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--------------------------------------------------------ABSTRACT---------------------------------------------------------------- 

This paper presents the use of the innovations approach for estimating signals described by linear second-order 

vector difference equations. The approach results in a recursive one-stage prediction estimator in second-order 

form, which preserves the structure of the signal model with innovations feedback. It is shown that the second 

order Kalman Filter is a special case of this estimator. Furthermore, the innovations can be obtained through a 

recurrence relation based on the knowledge of one-stage prediction estimates and measurements. The paper also 

demonstrates that these results can be derived using an augmentation approach based on Kalman filtering results. 

Interestingly, the computational complexity of the first-order estimator equations and the second-order estimator 

equation is the same, indicating no difference in online computations between the two estimators. However, the 

second-order estimator is more elegant in terms of its mathematical structure as a second-order linear dynamical 

system and in terms of the decoupling of the prediction and filtered estimates. The findings in this paper contribute 

to the field of signal processing and estimation theory. In this paper we derive the equations for the second order 

Kalman Filter based on estimation and predictions in two equivalent derivations. 
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I. INTRODUCTION 
The Kalman filter is a widely used algorithm for state estimation in linear and nonlinear systems. It was 

developed by Rudolf Kalman in the early 1960s and has since been widely used in various fields, including 

aerospace, robotics, and finance. The basic idea of the Kalman filter is to estimate the state of a system by fusing 

noisy measurements with a mathematical model of the system. 

The estimation of signals described by linear second-order vector difference equations has been an area 

of active research in recent years. One approach that has shown promise is the innovations approach, which has 

been successfully applied to such signals. Specifically, it has been demonstrated that the innovations approach 

can yield a recursive one-stage prediction estimator in second-order form that preserves the structure of the signal 

model with innovations feedback. The second order Kalman filter is a special case of this estimator, highlighting 

the potential of this approach. This finding has been supported by numerous studies (e.g., [2], [3], [4]). 

The innovations approach has also been shown to be amenable to computation using a recurrence relation 

based on one-stage prediction estimates and measurements. This recurrence relation can be derived using an 

augmentation approach based on Kalman filtering results. These results have been explored and discussed in detail 

in the literature [5], [6]. 

Interestingly, despite the increased mathematical complexity of the second-order estimator, the 

computational complexity of the first order and second-order estimators is the same, meaning that there is no 

difference in online computations between the two estimators. However, the second-order estimator is more 

elegant in its mathematical structure as a second-order linear dynamical system, and the prediction and filtered 

estimates' decoupling is improved. This finding has been documented in studies that have compared the two 

estimators [7], [8]. In this paper we derive the second order Kalman Filter based on estimation and prediction 

using the innovations approach.  

In conclusion, the second order Kalman Filter (SOKF) is a useful tool for state estimation in nonlinear 

systems, but it has limitations in terms of computational complexity. Higher-order Kalman filters can provide 

better performance than the SOKF in nonlinear systems and have been successfully applied in various engineering 

fields. Efficient implementation of high-order Kalman filters is also essential for real-time applications. 
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II. MATHEMATICAL DERIVATIONS 
Based on the recent paper written by Iskanderani [1], the following equations were derived: 

Consider the model for the signal being considered is expressed as a p’th-order linear VDE in the form of: 

    𝒙𝒌+𝟏 =  ∑𝒑
𝒋=𝟏 𝑨𝒌

𝒋
𝒙𝒌−𝒋+𝟏 + 𝚪𝒌𝝎𝒌                                           (1)               

                       𝒚𝒌 = ∑𝒑
𝒋=𝟏 𝑪𝒌

𝒋
𝒙𝒌−𝒋+𝟏 + 𝒗𝒌                                         (2) 

The one-stage prediction estimator for equations (1) and (2) may be given by:  

𝒙𝒌+𝟏|𝒌 = ∑𝒑
𝒋=𝟏 𝑨𝒌

𝒋
𝒙𝒌−𝒋+𝟏|𝒌−𝒋 + ∑𝒑

𝒊=𝟏 𝑮𝒌
𝒊 𝒚̃𝒌−𝒊+𝟏  , 𝒌 = 𝟏, 𝟐, …                       (3)      

with the initial condition  

  𝒙𝒋|𝒋−𝟏 = 𝒙𝒋  , 𝒋 = −𝒑 + 𝟐, −𝒑 + 𝟑, … , −𝟏, 𝟎, 𝟏                                         (4)                                                    

The innovations are given by  

𝒚̃𝒌 + ∑𝒑−𝟏
𝒊=𝟏 𝑯𝒌

𝒊 𝒚̃𝒌−𝒊 = 𝒚𝒌 − ∑𝒑
𝒋=𝟏 𝑪𝒌

𝒋
𝒙𝒌−𝒋+𝟏|𝒌−𝒋 , 𝒌 = 𝒑, 𝒑 + 𝟏, …                             (5) 

with the initial conditions  

𝒚̃𝒎 = 𝒚𝒎 − ∑𝑝
𝑗=1 𝑪𝒎

𝒋
𝒙̅𝒎−𝒋+𝟏 ,   𝑚 = 1,2, … , 𝑝 − 1                                             (6) 

The 𝑛 × 𝑚 gain matrices are given by  

𝑮𝑘
𝑖 = ∑𝑖

𝑚=1 𝑨𝑘
𝑝−𝑚+1

𝐸[𝒙𝑘−𝑝+𝑚𝒚̃𝑘−𝑝+𝑖
𝑇 ]𝑲𝑘−𝑝+𝑖

−1                                             (7)      

𝑲𝑘 = ∑𝑝
𝑗=1 ∑𝑝

𝑖=1 𝐶𝑘
𝑗
𝐸[𝒙̃𝑘−𝑗+1|𝑘−1𝒙̃𝑘−𝑖+1|𝑘−1]𝐶𝑘

𝑖𝑇 + 𝑹𝑘                              (8)                                  

where 𝑖 = 1,2, … , 𝑝, and  

𝑯𝑘
𝑖 = ∑𝑝

𝑚=𝑖+1 𝐶𝑘
𝑚𝐸[𝒙𝑘−𝑚+1𝒚̃𝑘−𝑖

𝑇 ]𝐸[𝒚̃𝑘−𝑖𝒚̃𝑘−𝑖
𝑇 ]𝑲𝑘−𝑖

−1                                    (9) 

 

III. Kalman Filter as a Special Case of Estimation and Prediction 
If 𝑝 = 1 the signal model (1) and (2) reduces to the conventional first- order state-variable model  

𝒙𝑘+1 = 𝑨𝑘𝑥𝑘 + 𝚪𝑘𝝎𝑘                                                                                          (10) 

    𝐲𝑘 = 𝑪𝑘𝒙𝑘 + 𝒗𝑘                                                                                                                                      (11)  

Which is the well known one-stage prediction estimator (Kalman filter). Hence, the high order Kalman Filter is 

represented by the equations 1-4 above. 

If 𝑝 = 2 the signal model (1) and (2) reduces to the conventional second order discrete state-variable model and 

the second order Kalman Filter may be shown to follow the following equations: 

𝒚𝑘+1  = 𝑨𝑘
1 𝒙𝑘 + 𝑨𝑘

2𝒙𝑘−1 + 𝚪𝑘𝝎𝑘                                                                  (12)

𝒚𝑘  = 𝑪𝑘
1 𝒙𝑘 + 𝑪𝑘−1

2 + 𝒗𝑘                                                                             (13) 
 

The one-stage prediction estimator for the system (3) and (4), with the stated assumptions, is of the form: 

𝒙̂𝑘+1∣𝑘 = 𝑨𝑘𝒙̂𝑘∣𝑘−1 + 𝑫𝑘𝒙̂𝑘−1∣𝑘−2 + 𝑮𝑘
2𝒚̃𝑘 + 𝑫𝑘𝑮𝑘−1

1 𝒚̃𝑘−1                       (14) 
for 𝑘 = 1,2, …, with initial vectors 

𝒙̂0∣−1 = 𝒙‾ 0 and  𝒙̂1∣0 = 𝒙‾1                                                                              (15) 

The innovations satisfy: 

𝒚̃𝑘 + 𝑬𝑘𝑮𝑘−1
1 𝒚̃𝑘−1 = 𝒚𝑘 − 𝑪𝑘𝒙̂𝑘∣𝑘−1 − 𝑬𝑘𝒙̂𝑘−1∣𝑘−2,  𝑘 = 2,3, …                      (16)                                

with the initial condition   

𝒚̃1 = 𝒚1 − 𝑪1𝒙‾1 − 𝑬1𝒙‾ 0                                                                (8) 
The gains 𝑮𝑘  1 and 𝑮𝑘  2 are given respectively by 

𝑮𝑘
1  = [Σ𝑘∣𝑘−1𝑪𝑘

𝑇 + 𝚷𝑘∣𝑘−1    
𝑇 𝑬𝑘

𝑇]𝑲𝑘
−1,

𝑮𝑘
2  = 𝑨𝑘𝑮𝑘

1 + 𝑫𝑘[𝚷𝑘∣𝑘−1𝑪𝑘
𝑇 + Σ𝑘−1∣𝑘−1     𝑬𝑘

𝑇]𝑲𝑘
−1                                       (17)

 

Where the Kalman gain 𝐾𝑘 can be shown to be: 

𝑲𝑘 = 𝑪𝑘Σ𝑘∣𝑘−1𝑪𝑘
𝑇 + 𝑪𝑘Π𝑘∣𝑘−1

𝑇 𝑬𝑘
𝑇 + 𝑬𝑘𝚷𝑘∣𝑘−1𝑪𝑘

𝑇 + 𝑬𝑘Σ𝑘−1∣𝑘−1𝑬𝑘
𝑇 + 𝑹𝑘                 

      
  (18) 

The associated covariances are given by: 

Σ𝑘+1∣𝑘 = (𝑫𝑘 − 𝑮𝑘
2𝐸𝑘)(Σ𝑘−1∣𝑘−1𝑫𝑘

𝑇 + 𝚷𝑘∣𝑘−1𝑨𝑘
𝑇)                                                          

+(𝑨𝑘 − 𝑮𝑘
2𝑪𝑘)(𝚷𝑘∣𝑘−1

𝑇 𝑫𝑘
𝑇 + Σ𝑘∣𝑘−1𝑨𝑘

𝑇) + 𝚪𝑘𝑸𝑘𝚪𝑘
𝑇                                 (19) 

Σ𝑘∣𝑘 = Σ𝑘∣𝑘−1 − 𝑮𝑘
1 𝑪𝑘Σ𝑘∣𝑘−1 − 𝑮𝑘

1 𝑬𝑘𝚷𝑘∣𝑘−1                                                            (20) 

𝚷𝑘+1∣𝑘 = Σ𝑘∣𝑘𝑨𝑘
𝑇 + (𝚷𝑘∣𝑘−1

𝑇 − 𝑮𝑘
1 𝑪𝑘𝚷𝑘∣𝑘−1

𝑇 − 𝑮𝑘
1 𝑬𝑘Σ𝑘−1∣𝑘−1)𝑫𝑘

𝑇                            (21) 

with initial matrices given by 
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𝚺0∣0 = 𝐸[(𝒙0 − 𝒙‾ 0)(𝒙0 − 𝒙‾ 0)𝑇],

𝚺1∣1 = 𝐸[(𝒙1 − 𝑥‾1)(𝒙1 − 𝒙‾1)𝑇],

𝚷1∣0 = 𝐸[(𝒙0 − 𝒙‾ 0)(𝒙1 − 𝒙‾1)𝑇],

                                                           (22) 

In addition, the filtered estimate is given by equation: 

𝒙̂𝑘∣𝑘 = 𝒙̂𝑘∣𝑘−1 + 𝑮𝑘
1 𝒚̃𝑘                                                                     (23) 

Noting that the recursive formulas for the covariance are given by: 

𝑷𝑘∣𝑘−1 = 𝐸 {[
𝒙̃𝑘−1∣𝑘−1

𝒙̃𝑘∣𝑘−1
] [𝒙̃𝑘−1∣𝑘−1

𝑇 𝒙̃𝑘∣𝑘−1
𝑇 ]}

 = [
𝐸[𝒙̃𝑘−1∣𝑘−1𝒙̃𝑘−1∣𝑘−1

𝑇 ] 𝐸[𝒙̃𝑘−1∣𝑘−1𝒙̃𝑘∣𝑘−1
𝑇 ]  

𝐸[𝒙̃𝑘∣𝑘−1𝒙̃𝑘−1∣𝑘−1
𝑇 ] 𝐸[𝒙̃𝑘∣𝑘−1𝒙̃𝑘∣𝑘−1

𝑇 ]
] 

 ≜ [
𝚺𝑘−1∣𝑘−1    𝚷𝑘∣𝑘−1

𝚷𝑘∣𝑘−1
𝑇     𝚺𝑘∣𝑘−1

]                                                                                      (24)

  

 and 𝑮𝑘 1 and 𝑮𝑘
2  can be found the following matrix equation: 

[
𝑮𝑘

1

𝑮𝑘
2] = [

𝟎 𝑰
𝑫𝑘 𝑨𝑘

] [
𝚺𝑘−1∣𝑘−1 𝚷𝑘∣𝑘−1

𝚷𝑘∣𝑘−1
𝑇 𝚺𝑘∣𝑘−1

] [
𝑬𝑘

𝑇

𝑪𝑘
𝑇] ×

[𝑬𝑘 𝑪𝑘] [
𝚺𝑘−1∣𝑘−1 𝚷𝑘∣𝑘−1

𝚷𝑘∣𝑘−1
𝑇 𝚺𝑘∣𝑘−1

] [
𝑬𝑘

𝑇

𝑪𝑘
𝑇] + 𝑹𝑘]

−1                                      (25) 

Which can be shown to be as follows: 

𝑮𝑘
1 = (𝚺𝑘−1∣𝑘−1𝑬𝑘

𝑇 + 𝚷𝑘∣𝑘−1𝑪𝑘
𝑇)𝑲𝑘

−1                                                         (26) 

𝑮𝑘
2 = (𝑫𝑘𝚺𝑘−1∣𝑘−1𝑬𝑘

𝑇 + 𝑫𝑘𝚷𝑘∣𝑘−1𝑪𝑘
𝑇

+𝑨𝑘𝚷𝑘∣𝑘−1
𝑇 𝑬𝑘

𝑇 + 𝑨𝑘𝚺𝑘∣𝑘−1𝑪𝑘
𝑇)𝑲𝑘

−1

= (𝑫𝑘𝚺𝑘−1∣𝑘−1𝑬𝑘
𝑇 + 𝑫𝑘𝚷𝑘∣𝑘−1𝑪𝑘

𝑇)𝑲𝑘
−1 + 𝑨𝑘𝑮𝑘

1

= 𝑨𝑘𝑮𝑘
1 + 𝑫𝑘(𝚺𝑘−1∣𝑘−1𝑬𝑘

𝑇 + 𝚷𝑘∣𝑘−1𝑪𝑘
𝑇)𝑲𝑘

−1

                                     (27) 

where the 𝑚 × 𝑚   𝑲𝑘 matrix is defined by: 

𝑲𝑘 ≜ 𝑪𝑘𝚺𝑘∣𝑘−1𝑪𝑘
𝑇 + 𝑪𝑘𝚷𝑘∣𝑘−1

𝑇 𝑬𝑘
𝑇 + 𝑬𝑘𝚷𝑘∣𝑘−1𝑪𝑘

𝑇

 +𝑬𝑘𝚺𝑘−1∣𝑘−1𝑬𝑘
𝑇 + 𝑹𝑘

                                  (28) 

Thus, the expressions for the gain matrices in equations (26) through (28) are the same as were presented 

earlier by equations (17) and (18). The one-stage prediction estimator for the system (3) and (4) is depicted in the 

figure below: 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The one-stage prediction estimator for the system (3) and (4) 

 

Note that the block diagram in the figure maintains the second-order VDE signal model with feedback 

loops for innovations. Given the jointly Gaussian of {𝒙𝑘} and {𝒚𝑘}, ensures that 𝒙𝑘 conditioned on 𝒚𝑘−1, 𝒙̂𝑘∣𝑘−1, 

is Gaussian. Likewise, 𝒙̂𝑘∣𝑘 and 𝒚̃𝑘  are also Gaussian. The estimator takes {𝒚𝑘} as input and produces {𝒙̂𝑘∣𝑘−1} as 

output in real time, with the specific values of output {𝒙̂𝑘∣𝑘−1} being dependent on the measurements 

𝑦1, 𝑦2, ⋯ , 𝑦𝑘−1. However, the gains 𝑮𝑘 1 and 𝑮𝑘  2 and the associated covariances 𝚺𝑘∣𝑘−1, Σ𝑘∣𝑘 and 𝚷𝑘∣𝑘−1 are all 

independent of the measurements. For this reason, the gains and the associated covariances can be computed off-

line before the estimator is actually run. Importantly, the estimator preserves the form of the second-order VDE 

signal model with feedback loops. 

Alternatively, we can reconsider the system described by (3) and (4) with the stated assumptions 
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mentioned by Iskanderani [1]. Hence, equations (3) and (4) can be represented in terms of a first order (state-

variable) equivalent form. Let: 

𝒙𝑘
1 = 𝒙𝑘−1,

𝒙𝑘
2 = 𝒙𝑘

                                                                                (29) 

Then equations (3.3) and (3.4) can be put into the following first-order form: 

[
𝒙𝑘+1

1

𝒙𝑘+1
2 ] = [

𝟎 𝑰
𝑫𝑘 𝑨𝑘

] [
𝒙𝑘

1

𝒙𝑘
2] + [

𝟎
𝚪𝑘

] 𝒘𝑘,

𝒚𝑘 = [𝑬𝑘      𝑪𝑘] [
𝒙𝑘

1

𝒙𝑘
2] + 𝒗𝑘 ,

                                                     (30) 

which can be written as: 

    𝒛𝑘+1 = 𝚽𝑘𝒛𝑘 + 𝚲𝑘𝒘𝑘,
𝒚𝑘 = 𝜽𝑘𝒛𝑘 + 𝒗𝑘

                                                                  (31) 

where the 2𝑛-vector 𝑧𝑘 is defined by 

𝒛𝑘  = [𝒙𝑘     
1    𝒙𝑘

2]
𝑇

 = [𝒙𝑘−1  𝒙𝑘]𝑇
                                                                        (32) 

Φ𝑘 is a 2𝑛 × 2𝑛 matrix defined by 

𝚽𝑘 ≜ [
𝟎 𝑰

𝑫𝑘 𝑨𝑘
]                                                                         (33) 

where 𝐼 is the 𝑛 × 𝑛 identity matrix. Λ𝑘 is a 2𝑛 × 𝑛 matrix defined by 

𝚲𝑘 ≜ [
𝟎
𝚪𝑘

]                                                                                  (34) 

Θ𝑘 is an 𝑚 × 2𝑛 matrix defined by 

𝚯𝑘 ≜ [𝑬𝑘 𝑪𝑘]                                                                                   (35) 

 
The assumptions of Section 3 can be stated in terms of the new representation as follows: 

1. The input noise {𝒘𝑘} and the output noise {𝒗𝑘} are independent and gaussian processes with 

means and covariances as given in Section 3. 

2. The initial state 𝒛0 is a gaussian random vector with mean: 

𝒛‾0 = 𝐸 [
𝒙0

𝒙1
]  = [

𝒙‾ 0

𝒙‾1
]                                                                                 (36) 

and covariance: 

𝑷0∣−1  = 𝐸[(𝒛0 − 𝒛‾0)(𝒛0 − 𝒛‾0)𝑇]

 = 𝐸 {[
(𝒙0 − 𝒙‾ 0)

(𝒙1 − 𝒙‾1)
] [(𝒙0 − 𝒙‾ 0)𝑇 (𝒙1 − 𝒙‾1)𝑇]}

 = [
𝐸[(𝒙0 − 𝒙‾ 0)(𝒙0 − 𝒙‾ 0)𝑇] 𝐸[(𝒙0 − 𝒙‾ 0)(𝒙1 − 𝒙‾1)𝑇]

𝐸[(𝒙1 − 𝒙‾1)(𝒙0 − 𝒙‾ 0)𝑇] 𝐸[(𝒙1 − 𝒙‾1)(𝒙1 − 𝒙‾1)𝑇]
]

 ≜ [
𝚺0∣0 𝚷1∣0

𝚷1∣0
𝑇 𝚺1∣0

].                                                                                    

         (37) 

Noting that the initial state 𝒛0 is independent of {𝒗𝑘} and {𝒘𝑘} and 𝑹𝑘 is the covariance matrix of 
{𝒗𝑘}  𝑖𝑠 𝑎𝑛𝑑 𝑚𝑥𝑚 positive definite matrix. Hence, we have reached the same equations. 

 

IV. APPLICATION: DISPLACEMENT/VELOCITY ESTIMATORS 

FOR UNDAMPED ELASTIC SYSTEMS 
In this section, we examine a Gaussian stochastic process that can be seen as the output process of an 

undamped elastic system. To simplify the equations, we employ a modal decomposition technique. Through an 

exact discretization scheme, we derive a first-order discrete-time model defined at the time instances of discrete 

measurements. By manipulating algebraically, we obtain second-order vector recursions expressed solely in terms 

of displacements and velocities. 

We develop the one-stage prediction estimator for the discrete-time model using two different 

approaches. Firstly, we apply Kalman filtering techniques to the first-order discrete-time model. Secondly, we 

directly apply the theory established to the second-order recursion, obtaining the one-stage prediction estimator 

directly in second-order form. Although both approaches yield equivalent estimators, there are notable differences 

in terms of dimensionality and computational considerations. Particularly, second-order estimators exhibit a 
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substantial reduction in the number of operations required as online estimators. 

Consider a linear second-order undamped elastic system described by 

𝑴𝒙̈(𝑡) + 𝑲𝒙(𝑡) = 0                                                                 (38) 
where {𝑥(𝑡), 𝑡 ≥ 𝑡0} is an 𝑛-vector stochastic displacement process and {𝑥̇(𝑡), 𝑡 ≥ 𝑡0} is an n-vector 

stochastic velocity process. Based on usual assumptions for elastic systems, assume 𝑀 and 𝐾 are 𝑛 × 𝑛 

symmetric and positive definite matrices. Throughout, consider discrete-time measurements of the form 

𝒚𝑘 = 𝑪𝒙̇(𝑡𝑘) + 𝒗𝑘                                                                   (39) 

or 

𝒚𝑘 = 𝐸𝒙(𝑡𝑘) + 𝒗𝑘                                                                   (40) 
where {𝑦𝑘} is an 𝑚-vector measurement process, 𝑪 and 𝑬 are 𝑚 × 𝑛 matrices and the fixed measurements 

times {𝑡𝑘} satisfy 𝑡𝑘 < 𝑡𝑘+1, 𝑘 = 0,1, … The measurement noise {𝒗𝑘} is an 𝑚-vector, zero mean gaussian white-

noise process with covariance: 

𝐸[𝒗𝑘𝒗𝑙
𝑇] = 𝑹𝑘𝛿𝑘𝑙                                                                             (41) 

Assume the following: 

(1) The initial vectors 𝑥(𝑡0) and 𝑥̇(𝑡0) are jointly gaussian with zero means and covariances: 

𝐸[𝒙(𝑡0)𝒙𝑇(𝑡0)] = 𝚺𝑥𝑥(𝑡0)

𝐸[𝒙(𝑡0)𝒙̇𝑇(𝑡0)] = 𝚷𝑥𝑥̇(𝑡0)

𝐸[𝒙̇(𝑡0)𝒙̇𝑇(𝑡0)] = 𝚺𝑥̇𝑥̇(𝑡0)

                                                                  (42) 

(2) The initial vectors 𝒙(𝑡0) and 𝒙̇(𝑡0) are independent of {𝒗𝑘}. 

(3) 𝑹𝑘 is an 𝑚 × 𝑚 positive-definite matrix for each 𝑘. 

It is convenient to make a basis change to modal coordinates. Let 𝚿 be an 𝑛 × 𝑛 non-singular matrix and let 𝛀2 

be an 𝑛 × 𝑛 diagonal matrix defined by:   

𝚿𝑇𝑴𝚿 = 𝑰,  𝚿𝑇𝑲𝚿 = 𝛀2                                                              (43) 

where, 

𝛀2 = diag (𝑤1
2, 𝑤2

2, … , 𝑤𝑛
2)                                                    (44) 

Next, consider the transformation to modal coordinates defined by:     𝒙 = 𝚿𝜼  

Then the system (4.1), (4.2) and (4.3) can be written as: 

𝜼̈(𝑡) + 𝛀2𝜼(𝑡) = 0,                                                            (45) 
with discrete-time measurements of the form 

𝒚𝑘 = 𝑪𝚿𝜼̇(𝑡𝑘) + 𝒗𝑘  , or                                                       (46) 

𝒚𝑘 = 𝑬𝚿𝜼(𝑡𝑘) + 𝒗𝑘                                                                     (47) 
The solution to the second-order differential equation ( 4.8) is given by: 

[
𝜼(𝑡)
𝜼̇(𝑡)

] = [
cos 𝛀(𝑡 − 𝑡0) 𝛀−1sin 𝛀(𝑡 − 𝑡0)

−𝛀sin 𝛀(𝑡 − 𝑡0) cos 𝛀(𝑡 − 𝑡0)
] [

𝜼(𝑡0)

𝜼̇(𝑡0)
]                                      (48) 

We might focus on the system at discrete-time instants, 𝑡𝑘, 𝑘 = 0,1, …, the resulting recursions for 𝒙(𝑡𝑘) = 𝑥𝑘 

and 𝒙̇(𝑡𝑘) = 𝒙̇𝑘 are easily obtained. From Equation (4.11) and 𝑥 = Ψ𝜂 

[
𝒙𝑘+1

𝒙̇𝑘+1
] = 𝚽𝑘 [

𝒙𝑘

𝒙̇𝑘
]                                                                               (49) 

where the 2𝑛 × 2𝑛 matrix 𝚽𝑘 is defined by 

𝚽𝑘 = [
𝚿cos 𝛀(𝑡𝑘+1 − 𝑡𝑘)𝚿−1 𝚿𝛀−1sin 𝛀(𝑡𝑘+1 − 𝑡𝑘)𝚿−1

−𝚿Ωsin Ω(𝑡𝑘+1 − 𝑡𝑘)𝚿−1 𝚿cos 𝛀(𝑡𝑘+1 − 𝑡𝑘)𝚿−1 ]                                  (50) 

The discrete-time measurements are of the displacement form. 

𝒚𝑘 = 𝑬𝒙𝑘 + 𝒗𝑘                                                                    (51) 
or of the velocity form 

𝒚𝑘 = 𝑪𝒙̇𝑘 + 𝒗𝑘                                                                             (52) 

 

V. CONCLUSIONS 
The application of the innovations approach to estimating signals governed by linear second-order vector 

difference equations has been demonstrated. This results in a recursive one-stage prediction estimator in second-

order form that preserves the signal model's structure with innovations feedback, with the second order Kalman 

Filter representing a special case. Moreover, it has been shown that the innovations can be obtained through a 

recurrence relation using one-stage prediction estimates and measurements. These findings can also be derived 

using an augmentation approach based on Kalman filtering results. 

Interestingly, the computational complexity of the first-order estimator equations and the second-order 

estimator equation is the same, indicating no difference in online computations between the two estimators. 
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However, the second-order estimator is more elegant in terms of its mathematical structure as a second-order 

linear dynamical system and in terms of the prediction and filtered estimates' decoupling. 

It is essential to note that this model is not a panacea, but rather a refinement of a previous model that may 

require further refinement in the future. This model is not the most general one that can be used for analysis 

purposes. 

Overall, the high-order Kalman filter is a useful tool for state estimation in nonlinear systems. 

Mathematical derivations for the second order Kalman filter have been developed using two methods. The first 

method used estimation and prediction based on the innovations approach. While the second method was purely 

based on the second order discrete state variables model in matrix format.  

In addition, as an application, we explored the development of second order Kalman filter-based on 

displacement/velocity estimators for undamped elastic systems. By employing a modal decomposition technique 

and exact discretization scheme, we obtained second-order vector recursions expressed solely in terms of 

displacements and velocities.  
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