The International Journal of Engineering and Science (1JES) :i ‘

|| Volume || 11 || Issue || 12 || December || Pages || PP 12-19 || 2022 ||
ISSN (e): 2319-1813 ISSN (p): 20-24-1805 THE IJES

On e-COAPPROXIMATION

Meenu Sharma and T.D.Narang

'Principal, A.S.College for Women , Khanna 141401 Punjab
Department of Mathematics
Guru Nanak Dev University , Amritsar 143005 Punjab

ABSTRACT -m-mmmmmmmm e e e
For a subset G of a mefric space (\X'.d) and £>0 . an element g, € G 1is called an g-coapproximation

toxeXifd(g,.g) =d(x.g)+¢ forall ge G. The set of all £—coapproximations tox in G is denoted by
R _(x) . In this paper . we discuss some basic properties and structure of the set of elements of £—

coapproximation. The underlying spaces are metric spaces or conveX metric spaces or metric linear spaces .
Directions for future research have also been discussed .
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The concept of elements of & —approximation was introduced in normed linear spaces by Buck[2] under
the name 'elements of good approximation'. Subsequently.many researchers discussed this concept (see [3].
[41.[7] and references cited therein) . Thereatfter , the concept of e-coapproximation was introduced and
discussed in normed linear spaces by Vaezpour et al. [9] . Some results on £ — coapproximation have also
been discussed by As'ad and Ghazal [1] in normed linear spaces.This concept was extended to metric
spaces in [3] and was discussed in metric linear spaces in [5] and [6].In this paper . we carry forward this
study in spaces which are either metric spaces or metric linear spaces or convex metric spaces .

To start with , we recall a few definitions to be used in the sequel.

For a metric space (Y. d) and a closed interval I=[0.1].a continous mapping 7 : X'x Y xI — X is
said to be a convex structure on X ifforallx,ye X and A €L

d@.W(x. v, A)) < Ad (. x)+(1—=)d (. y)
for all # € X' . The metric space (X, d) together with a convex structure 77" ., denoted by (X.d. W) is
called a convex metric space [8].

A non —empty subset G of a convex metric space (X.d.7) is said to be
(7) convex if W(x.y.A)eGlorallx.yeGand Ll
(#7) starshaped with star centre p . if there is some p € G such that W(x.p.A)e G forallxe Gand A € I.

A metric space (X, d) is called a metric linear space if (7) X is a linear space (77) addition and scalar

multiplications are continous in X" . and (7i7) d is translation invariant i.e. d(x+z.y+z) =d(x.y) for all
x.y.zeX.

Let G be a subset of a metric space (\X.d) and £>0.An element g, G is called an £ —approximation

[2] (& — coapproximation [3]) to x € X if
d(x.g))=d(x.g)+¢e(d(g,.2)=d(x.g)+¢&) forallge G
For x € X the set of all £ —approximations(& — coapproximations)to x in G is denoted by £, _(x)(R; . (x))
ie F, (x)=1{g,eG:d(x.g)) =d(x.g)+¢ forallge G}
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R..(v)={g,=G:d(g,.g)=d(x.g)+eforallge G} .

S0

For £>0 ., we obtain sets of best approximation (coapproximation)
The set G is called ¢ —proximinal(e — coproximinal) if 7, _(x)(&;_.(x)) is non —empty for each x € X

It is said to be £ — Chebyshev (£ —coChebyshev) if 7, _ (x)(&; .(x)) contains exactly one element for

everyx e X.
Since elements of & —approximation always exist for every & > 0 . every non —empty subset of X is
& —proximinal. On the other hand . elements of £ —coapproximation may or may not exist . For £ =0,
& —coproximinal and & —coChebyshev sets are coproximinal and coChebyshev sets respectively. It is easy

to see that R, _(x) is a closed set if G is a closed subset of X', R.(x) :ﬂ R, (x)and R; (x) C R; ;(x)

=0

for every > ¢ .
For a linear subspace G of a metric linear space (XX'.d) and >0 ., we define
RL(0)={xeX:0=R, ()} .
For x. v € X.we say that x is £ —orthogonal to y [9] . x L_ yif d(x.0) = d(x.ay) + ¢ for all real scalars c.
For non —empty subsets A . B of X.we say that A is £ —orthogonaltoB: 4 1_B .if a L_b foralla e A.
beB.

We define
G={xeX:Glx}
ég =xeX:GL, x}
={xeX:gl_ xtorallgeGj
Clearly G= ﬂ Gs .

&0

Before proceeding further . we give few examples concerning elements of £ — coapproximation .
2 . . . 2 2 ].
Example 1. Let X =[]~ with Euclidean metric and G = {(x. ¥): x"+y =1}.Then for x =(0.0) and & :E \

we have

RG (0.0)={g,€G:d(g,.2) = d((0.0).g)-ﬁ-% for all g € G}

DOI:10.9790/1813-11121219 www.theijes.com Page 13



On &-COAPPROXIMATION

If we take € =1 then R, .(0.0) =G .

Example 2 . For £>0, let X = {(x.1) €[] ? : x’+y*=£’} U {(0.0)} with Euclidean metric and

G={(x.v):x>+y*=¢’}. Then R, .(z)=G foreachze X ie G is £ —coproximinal . But G is not
coproximinal as R, (0.0) = ¢.

It is easy to see that R, _ (x) may or may not be closed . However . it is closed if G is closed.

Example 3 [1] Let X =[1" with the norm

||(.\'1..\'2......\'n) =|.\'1|+ R SR
) ; £ 2 . . .
and £=0. G= I (g.27....2,) €l |g1. <— forall 1=7<n; . Then Gis &-coproximinal but G
7

is not closed .
We now discuss some basic properties of elements of £ — coapproximation . structure of sets of
elements of co —approximation and directions for future research .

Proposition 1. If G is a convex subset of a convex metric space (X.d.77), x € X and £=0. then R_ _(x) is

a convex subset of X .

Proof Tetg,.g, €R; (x) and 0 <« <1 . Consider
d[7(g.&.0).g| < ad(g.g)+(1-a)d(g,.g) forallg € G

zafd(x.g)+e|+(1-a)|d(x.g)+¢| forallge G
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=d(x.g)teforallgeG.
Therefore, d[l’f"(gl.gz. a’).g] Zd(x,g)tetorallgeGand 0= =1 .
This gives W (g,.2,.0) € R, (x) as W(g,.g,. @) EG .

Hence R _(x) is a convex set .

Proposition 2 Let G be a linear subspace of a metric linear space (X, d) and £ = 0 . Then

(7) gy € R; .(x) ifand only if 0 € R, . (x —g).
(i) g, € Ry .(x) if x—g, €G-.
(7i7) for g, € G and for any scalar & , we have ag, € R; .(ox) ifand only if x— g, €G- ,

() R () =G x=RL(0)].
MR . (x)D U {ﬂ Ry .- (g)} . where [g.x]= {a.\' +(1-a)g,. o= 1} NG,

520 | g=G

(vi) Forxe X |G, Jgo eG: ‘Q}P{go-x),s g]JL C R; .(x) where {30--"} = {a.r+(1—a’)g0 aell 1.

Proof For proofs of (i) . (if) and (7ii) we refer to [6] .

g, e Gr‘\[.\'—Rg; (O)J —g,eGandg, € [.\'—Rgfs(O)J

©g,=Gandg, =x—g, = R;,(0)
S g,eGandx—g, € R(;lg(O)
S g, eGandg, R, . (x).

Therefore . Gﬁ[\— (0]] R, (x).

(v)Lethe U {m {011 } Then 1 e JDD3 A .(g) forall g € G and for some g, € G . This implies
£0=G|_g=CG

d(g.h=d(g.ox+(1-o)g,) for all forall g € G and |a'| =1.
Therefore . d(g.h) =d(g.x)+¢ forallg € G . taking a=1 ie. h € R; _(x) . Hence the result follows .

(i) Let g, QP(%_ILE(g] . Then g tfig ) (g)forallgeG.
g=
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This implies
d(gy.g)=d(g.v)+eforallye (gn..\') andg G
ie.d(gy.g)=d(g.ax+(1-a)gy)+eforallg e G and o €l].
Therefore . d(g,.g) =d(g.x)+¢& forall g € G . by taking a=1and so. g, € R; .(x).The result follows .
Proposition 3. If G is a subset of a convex metric space (X, d,7) such that G is starshaped with respect
to g, . then R _(x) is starshaped with respect to g, provided g, € R _(x) .
Proof Lety€R; (x) . Thend(y.g)=d(x.g)+ ¢ forallg € G. Since G is starshaped with respect to g;.
W(v.g,.A)€G forall A €1. We claim that (v, g,.4) € R; .(x). Consider
dl(W(v.gg-A). gl = Ad(yv.g)+(1-A)d(g,.g) forallg e G

< A[d(x.g)+&]+ (- D[d(x.g)+&] forallg € G

=d(x,g)+eforallecsG.

This implies W (v, g,,4) € R; (x) for all A €l and for all y € R _(x).Hence R; _(x) is starshaped with

respect to g,.

Proposition 4. If G is a subset of a convex metric space (X.d.W) . g, € R; _(x) and 77(g,.x.4) € G for
some A €1, then W(g,.x,4) € R, (x).

Proof Since g, € R; .(x) . d(gy.g)<d(x.g)+&eforallgeG.

Consider

dl(W(gy.x. A)gl=Ad(g,.g)+(1-A)d(x.g) forallg G
2Ad(x.g)+e]l+(1-A)d(x.g) forallg e G
sAd(x.g)+e]l+(1-A)d(x.g)+ el forallg G
=d(x.g)+ecforallgeG.

Since W(g,.x.A)€G . we get W(g,.x.A) ER_ (x) .

A ER S0
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Remarks

1. If G is &€ —coChebyshev subset of a convex metric space (X.d. W), then R, [W(x.R; (x).A)]=R; (x)
provided W(x.R; (x).A)EG.

2. We have the following reformulation of Proposition 4 :
If G 1s a subset of a convex metric space (X.d. W) and x R{;L(gnj .thenxe R{;;[W(go.x. a)]if
W(g,.x.) €G and & £[0.1].

Proposition 5. If G is a subset of a metric space (X.d) , then R;E (g,)= {.\' eX:g R, (.\')} is a closed

Eo
subset of Y.
Proof Let x be a limit point of 7', (g,) . Then there exists a sequence <.\'n> in B3 (g,) such that x, — x.

Since g, ER; (x,) foralln ,
d(gg.g)=d(x,.g)+eforallgeG.
This gives

d(g;.g)<limd(x,.g)+c forallgeG

ie. digy.g)=d(x.g)+eforallgeC

- Ny e prl
and so . g, € R; (x) le. x€R; _(g,) -
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Proposition 6. If G is a subset of a metric space (X.d) , then Rg_lé (gy) = ﬂ R{;D aneC o)
ZOPeR e : fo g

Proof Letx R;S (g,) and g € G. Then g, € R, _(x)

and so
d(g,.g)=d(x.g)+eforallgeG.

This inequality is obviously true for g, It follows that x R{_;o .c(&) for all g € G. Therefore, Rg; (g,

1
ﬂ R{é’.u-g}-f (go)-

nler - -1 . ol - o The e
Conversely. let x € QR{go-g}-s (g,) iex ER{gg:g}.s(gU) tor all g € G. This gives

d(g,.g)=d(x.g)+eforallgeGandsox e R;E(go). Therefore . ﬂ R{';D_g., (g) Rgs (g,) and
geg 0
the proof is complete.

FUTURE DIRECTIONS

Analogous to the notions of & —approximation and & — coapproximation in the theory of best
approximation. one can think of defining the concepts of & —farthest and & —cofarthest points in the theory
of farthest points as under :

For a bounded subset K of a metric space ((X.d) and £>0 . an element k, € X is called an

& —farthest point(& — cofarthest point) to x € X if d(x.k,) 2 S(x. K)—¢& (d(k,. k) =2 6(x. K) — &) for all

k € K where &(x,K) =sup {d (x.y):vek } It is easy to see that the notion of £ — cofarthest points and
so of co—farthest points (taking £ = 0) are not meaningful.

It will be interesting to study £ — farthest points and prove results for £ —farthest points , simular to
those for £ —approximation available in [2]—[4]. [6] and [7].
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