

On ε -COAPPROXIMATION

Meenu Sharma and T.D.Narang

¹Principal, A.S.College for Women, Khanna 141401 Punjab ²Department of Mathematics Guru Nanak Dev University, Amritsar 143005 Punjab

------ABSTRACT------

For a subset G of a metric space (X,d) and $\varepsilon>0$, an element $g_0\in G$ is called an ε -coapproximation to $x\in X$ if $d(g_0,g)\leq d(x,g)+\varepsilon$ for all $g\in G$. The set of all ε -coapproximations to x in G is denoted by $R_{G,\varepsilon}(x)$. In this paper , we discuss some basic properties and structure of the set of elements of ε -coapproximation. The underlying spaces are metric spaces or convex metric spaces or metric linear spaces . Directions for future research have also been discussed .

Date of Submission: 10-12-2022 Date of Acceptance: 25-12-2022

The concept of elements of ε – approximation was introduced in normed linear spaces by Buck[2] under the name 'elements of good approximation'. Subsequently, many researchers discussed this concept (see [3], [4],[7] and references cited therein). Thereafter, the concept of ε -coapproximation was introduced and discussed in normed linear spaces by Vaezpour et al. [9]. Some results on ε – coapproximation have also been discussed by As'ad and Ghazal [1] in normed linear spaces. This concept was extended to metric spaces in [3] and was discussed in metric linear spaces in [5] and [6]. In this paper, we carry forward this study in spaces which are either metric spaces or metric linear spaces or convex metric spaces.

To start with, we recall a few definitions to be used in the sequel.

For a metric space (X,d) and a closed interval I=[0,1], a continous mapping $W: X \times X \times I \to X$ is said to be a <u>convex structure</u> on X if for all $x, y \in X$ and $\lambda \in I$,

$$d(u, W(x, y, \lambda)) \le \lambda d(u, x) + (1 - \lambda)d(u, y)$$

for all $u \in X$. The metric space (X, d) together with a convex structure W, denoted by (X, d, W) is called a convex metric space [8].

A non – empty subset G of a convex metric space (X, d, W) is said to be

- (i) convex if $W(x, y, \lambda) \in G$ for all $x, y \in G$ and $\lambda \in I$.
- (ii) starshaped with star centre p, if there is some $p \in G$ such that $W(x, p, \lambda) \in G$ for all $x \in G$ and $\lambda \in I$.

A metric space (X,d) is called a metric linear space if (i) X is a linear space (ii) addition and scalar multiplications are continous in X, and (iii) d is translation invariant i.e. d(x+z,y+z) = d(x,y) for all $x,y,z \in X$.

Let G be a subset of a metric space (X,d) and $\varepsilon>0$. An element $g_0\in G$ is called an $\underline{\varepsilon-approximation}$ [2] $(\varepsilon-coapproximation$ [3]) to $x\in X$ if

$$d(x,g_0) \le d(x,g) + \varepsilon (d(g_0,g) \le d(x,g) + \varepsilon)$$
 for all $g \in G$.

For $x \in X$, the set of all ε – approximations(ε – coapproximations) to x in G is denoted by $P_{G,\varepsilon}(x)(R_{G,\varepsilon}(x))$ i.e. $P_{G,\varepsilon}(x) = \{g_0 \in G : d(x,g_0) \le d(x,g) + \varepsilon \text{ for all } g \in G\}$

$$R_{G,\varepsilon}(x) = \{g_0 \in G : d(g_0, g) \le d(x, g) + \varepsilon \text{ for all } g \in G\}$$
.

For $\varepsilon > 0$, we obtain sets of best approximation (coapproximation)

The set G is called $\underline{\varepsilon-\text{proximinal}}(\underline{\varepsilon-\text{coproximinal}})$ if $P_{G,\varepsilon}(x)(\mathcal{R}_{G,\varepsilon}(x))$ is non-empty for each $x \in X$. It is said to be $\underline{\varepsilon-\text{Chebyshev}}(\underline{\varepsilon-\text{coChebyshev}})$ if $P_{G,\varepsilon}(x)(\mathcal{R}_{G,\varepsilon}(x))$ contains exactly one element for every $x \in X$.

Since elements of ε – approximation always exist for every $\varepsilon>0$, every non – empty subset of X is ε – proximinal. On the other hand, elements of ε – coapproximation may or may not exist. For $\varepsilon=0$, ε – coproximinal and ε – coChebyshev sets are coproximinal and coChebyshev sets respectively. It is easy to see that $R_{G,\varepsilon}(x)$ is a closed set if G is a closed subset of X, $R_G(x) = \bigcap_{\varepsilon>0} R_{G,\varepsilon}(x)$ and $R_{G,\varepsilon}(x) \subseteq R_{G,\delta}(x)$ for every $\delta \ge \varepsilon$.

For a linear subspace G of a metric linear space (X,d) and $\varepsilon > 0$, we define $R_{G,\varepsilon}^{-1}(0) = \{x \in X : 0 \in R_{G,\varepsilon}(x)\}$.

For $x, y \in X$, we say that x is $\underline{\varepsilon}$ – orthogonal to y [9], $x \perp_{\varepsilon} y$ if $d(x, 0) \leq d(x, \alpha y) + \varepsilon$ for all real scalars α . For non – empty subsets A, B of X, we say that A is ε – orthogonal to B; $A \perp_{\varepsilon} B$, if $a \perp_{\varepsilon} b$ for all $a \in A$, $b \in B$.

We define

$$\overset{\vee}{G} = \{x \in X : G \perp x\}$$

$$\overset{\vee}{G}_{\varepsilon} = \{x \in X : G \perp_{\varepsilon} x\}$$

$$\equiv \{x \in X : g \perp_{\varepsilon} x \text{ for all } g \in G\}$$

Clearly
$$\overset{\vee}{G} = \bigcap_{\varepsilon>0} \overset{\vee}{G}_{\varepsilon}$$
.

Before proceeding further, we give few examples concerning elements of ε – coapproximation.

Example 1. Let $X = \Box^2$ with Euclidean metric and $G = \{(x, y) : x^2 + y^2 = 1\}$. Then for x = (0, 0) and $\varepsilon = \frac{1}{2}$, we have

$$R_{G,\frac{1}{2}}(0,0) = \{g_0 \in G : d(g_0,g) \le d((0,0),g) + \frac{1}{2} \text{ for all } g \in G\}$$

$$= \left\{ g_0 \in G : d(g_0, g) \le \frac{3}{2} \text{ for all } g \in G \right\}$$

 $= \phi$.

If we take $\varepsilon \ge 1$ then $R_{G,\varepsilon}(0,0) = G$.

Example 2. For $\varepsilon > 0$, let $X = \{(x, y) \in \square^2 : x^2 + y^2 = \varepsilon^2\} \cup \{(0, 0)\}$ with Euclidean metric and

 $G = \{(x,y): x^2 + y^2 = \varepsilon^2\}$. Then $R_{G,\varepsilon}(z) = G$ for each $z \in X$ *i.e.* G is ε – coproximinal . But G is not coproximinal as $R_G(0,0) = \phi$.

It is easy to see that $R_{G,\varepsilon}(x)$ may or may not be closed . However , it is closed if G is closed. Example 3 [1] Let $X=\Box^n$ with the norm

$$||(x_1, x_2, ..., x_n)|| = |x_1| + |x_2| + \cdots + |x_n|$$

and $\varepsilon > 0$, $G = \left\{ (g_1, g_2, ..., g_n) \in \square^n : |g_i| < \frac{\varepsilon}{n} \text{ for all } 1 \le i \le n \right\}$. Then G is ε -coproximinal but G is not closed.

We now discuss some basic properties of elements of ε – coapproximation , structure of sets of elements of co – approximation and directions for future research .

<u>Proposition 1.</u> If *G* is a convex subset of a convex metric space (X, d, W), $x \in X$ and $\varepsilon > 0$, then $R_{G,\varepsilon}(x)$ is a convex subset of *X*.

<u>Proof</u> Let $g_1, g_2 \in R_{G,\varepsilon}(x)$ and $0 \le \alpha \le 1$. Consider

$$d\big[W(g_1,g_2,\alpha),\mathbf{g}\big] \leq \alpha d(g_1,g) + (1-\alpha)d(g_2,g) \text{ for all } g \in G$$

$$\leq \alpha [d(x,g) + \varepsilon] + (1-\alpha)[d(x,g) + \varepsilon]$$
 for all $g \in G$

 $= d(x,g) + \varepsilon$ for all $g \in G$.

Therefore, $d[W(g_1, g_2, \alpha), g] \le d(x, g) + \varepsilon$ for all $g \in G$ and $0 \le \alpha \le 1$.

This gives $W(g_1, g_2, \alpha) \in R_{G, \varepsilon}(x)$ as $W(g_1, g_2, \alpha) \in G$.

Hence $R_{G,\varepsilon}(x)$ is a convex set .

Proposition 2 Let G be a linear subspace of a metric linear space (X, d) and $\varepsilon > 0$. Then

(i) $g_0 \in R_{G,\varepsilon}(x)$ if and only if $0 \in R_{G,\varepsilon}(x - g_0)$,

(ii)
$$g_0 \in R_{G_{\varepsilon}}(x)$$
 if $x - g_0 \in G_{\varepsilon}$,

- (iii) for $g_0 \in G$ and for any scalar α , we have $\alpha g_0 \in R_{G,\varepsilon}(\alpha x)$ if and only if $x g_0 \in \overset{\vee}{G}_\varepsilon$,
- (iv) $R_{G,\varepsilon}(x) = G \cap \left[x R_{G,\varepsilon}^{-1}(0) \right]$,

(v)
$$R_{G,\varepsilon}(x) \supseteq \bigcup_{g_0 \in G} \left[\bigcap_{g \in G} P_{[g_0,x],\varepsilon}(g) \right]$$
, where $[g_0,x] \equiv \{\alpha x + (1-\alpha)g_0, |\alpha| \le 1\} \cap G$,

$$\begin{split} &(v)\;R_{G,\varepsilon}(x) \supseteq \bigcup_{g_0 \in G} \left[\bigcap_{g \in G} P_{[g_0,x],\varepsilon}(g)\right], \text{ where } \left[g_0,x\right] \equiv \left\{\alpha x + (1-\alpha)g_0,\; \left|\alpha\right| \leq 1\right\} \cap G,\\ &(vi)\;\text{For } x \in X \mid G\;,\; \left\{g_0 \in G: \bigcap_{g \in G} P_{\langle g_0,x\rangle,\varepsilon}(g)\right\} \subseteq R_{G,\varepsilon}(x) \text{ where } \left\langle g_0,x\right\rangle = \left\{\alpha x + (1-\alpha)g_0,\alpha \in \Box\right\}. \end{split}$$

Proof For proofs of (i), (ii) and (iii) we refer to [6]

$$(iv)\ g_0\in G\cap \left[x-R_{G,\varepsilon}^{-1}(0)\right] \Leftrightarrow g_0\in G \text{ and } g_0\in \left[x-R_{G,\varepsilon}^{-1}(0)\right]$$

$$\Leftrightarrow g_0 \in G \text{ and } g_0 = x - g_1, g_1 \in R_{G,\varepsilon}^{-1}(0)$$

$$\Leftrightarrow g_0 \in G \text{ and } g_1 = x - g_0 \in R_{G,\varepsilon}^{-1}(0)$$

$$\Leftrightarrow g_0 \in G \text{ and } x - g_0 \in R_{G,\varepsilon}^{-1}(0)$$

$$\Leftrightarrow g_0 \in G \text{ and } g_0 \in R_{G,\varepsilon}(x)$$
.

Therefore, $G \cap \left[x - R_{G,\varepsilon}^{-1}(0) \right] = R_{G,\varepsilon}(x)$.

(v) Let $h \in \bigcup_{g \in G} \left[\bigcap_{g \in G} P_{[g_0,x],\varepsilon}(g)\right]$. Then $h \in P_{[g_0,x],\varepsilon}(g)$ for all $g \in G$ and for some $g_0 \in G$. This implies

 $d(g,h) \le d(g,\alpha x + (1-\alpha)g_0)$ for all for all $g \in G$ and $|\alpha| \le 1$.

Therefore , $d(g,h) \leq d(g,x) + \varepsilon$ for all $g \in G$, taking $\alpha = 1$ *i.e.* $h \in R_{G,\varepsilon}(x)$. Hence the result follows .

(vi) Let
$$g_0\in\bigcap_{g\in G}P_{\langle g_0,x\rangle,\varepsilon}(g)$$
 . Then $g_0\in P_{\langle g_0,x\rangle,\varepsilon}(g)$ for all $g\in G$.

This implies

$$d(g_0,g) \le d(g,y) + \varepsilon$$
 for all $y \in \langle g_0, x \rangle$ and $g \in G$

i.e.
$$d(g_0, g) \le d(g, \alpha x + (1 - \alpha)g_0) + \varepsilon$$
 for all $g \in G$ and $\alpha \in \square$.

Therefore, $d(g_0,g) \le d(g,x) + \varepsilon$ for all $g \in G$, by taking α =1 and so, $g_0 \in R_{G,\varepsilon}(x)$. The result follows. Proposition 3. If G is a subset of a convex metric space (X,d,W) such that G is starshaped with respect to g_0 , then $R_{G,\varepsilon}(x)$ is starshaped with respect to g_0 provided $g_0 \in R_{G,\varepsilon}(x)$.

 $\begin{aligned} & \underline{\text{Proof}} \text{ Let } \mathbf{y} \in R_{G,\varepsilon}(x) \text{ . Then } d(y,g) \leq d(x,g) + \varepsilon \text{ for all } g \in G. \text{ Since } G \text{ is starshaped with respect to } g_0, \\ & W(y,g_0,\lambda) \in G \text{ for all } \lambda \in \mathbf{I} \text{ . We claim that } W(y,g_0,\lambda) \in R_{G,\varepsilon}(x). \text{ Consider} \\ & d[(W(y,g_0,\lambda),g] \leq \lambda d(y,g) + (1-\lambda)d(g_0,g) \text{ for all } g \in G \end{aligned}$

$$\leq \lambda [d(x,g) + \varepsilon] + (1-\lambda)[d(x,g) + \varepsilon]$$
 for all $g \in G$

$$= d(x,g) + \varepsilon$$
 for all $g \in G$.

This implies $W(y, g_0, \lambda) \in R_{G,\varepsilon}(x)$ for all $\lambda \in I$ and for all $y \in R_{G,\varepsilon}(x)$. Hence $R_{G,\varepsilon}(x)$ is starshaped with respect to g_0 .

<u>Proposition 4.</u> If G is a subset of a convex metric space (X, d, W), $g_0 \in R_{G,\varepsilon}(x)$ and $W(g_0, x, \lambda) \in G$ for some $\lambda \in I$, then $W(g_0, x, \lambda) \in R_{G,\varepsilon}(x)$.

<u>Proof</u> Since $g_0 \in R_{G,\varepsilon}(x)$, $d(g_0,g) \le d(x,g) + \varepsilon$ for all $g \in G$.

Consider

$$d[(W(g_0, x, \lambda), g] \le \lambda d(g_0, g) + (1 - \lambda)d(x, g)$$
 for all $g \in G$

$$\leq \lambda [d(x,g) + \varepsilon] + (1-\lambda)d(x,g)$$
 for all $g \in G$

$$\leq \lambda [d(x,g) + \varepsilon] + (1-\lambda)[d(x,g) + \varepsilon]$$
 for all $g \in G$

$$= d(x,g) + \varepsilon$$
 for all $g \in G$.

Since
$$W(g_0, x, \lambda) \in G$$
, we get $W(g_0, x, \lambda) \in R_{G_S}(x)$.

Remarks

1. If G is ε – coChebyshev subset of a convex metric space (X,d,W), then $R_{G,\varepsilon}[W(x,R_{G,\varepsilon}(x),\lambda)] = R_{G,\varepsilon}(x)$ provided $W(x,R_{G,\varepsilon}(x),\lambda) \in G$.

2. We have the following reformulation of Proposition 4:

If G is a subset of a convex metric space (X, d, W) and $x \in R_{G,\varepsilon}^{-1}(g_0)$, then $x \in R_{G,\varepsilon}^{-1}[W(g_0, x, \alpha)]$ if $W(g_0, x, \alpha) \in G$ and $\alpha \in [0,1]$.

Proposition 5. If G is a subset of a metric space (X,d), then $R_{G,\varepsilon}^{-1}(g_0) \equiv \{x \in X : g_0 \in R_{G,\varepsilon}(x)\}$ is a closed subset of X.

<u>Proof</u> Let x be a limit point of $R_{G,\varepsilon}^{-1}(g_0)$. Then there exists a sequence $\langle x_n \rangle$ in $R_{G,\varepsilon}^{-1}(g_0)$ such that $x_n \to x$. Since $g_0 \in R_{G,\varepsilon}(x_n)$ for all n,

$$d(g_0,g) \le d(x_n,g) + \varepsilon$$
 for all $g \in G$.

This gives

$$d(g_0, g) \le \lim d(x_n, g) + \varepsilon$$
 for all $g \in G$

i.e.
$$d(g_0,g) \le d(x,g) + \varepsilon$$
 for all $g \in G$

and so ,
$$g_0 \in R_{G,\varepsilon}(x)$$
 i.e. $x \in R_{G,\varepsilon}^{-1}(g_0)$.

<u>Proposition 6.</u> If G is a subset of a metric space (X,d), then $R_{G,\varepsilon}^{-1}(g_0) = \bigcap_{g \in G} R_{(g_0,g),\varepsilon}^{-1}(g_0)$.

<u>Proof</u> Let $x \in R_{G,\varepsilon}^{-1}(g_0)$ and $g \in G$. Then $g_0 \in R_{G,\varepsilon}(x)$

and so

$$d(g_0,g) \le d(x,g) + \varepsilon$$
 for all $g \in G$.

This inequality is obviously true for g_0 . It follows that $x \in R^{-1}_{\{g_0,g\},\varepsilon}(g_0)$ for all $g \in G$. Therefore, $R^{-1}_{G,\varepsilon}(g_0) \subseteq \bigcap_{g \in G} R^{-1}_{\{g_0,g\},\varepsilon}(g_0)$.

Conversely, let
$$x \in \bigcap_{g \in G} R^{-1}_{\{g_0,g\},\varepsilon}(g_0)$$
 i.e. $x \in R^{-1}_{\{g_0,g\},\varepsilon}(g_0)$ for all $g \in G$. This gives
$$d(g_0,g) \le d(x,g) + \varepsilon \text{ for all } g \in G \text{ and so } x \in R^{-1}_{G,\varepsilon}(g_0). \text{ Therefore }, \bigcap_{g \in G} R^{-1}_{\{g_0,g\},\varepsilon}(g_0) \subseteq R^{-1}_{G,\varepsilon}(g_0) \text{ and the proof is complete.}$$

FUTURE DIRECTIONS

Analogous to the notions of ε – approximation and ε – coapproximation in the theory of best approximation, one can think of defining the concepts of ε – farthest and ε – cofarthest points in the theory of farthest points as under :

For a bounded subset K of a metric space (X,d) and $\varepsilon>0$, an element $k_0\in K$ is called an $\underline{\varepsilon-\text{farthest point}}(\varepsilon-\text{cofarthest point})$ to $x\in X$ if $d(x,k_0)\geq \delta(x,K)-\varepsilon$ $(d(k_0,k)\geq \delta(x,K)-\varepsilon)$ for all $k\in K$ where $\delta(x,K)\equiv\sup\{d(x,y):y\in K\}$. It is easy to see that the notion of $\varepsilon-\text{cofarthest points}$ and so of co-farthest points (taking $\varepsilon=0$) are not meaningful.

It will be interesting to study ε – farthest points and prove results for ε – farthest points, similar to those for ε – approximation available in [2]–[4], [6] and [7].

REFERENCES

- [1] As'ad Y.As'ad and A.M.A. Ghazal , On ε proximinal and ε coChebyshev sets in normed spaces, International Mathematical Forum 5(2010) , 3001-3005 .
- [2] R.C. Buck, Applications of duality in approximation theory, Approximation of Functions, Elsevier, Amsterdam (1965), 27 – 42.
- [3] T.D.Narang, On good approximation, J. Scientific Research, 49(1999), 25-43.

DOI:10.9790/1813-11121219

- [4] T.D.Narang , On simultaneous characterization of the set of good approximation , African Diaspora J.Math. 16 (2014), 23-30.
- [5] T.D.Narang and Sahil Gupta, On ε coapproximation in quotient spaces, Indian J.Math. 58(2016), 17-29 .
- [6] Meenu Sharma and T.D.Narang, On invariance of ε orthogonality, ε approximation and ε coapproximation in metric linear spaces, International J. Engg. Sci. 4 (2015), 20–25.
- [7] Ivan Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer Verlag, New York (1970).
- [8] W. Takahashi, A convexity in metric spaces and non-expansive mappings I, Kodai Math. Sem. Rep. 22 (1970),142-149.
- [9] S.M. Vaezpour , R. Hasani and H. Mazaheri , On the ε best coapproximation , International Mathematical Forum , 2 (2007), 2599 2606 .

DOI:10.9790/1813-11121219 <u>www.theijes.com</u> Page 19