𝑥̂ − 𝑥0

𝜎

√𝑁

                                                                                  (4.18) 

The 𝑥̂ is the sample mean and 𝑥0 is the sample value that is estimated by the experimenter, the 𝜎 is the standard 

deviation and the N is the number of samples. 

 

B. Multilinear Regression model 

 
When two or more variables are either inversely or directly related, modelling, and exploring the relationship of 

the said variables, where they can be described. For example, a chemist desired to increase the chemical yield of 

the product, relating to the operation temperature. The chemist may build a model relating yield to temperature 

and apply the models for prediction, process optimization or process control. It is more of a statistical technique 

where two or more independent variables are used to predict the outcome or the product of a dependent variable. 

The single dependent variable or the response variable solely depends on the independent variable or the 

regressor variable which can be variables x1, x2, x3, …, xk. Such relationships can be described by a mathematical 

model called the ‘Regression Model’. ‘Regression Model’ is used to fit a set of sample data. Using the model as 

a functional relationship between the response and input variables, the experimenter can select an appropriate 

function to approximate the regressor since in most cases, the true functional relationship is unknown. 

 

Multilinear regression models create a more detailed analysis with multiple independent variables and their 

interactions. A standard model can be shown in Equation (4.19).  

𝑦 =  𝑥0 +  𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 + 𝜖                                            (4.19) 
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The Equation (4.19) is a multilinear regression model with k as regressor variables. This model describes the 

plane in the k-dimensional space of the regressor variables (x1). Models that are more complex in appearance 

compared to Equation (4.20) can sometimes be analyzed by multiple linear regression techniques. The addition 

of an interaction of the term to the first order in two variables, which leads to the Equation (4.20). 

𝑦 =  𝑥0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝜖                                                  (4.20) 

The Equation (4.20) can be rewritten as Equation (4.21). 

𝑦 =  𝑥0 +  𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝜖                                             (4.21) 

Equations (4.20) and (4.21) are a fixed multilinear regression model with three regressors. 𝛽3 is the regressor 

coefficient of 𝛽1 and 𝛽2. The same can be said for the 𝑥3. Although with the interactions of the regressor 

variables can direct to the second order ‘Response Surface Model’ with two variables, presenting the Equation 

(4.22). 

𝑦 =  𝑥0 +  𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽11𝑥1
2 + 𝛽22𝑥2

2 + 𝛽12𝑥1𝑥2 + 𝜖                      (4.22) 

And letting the regressor coefficients and variables to be replaced into Equation (4.23). 

𝑦 =  𝑥0 +  𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥5 + 𝜖                                (4.23) 

The method of the least squares is generally the estimation of the regression coefficients in a multiple linear 

regression model. Suppose there are N observations on the response variable are available, for instance, y1, y2, 

…., yi. Along with each observed yi, there is an observation on each regressor variable and let xij to denote as the 

ith observation or level of variable xj. The error term is assumed to be 𝜖 in the model. The model can be written 

in the Equation (4.24). 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑁𝑥𝑖𝑁 + 𝜖                                      (4.24) 

The method of least squares chooses the 𝛽’s in the Equation (4.24) so that the sum of squares of the errors, 𝜖𝑖, is 

the minimised. 

 

 

Figure 6: Matrix of the example  

In a matrix notation, the development of the normal equation that parallels the development of Equation (4.25), 

which can be rewritten as 

𝑦 = 𝑋𝛽 + 𝜖                                                                    (4.25) 

Where it is expanded as,  

 

Figure 7: Expanded Matrix  
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In general, y is the single column vector of the observations, X is the stated matrix with (N × K) matrix of levels 

of the independent variables. 𝜷 is also a single column vector of the regression coefficients, and 𝝐 is a single 

column vector of random errors. 

Finding the vector of the ‘Least Squares Estimators’, 𝛽̂, that minimizes 

𝐿 =  ∑ 𝜖𝑖
2

𝑛

𝑖=1

=  𝜖′𝜖 = (𝑦 − 𝑋𝛽)′(𝑦 − 𝑋𝛽)                                    (4.26) 

Which can be expressed as  

𝐿 =  𝑦′𝑦 − 𝛽′𝑋′𝑦 − 𝑦′𝑋𝛽 + 𝛽′𝑋′𝑋𝛽                                                     

 

    =  𝑦′𝑦 − 2𝛽′𝑦 + 𝛽′𝑋′𝑦 + 𝛽′𝑋′𝑋𝛽                                         (4.27) 

Due to 𝛽′𝑋′𝑦 is a (1 × 1) matrix, and its ‘Transpose’ where (𝛽′𝑋′𝑦)′ =  𝑦′𝑋𝛽 is the same scaler matrix which 

simplifies to 

𝑋′𝑋𝛽̂ = 𝑋′𝑦                                                                       (4.28) 

Equation (4.28) shows the matrix form of the least square normal equations. Solving the equations, in Equation 

(4.28), requires multiplying both sides by the inverse of 𝑋′𝑋, giving the least squares estimator of 𝛽 in Equation 

(4.29) 

𝛽̂ = (𝑋′𝑋)−1𝑋′𝑦                                                              (4.29) 

This can be alternatively rewritten as the predicted responses as: 

𝑦̂ = 𝛽̂𝑋                                                                                            

𝑦̂ = 𝑋(𝑋′𝑋)−1𝑋′𝑦                                                              (4.30) 

Utilizing the predicted values gained using the model Equation (4.30) the model must undergo ‘Model 

Adequacy Checking’, which is an important part of the data analysis procedure. The ‘Residual Plots’ is used to 

determine to examine the fitted model to ensure an adequate approximation and verify that the least squares 

regression assumptions are not violated. This safeguards that the regression model doesn’t give poor or 

misleading results. 

The predicted responses can be obtained by multiplying the single column of matrix y in Equation (4.30), 

gaining the observed responses of the matrix H in Equation (4.31), where H is equivalent to (𝑋′𝑋)−1𝑋′. 

𝑦̂ = 𝛽̂𝑋                                                                                                             

𝑦̂ = 𝑋(𝑋′𝑋)−1𝑋′𝑦                                                                                          

𝑦̂ = 𝐻𝑦                                                                                                 (4.31) 

The H matrix is called the ‘Hat’ matrix due to mapping the vectors of the observed values into a vector of fitted 

value. The residuals (𝑒𝑖) from the fitted model can be fittingly written in a matrix notion and the covariance 

matrix of the residuals is shown in Equation (4.32): 

𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖 

𝐶𝑜𝑣(𝑒𝑖) = 𝜎2(𝐼 − 𝐻)                                                                             (4.32) 

The matrix (𝐼 − 𝐻) isn’t normally a diagonal, which the residuals have different variances and correlated. Thus, 

the variance of the ithresidual gives. 

𝑉(𝑒𝑖) = 𝜎2(1 − ℎ𝑖𝑖)                                                                             (4.32) 
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The ℎ𝑖𝑖  or the ‘Leverage’ is the diagonal elements of the H matrix with values between 0 ≤ ℎ𝑖𝑖 ≤ 1. The main 

properties of the ‘Leverage’ is that it is a measure of the location of the ith in the X space, where the variance of 

𝑒𝑖 depends on where the values of 𝑥𝑖 are located and the sum of all the ℎ𝑖𝑖  equals to the number of the 

parameters or p. Taking the inequality of variance into account when scaling the residuals, plotting the 

‘Studentized Residuals’ is recommended, using the Equation (4.33).  

𝑟𝑖 =
𝑒𝑖

√𝑀𝑆𝑆𝑒𝑟𝑟𝑜𝑟 ∙ (1 − ℎ𝑖𝑖)
                                                         (4.33) 

The ‘Studentized Residuals’ have constant variance of 1 regardless of the place of the 𝑥𝑖 in the matrix. In large 

data sets, the variance stabilises, which in the case of the ‘Standardised Residuals’ have the least influence on 

the least squares fit.  

The ‘PRESS Residuals’ or the prediction error of sum of squares delivers a helpful residual scaling as it finds 

the error for the ith for each observation and produces an estimate data set. The formula can be seen as: 

𝑃𝑅𝐸𝑆𝑆 =  ∑ (
𝑒𝑖

1 − ℎ𝑖𝑖

)

𝑛

𝑖=1

2

                                                           (4.34)  

Data points for which ℎ𝑖𝑖  are large will have large PRESS residuals, having high influence on the observations. 

The difference between the ordinary residuals and the PRESS residuals is obviously indicated between the 

model that fits the data properly and model that predicts poorly. 

Finally, the PRESS can be used to compute an approximate Residual, 𝑅𝑒2 for prediction giving: 

 

𝑅𝑒2 = 1 −
𝑃𝑅𝐸𝑆𝑆

𝑆𝑆𝑇

                                                                       (4.35) 

The ‘Studentized Residual’ isthe outlier diagnostic which is referred to as internal scaling of the residual 

because 𝑀𝑆𝑆𝑒𝑟𝑟𝑜𝑟  is generated of the estimate of variance obtained from fitting the model to all observations. 

Another approach would be used to estimate the variance based on the data set with the ith observation removed. 

The estimate of the variance obtained by 𝑆𝑖
2 in Equation (4.36). 

𝑆𝑖
2 =

(𝑛 − 𝑝) ∙ 𝑀𝑆𝑆𝑒𝑟𝑟𝑜𝑟 −
𝑒𝑖

2

(1−ℎ𝑖𝑖)

𝑛 − 𝑝 − 1
                                                (4.36) 

Using the 𝑀𝑆𝑆𝑒𝑟𝑟𝑜𝑟  to produce an externally studentised residual, gives the ‘R-Student’, Rs. 

𝑅𝑠𝑖 =
𝑒𝑖

√𝑆𝑖
2(1 − ℎ𝑖𝑖)

                                                                   (4.37) 

The R-Student has nearly the same values compared to the studentized residuals but if the ith observation is 

significant, then the 𝑆𝑖
2 can differ greatly from the 𝑀𝑆𝑆𝑒𝑟𝑟𝑜𝑟  thus making the R-student to be more sensitive to 

use under standard assumptions which offers a more formal procedure for outlier detection via hypothesis 

testing 

 
 

C.   Stepwise Selection Regression 

1.   INTRODUCTION 

Stepwise Selection is a procedure where experimenters are interested in the composition of the dataset 

on which the regressor’s predictors are good candidates for the first to show the best relationship either between 

the response output, 𝑦 or input predictor variables 𝑥1, 𝑥2, 𝑥3, 𝑥4. A strong correlelation also exists between the 

predictors 𝑥1 and 𝑥4.  
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2.  THE PROCEDURE 

The initial process is to set a significant level for deciding when to enter a predictor into the stepwise 

selection process. The significant level is denoted as 𝛼. 

3. Step #1 

Fit one of the predictor models or the independent variables, which is regressing the 𝑦 on 𝑥1 or 𝑦 on 𝑥2 

or 𝑦 on 𝑥3. Undergoing the RCBD process, finding the P value can compare with the significant level. If it is 

less than the significant level, then the first predictor is put into the stepwise model. If the predictor has the P 

value less than the significant level, proceed to step #2. 

4. Step #2 

Suppose that the 𝑥1 had the smallest P value below 𝛼 and thus, deemed to be the best single predictor 

occurring from Step #1. Secondly, fitting each of the two-predictor models that includes 𝑥1 as one of the 

predictors, which is regressing 𝑦 on 𝑥1and 𝑥2 or 𝑦 on 𝑥1and 𝑥3 and so on. These second predictors whose P 

value is the smallest are put into the stepwise model. If there are predictors of P value more than the significant 

level, the process of fitting is stopped. The model with one predictor obtained from Step #1 is the final model. 

However, consider that 𝑥2 was regarded to be the best second predictor and therefore inputted into the stepwise 

model. It is now apparent that 𝑥1 is the first predictor in the model, and when the second predictor 𝑥2 enters the 

stepwise model, the regression model’s significance will be affected. This is checked by observing whether the 

P value on 𝑥1is equal to zero and the P value greater than the significant level on 𝑥2. 

5. Step #3 

Assume both 𝑥1and 𝑥2 have reached int the two-predictor stepwise mode and remained without any 

interactions. Next, fitting the three-predictor model which includes the first two predictors 𝑥1and 𝑥2 and 

regressing 𝑦 on 𝑥1, 𝑥2 and 𝑥3. If there are more than three predictors, fitting the predictor models with 𝑦 on 

𝑥1, 𝑥2 and 𝑥4 or 𝑦 on 𝑥1, 𝑥2 and 𝑥5 and so on. Repeating the process on both Step #1 and Step #2, the P value 

can be gained for the three-predictor model. Of those predictors whose P value is less than the significant level, 

it is placed in the stepwise model with its P value being the smallest. The opposite when it is higher than the 

significant level, Step #3 can be disregarded. However, assuming that 𝑥3 was held to be the best third predictor 

and hence placed into the stepwise model. Since  𝑥1 and 𝑥2 were regarded as the first predictors in the model 

before initiating Step #3, stepping back and observe whether entering 𝑥3 into the stepwise model affects the 

significant level of both 𝑥1 and 𝑥2 predictors. Then, examining the P values for both 𝑥1 and 𝑥2 at the three-

predictor model, where the third predictor has the P value greater than the significant level, repeat the three-

predictor model with another predictor until it is less than the significant level. 

6.  Step #4 

This step includes stopping the entire process after continuously repeating the previous three steps by 

adding predictors and creating a larger and more complex regression model. This also includes the set number 

of predictors that can be included during the stepwise selection process. 

 

V. CONDITIONS AND ASSUMPTIONS 
 

To have the methodology undergo the experiment, which is the case study of the ‘Effects on the Number of 

Blades on Aerodynamic Forces on a Straight-bladed Vertical Axis Wind Turbine’, it is necessary to have 

multiple assumptions and consistency throughout the experiment to leave out any discrepancies. 

The first variables used to undertake the experiment are ‘Tip Speed Ratio’, ‘Number of Blades’, and ‘Angle of 

Blades (Degrees)’ where the output is the ‘Power Coefficient’. 

 

 

The first independent variable consists of the ‘Number of Blades’ includes a definite quantity of the number of 

blades ranging from 2 to 5 blades. The second independent variable is the ‘Angle of Blades (Degrees)’ ranging 

from 4 to 14. The ‘Degrees’ here are all interacted with the number of blades which are the main conditions to 

tabulate the ‘Tip Speed Ratio’. 

 

In the interaction of both the ‘Blades’ and ‘Degrees’, it is important to note that in the number of blades 

interacting with the number of degrees in the experiment differs greatly as the experimenter had compared the 
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effects of studying the regression models as they had best assumed that the some of the interactions can be left 

untouched. The interactions shown in Table (1) are where ‘Blades’ and ‘Degrees’ relate with each other three 

times before moving on another iteration. The colored blocks are the main factors which are used to experiment. 

 

Table 1: Interaction of Blades and Degrees 

  Degrees 

Number of Blades 4 6 8 10 12 14 

2             

3 

 

          

4             

5             

 

 

VI. BEST RESULTS 
Predictor models, useful for finding parameter relationships and making predictions for new data, are based on 

an equation estimating a dependent variable’s value from independent variables. These models are categorized 

by ascending linear total order, from first to third order and so on. In the ‘First order plus Interaction’, 

parameters are multiplied in combinations without squaring. Residual models diagnose predictor model quality 

and accuracy, improving them by observing residual data set variation in relation to the regressed dataset. 

 

The ‘Third Order Only’ dataset extends the ‘Second Order plus Interaction’ with additional parameters 

‘(TSR)3’, ‘(B)3’, and ‘(D)3’, reaching cubic levels of ‘First Order Only’ parameters. This results in a more 

complex non-linear pattern than simple linear regression, potentially leading to overfitting due to more 

parameters. Overfitting occurs when the function aligns too closely with the dataset, reducing prediction 

accuracy. Equations (6.1) and (6.2) illustrate the functional and observational forms of the ‘Third Order Only’ 

equations.Figures (9) and (8) establish the ‘Third Order Only’ dataset which underwent the Stepwise selection 

and Multiple linear regression processes. 

 

𝐶𝑝 = 𝑓 (
𝑇𝑆𝑅, 𝐵, 𝐷, 𝑇𝑆𝑅𝐵, 𝑇𝑆𝑅𝐷, 𝐵𝐷, 𝑇𝑆𝑅2, 𝐵2, 𝐷2, (𝑇𝑆𝑅𝐵)2,

(𝑇𝑆𝑅𝐷)2, (𝐵𝐷)2, (𝑇𝑆𝑅)3, (𝐵)3, (𝐷)3 )                            (6.1) 

𝑦̂ =  𝑥0 + 𝑇𝑆𝑅𝑥1 + 𝐵𝑥2 + 𝐷𝑥3 + 𝑇𝑆𝑅𝐵𝑥4 + 𝑇𝑆𝑅𝐷𝑥5 + 𝐵𝐷𝑥6 + 𝑇𝑆𝑅2𝑥7 + 𝐵2𝑥8 + 𝐷2𝑥9+(𝑇𝑆𝑅𝐵)2𝑥10

+ (𝑇𝑆𝑅𝐷)2𝑥11 + (𝐵𝐷)2𝑥12 + (𝑇𝑆𝑅)3𝑥13 +  (𝐵)3𝑥14

+ (𝐷)3𝑥15                                                                                                                                              (6.2) 

Figure (9) shows significant differencewith residues scattering from start to end. The model’s shape, a 

downward-opening convex parabola, indicates substantial variance in the fitted value for predictions. Residual 

plots along the ‘LOESS’ line show the ‘Third Order Only’ dataset’s independent variables improved the model 

fit. 

Figure (8) details the predictor coefficients for the ‘Third Order Only’ regression model. With 7 degrees of 

freedom, it’s the largest, most complex model. It has the best ‘R-Squared Adjusted’ of 0.91, accounting for 91% 

variation in the dependent variable by the 15 independent variables. All predictors have a P value of zero, 

indicating statistical significance and high correlation with the response variable. This suggests the model 

interprets all variations in the response variable with no residual error. Despite the unlikelihood of a zero P 

value, the large datasets fit the regression model perfectly. ‘TSR’ is the top predictor, followed by ‘(TSR)3’. 

‘TSR’ interacts only with ‘B’, making ‘Number of Blades’ the second-best dataset for variability and correlation 

growth. Equation (6.3) produces the non-linear regression model for the ‘Third Order Only’ dataset. 
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𝑦̂ = −0.2113 + (0.2179)(𝑇𝑆𝑅) + (−0.0593)(𝑇2) + (−0.006)((𝑇𝑆𝑅𝐵)2) + (0.061)(𝑇𝑆𝑅𝐵)

+ (0)((𝐵𝐷)2)                                                                                                                                     (6.3) 

 

Figure (10) showcases the experimental data of the ‘Tip Speed ratio’ and ‘the Power Coefficient’ from the 

experimenting with the wind turbine made of 4 ‘Blades’ with the ‘Angle of Blades’ of 8 degrees with the 5 

regression models plotted. 

 

 
Figure 10: Multiple Linear Regression Model.  

 

Figure 9: Residual Graph on Third Order only 

Figure 8: Diagnosis on Third Order Only. 
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Figure (10) shows the multiple linear regression model from the seventh experiment using 4 ‘Blades’ and 8 

‘Degrees’. The ‘Experimenter’s Data’ is represented as blue dots. The data plots show a steep increase towards a 

‘Tip Speed Ratio’ of 0.18 and a gradual decline towards 0. The ‘1st Order’ and ‘1st Order Interaction’ models 

progress linearly and parallel to each other. The ‘2nd Order’ and ‘2nd Order Interaction’ models overlap, 

suggesting a similar non-linear regression model and the same ‘R-squared Adjusted’. Their initial regression 

plot starts above the negative axis, indicating a potential best fit. The ‘3rd Order’ model best fits the 

‘Experimenter’s Data’ without any negative values, but it’s the second-best fit compared to the ‘Final Model’, 

which also stays in the positive quadrant and is closer to the ‘Experimenter’s Data’. All models stay in the 

positive quadrant, suggesting reliability for predictions. 

 

R2 adj Data

α = 0.05 α = 0.05 α = 0.05 α = 0.05 α = 0.05 α = 0.95

1st Order 1st Interaction 2nd Order 2nd Interaction 3rd Order Final Model

B2D4 0.224653702 0.227347349 0.649476037 0.664081202 0.852007028 0.774026448

B2D6 0.579410156 0.590745944 0.681669202 0.694932986 0.944310351 0.844378848

B2D8 0.543413793 0.530302438 0.551755043 0.566214558 0.913872662 0.635708239

B3D6 0.299281622 0.302035813 0.74209753 0.752413629 0.889993038 0.924323793

B3D8 -0.029968843 -0.0284986 0.654736921 0.670430697 0.88500903 0.731443519

B3D10 0.119232122 0.125144053 0.705411697 0.717195229 0.850851421 0.864874519

B4D6 -0.028527171 -0.015229329 0.64531453 0.662204314 0.895308021 0.80873705

B4D8 -0.242064124 -0.232285494 0.749331547 0.760725567 0.91726155 0.775084028

B4D10 -0.047674861 -0.058949277 0.663899948 0.68070495 0.897153408 0.816579824

B5D10 -0.009380741 -0.006271685 0.389083365 0.425019638 0.767121588 0.48238008

B5D12 0.172059454 0.227328285 0.208718376 0.261470484 0.758600285 0.627472565

B5D14 -0.310930149 -0.328826098 0.414016102 0.453081696 0.714396019 0.360916133

Figure 11: Scatter Plot of the R2 Adjusted data. 

Figure 12: R2 Adjusted values of different number of Blades and Degrees.  
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Figure (11) appears to be the scatter plot of the ‘R-Squared Adjusted’ data for all the regression 

models. Here, it is evident that the ‘First Order Only’ and ‘First Order plus Interaction’ regression models have 

the similar linear regression models due to having nearly the same ‘R-Squared Adjusted’. However, the ‘R-

Squared Adjusted’ values of having lower values being below 0, indicates the regression models do not fit the 

‘Experimenter’s Data’ well and it explained the little variance in the ‘Power Coefficient’ by the ‘Tip Speed 

Ratio’. The First Order Only’ and ‘First Order plus Interaction’ regression models contains at least two or three 

terms and two or three coefficients each, making linear lines. This entails that the relationship between the 

‘Power Coefficient’ and the ‘Tip Speed Ratio’ is not linear and requires more than three terms and coefficients 

to acquire the appropriate data pattern. These ‘R-Squared Adjusted’ values established that their regression 

models may be too simple and inadequate to fit the data, as they missed out many important features and traces 

of the data. 

‘Second Order Only’ and ‘Second Order plus Interaction’ regression models have similar analyses to 

their first order counterparts. However, their ‘R-Squared Adjusted’ values differ by 0.2. The highest ‘R-Squared 

Adjusted’ values of ‘Second Order Only’ models are slightly less than those of ‘Second Order plus Interaction’. 

These second order models lack the potential to fit larger datasets due to insufficient terms and coefficients. 

Despite the unfit relationship between ‘Power Coefficient’ and ‘Tip Speed Ratio’ with quadratic terms and 

coefficients, the ‘R-Squared Adjusted’ for all second order models are more applicable for predicting less 

complex, non-linear datasets. 

The ‘Third Order Only’ regression, with the highest ‘R-Squared Adjusted’ values, best fits the data but 

is complex due to its eight parameters. It includes all linear, quadratic, and cubic terms and coefficients, 

differing in the highest power of independent variables. This collection creates indefinite correlation, increasing 

model complexity and interpretability, making it hard to understand the ‘Power Coefficient’ and ‘Tip Speed 

Ratio’ relationship. The numerous predictor coefficients risk overfitting and potential multicollinearity, leading 

to unreliable predictions. Despite this, ‘Third Order Only’ models are the best alternatives to the ‘Final Model’. 

The ‘Final Model’ regression has the second highest ‘R-Squared Adjusted’ values, close to the variance 

in the ‘Power Coefficient’ by the ‘Tip Speed Ratio’. It’s a complex equation with six coefficients and five 

parameters, including one or two factors from each linear order, resulting in an ‘R-Squared Adjusted’ value of 

0.81. This suggests a highly non-linear relationship between the ‘Power Coefficient’ and ‘Tip Speed Ratio’, 

requiring a higher curvature or additional parameters for accurate data patterns. With a high significance level of 

0.95, this model can fit the data, balancing fit and complexity. 

In summary, the ‘Final Model’ regression best fits the ‘Experimenter’s Data’. The ‘Third Order Only’ 

model has the highest ‘R-Squared Adjusted’ value but struggles to explain the ‘Power Coefficient’ and ‘Tip 

Speed Ratio’ interactions. Second order models best fit less complex, non-linear data, while first order models 

poorly fit the current data due to limited explanation of variable relationships. 

The relationship between the ‘Power Coefficient’ and ‘Tip Speed Ratio’ can be predicted by the having 

highly non-linear regression models and requires a higher order polynomial model to gain the predicted data 

pattern. As shown in Figure (12), the ‘R-Squared Adjusted’ values dropped down dramatically when reaching 5 

Blades with a higher angle of blades. This means that with a higher number of blades, the more it affects the 

power output. The 3 and 4 blades with the same degrees gave the most power output with less power 

consumption. 

Aside from the negative ‘R-Squared Adjusted’ values, one of the conclusions that can be made is that 

the ‘Tip Speed ratio’ has the most effect on the models, having interacted with that parameter in its quadratic 

and cubic forms. This shows that the ‘Tip Speed Ratio’ is the most relevant factor affecting the VAWTs as of 

whole. The ‘Number of Blades’ follows next by its interaction with the ‘Tip Speed Ratio’ parameter. Next, the 

‘Angle of Blades (Degrees)’ became irrelevant to the regression model in the stepwise selection process only 

having an effect in one or two regression models, specifying that the ‘Degree’ factor isn’t too related to the 

dependent variable. 

 

VII. CONCLUSION  
Design of experiments (DOE) is a scientific and systematic approach to planning, conducting, and 

analyzing experiments. It is used to optimize the performance, quality, and efficiency of a product, process, or 

system. DOE is also a methodology for problem-solving in various situations, employing complex techniques to 

collect data and generate reliable engineering solutions. Industries use DOE to reduce costs, increase profits, and 

grow product yield. By discovering the optimal combinations of factors and levels that affect the output or 

response of interest, DOE helps gain a competitive edge. For instance, DOE can be applied to increase the yield 

of wheat during a sunny climate where there is more moisture to help grow. This can be achieved by adding 

fertilizers, increasing the iteration of watering before it dries up, or adding scarecrows to avoid natural predators 

from preying on the wheat. 
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DOE uses the ‘Randomized Complete Block Design’ (RCBD) to group experimental units into 

‘Treatments’ and ‘Blocks’. This method reduces variation and increases precision of response variables. Each 

‘Block’ contains all the ‘Treatments’ or factor levels, with each ‘Treatment’ assigned to one experimental unit 

within each ‘Block’. The ‘Blocks’ are obtained by known sources of variation such as location and time. By 

blocking, variation in the ‘Blocks’ is reduced and accounted for in analysis. ANOVA is used to test the 

significance and estimate the confidence of the ‘Treatments’ and ‘Blocks’ effects, as well as compare the 

contrasts of the treatments. RCBD provides valid and reliable recommendations for modern industries. 

Multiple linear regression model is a statistical model that explains the relationship between two or 

more independent variables and a dependent variable. It fits linear, quadratic, or cubic equations to estimate 

coefficients from data. The stepwise selection process is used to select variables iteratively based on their 

significance level, R-Squared, or R-Squared Adjusted values. Its purpose is to maximize the fit and minimize 

the complexity of the model. Multiple linear regression and stepwise selection processes are used in various 

fields such as economics, engineering, medicine, and social sciences. They can study factors influencing 

demand and supply of a product, performance, and efficiency of a mechanical system, diagnostic and treatment 

of a disease, or behavioral and attitude patterns in a group of people. In short, they help identify relevant 

variables, test relationships between variables, make accurate predictions, and optimize response variables. 

In conclusion, ‘Design of Experiments Applications’ can change the industry and reality by enhancing 

the design and optimization of products and processes that can fully deliver a better value, quality, and 

performance to the customers as well the society. Utilizing the applications, the methods of solving problems lie 

on statistical notions and prove which solutions can bring the best outcomes. Future work include incorporating 

machine learning [40-44] and artificial intelligence techniques [45-50]to improve the project outcomes. 
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