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--------------------------------------------------------ABSTRACT----------------------------------------------------------- 

The asymptotic behavior of laminar forced convection in a circularduct, for a Herschel-Bulkley fluid with 

constantproperties, is analyzed by taking into account the viscous dissipation effects. The axial heat conduction 
in the fluid isneglected. The asymptotic temperature field and the asymptotic value of the Nusselt number are 

determined for every boundary condition that allows a fully developed region. Comparisons with other existing 

solutions for Newtonian and non-Newtonian cases are presented. 
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Nomenclature 

a  ratio of yield shear stress to wall shear stress 

 b R  solution of Eqs. (19) and (20) 

 B t X  local Brinkman number, 
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C  dimensionless constant employed in Eq. (18) 

p
c  specific heat at constant pressure 

f  function of R  employed in Eq. (15) 

F  function of R  and  b R  employed in Eq. (22) 

g  arbitrary function of r  and x  

K  consistency index (Pa.s) 

m  inverse of power-law exponent, 
1

n
 

n  power-law exponent 

N u  Nusseltnumber, 
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q  wall heat flux, J s  

r  radial coordinate, m  

0
r  radius of the tube, m  

R  dimensionless radial coordinate, 
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T  temperature, K  

0
T  inlet temperature distribution, K  

u  velocity component in the axial direction, 
1

m s


  

m
u  mean axial velocity, 

1
m s


  

U  dimensionlessaxialvelocity, 

m

u

u
 

x  axial coordinate, m  

X  dimensionless axial coordinate, 

0
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r P e
 

Greeks Symbols  

  dimensionless parameter defined in Eq. (14) 

  thermal conductivity of fluid, 
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  yield shear stress, P a  
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  dimensionless temperature, 
 

1

0 0

1

n

b

n

m

r T T

K u







 

  dimensionless temperature, 
 

 

w

w b

T T

T T




 

Subscripts  

b  bulk quantity 

w  wall condition 

  quantity evaluated for X    

 

I. Introduction 
Considerable attention has been devoted to convective heat transfer in non-Newtonian fluids during the 

past few years, mainly because of the increasing importance of these fluids in variouschemical, processing, and 

nuclear industries.Heat transfer to Herschel-Bulkley fluids in laminar flow through tubes has been investigated 

to some extent. Nouar et al. [1] presented a theoretical and experimental study, considering a constant wall heat 
flux boundary condition. In this paper, a correlation of Nusselt number is proposed taking into account the 

modification of the wall shear rate induced by the rheological properties, and the temperature dependent 

character of the fluid. In a similar study, Nouar et al. [2] obtained numerical results assuming fully developed 

flow at the entrance of the heated region. Two boundary conditions have been considered, constant wall heat 

flux and constant wall temperature. Axial conduction was neglected, and the temperature dependence of the 

consistency index was considered. Correlations for friction factor and Nusselt number were also proposed. 

Javaherdeh and Devienne [3] presented experimental and numerical results concerning heat transfer for 

Herschel-Bulkley fluids, the consistency of which depends on temperature. They have considered the flow 

through a horizontal cylindrical duct submitted to a wall cooling by an external counter current flow.They 

developed a simple model predicting the wall temperature distribution.  

Sayed-Ahmed [4] introduced a numerical solution for laminar heat transfer of a Herschel-Bulkley fluid 
in the entrance region of a square duct assuming fully developed velocity profile. He solved the energy equation 

with dissipation effect using an implicit Crank-Nicolson method. Analytical solutions are obtained by Pinho [5] 

for heat transfer in concentric annular flows of viscoelastic fluids modeled by the simplified Phan-Thien-Tanner 

constitutive equation. Solutions for thermal and dynamic fully developed flow are presented for both imposed 

constant wall heat fluxes and imposed constant wall temperatures, always taking into account viscous 

dissipation. Khatyr et al. [6] give analytical solutions for fully developed laminar forced convection in circular 

ducts for a Herschel-Bulkely fluid in a horizontal duct heated uniformly, and with various axial distributions of 
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wall heat flux for which polynomial and logarithmic functions was considered as examples. Heat transfer with 

the effect of viscous dissipation for steady, laminar, both hydro-dynamically and thermally fullydeveloped 

pseudo-plastic fluid through a channel of Couette-Poiseuille flow, where both the plates are kept at specified but 
different constant heat flux ratios being considered as thermal boundary conditions is studied by Sheela-

Francisca [7]. Rashidi and Erfani [8] studied analytically the thermal-diffusion (Soret effect) and diffusion 

transfer of a steady MHD (magnetohydrodynamic) convective and slip flow due to a rotating disk with viscous 

dissipation and ohmic heating. They presented the influence of the slip parameter and the magnetic field 

parameter and of Eckert, Schmidt, DuforandSoret numbers on the profiles of the dimensionless velocity, 

temperature and concentration distributions. Rashidi et al. [9] studied analytically the effect of the buoyancy 

force and thermal radiation in MHD boundary layer viscoelastic fluid flow over a continuously moving 

stretching surface in a porousmedium. They concluded that the effect of viscoelastic parameter is to decrease the 

velocity and increase the temperature in boundary-layer.Abbasbandy et al. [10] presented the numerical and 

analytical solutions for Falkner-Skan flow of MHD Oldroyd-B fluid. They used homotopy analysis method and 

numerical Keller-box method. They concluded that the skin friction coefficient in Oldroyd-B fluid is larger 
when compared with viscous fluid, and that the relaxation and retardation times have opposite effects on the 

velocity components. Recently, fourth order Runge-Kutta method has been used to investigate the unsteady 

MHD free convective boundary-layer flow due to a permeable stretching vertical surface in a nano-fluid [11]. 

To our knowledge, no semi-analytical solution of the forced convection with viscous dissipation in a 

circular duct of Herschel-Bulkley fluid with no-uniform wall heat flux distribution  w
q x  which tends to 

infinity for large value of x , is available in the literature. The aim of the present work is to study a fully 

developed laminar forcedconvection in circular ducts for a Herschel-Bulkely fluid with viscous dissipation and 

negligible axial heat conduction in the fluid. The effect of the dimensionless radius of the plug core, the power-

law exponent and the Brinkman number are presented and compared to those obtained in previous works.  

This article is organized as follows: in Section 2, the considered fully developed velocity profile and 

the energy equations are presented; Section 3 is devoted to the establishment and discussion of the results of the 

asymptotic behavior of the temperature field and the Nusselt number; the conclusion is summarized in Section 
4.  

 

II. Analysis 

Let us consider a Herschel-Bulkley fluid of constant physical properties flowing ina circular duct of radius 
0

r , 

submitted to a variable axial wall heat flux  w
q x . The flow is supposed to be steady, laminar, fully developed 

and axisymmetric. Thefully developed velocity profile for a laminar pipe flow of a Herschel-bulkley is given as 

follows [12]: 
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dimensionless radius of the plug flow region,
c

  the yield shear stress, 
w

  the wall shear stress, r  the radial 

coordinate, 
c

r  the yield radius, and 
m

u  the mean value of velocity.  

The energy equation and associated boundary conditions are given by Bejan[13]  
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where, , , k   and 
p

c  are the density of fluid, thermal conductivity, the consistency index, and the specific 

heat at constant pressure, respectively. The condition that leads to an asymptotic thermally developed region in 

the case of the forced convection problem described above is defined by Bejan [13] 
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where,  w
T x  and  b

T x  are the wall temperature and the bulk temperature, respectively, P e  is the Peclet 

number, and 

0

r
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is the asymptotic dimensionless temperature which is a continuous and differentiable 

function of r . The bulk value of an arbitrary function  ,g r x  is defined as 
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If condition (5) holds, the asymptotic value of the Nusselt number N u


exists in Bejan[13] and is given by 
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The proof presented by Barletta [14], allows to check that the boundary value problem, expressed by Eqs. (2)-

(4), has a unique solution, and that both the asymptotic behaviour of the temperature field and of the Nusselt 

number are independent of the inlet section temperature distribution.  

Introducing the dimensionless quantities 
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Eqs. (2) and (3) can be rewritten in the dimensionless form  
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where,  B r X  is a local Brinkman number defined as:  
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Integrating Eq. (9) over the interval 0 1R   and employing Eq. (10) yields  
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where,  b
X  is the bulk value of the dimensionless temperature  ,R X  

 

III. Asymptotic Behavior of the Temperature Field 
In this work, the asymptotic temperature field and the asymptotic Nusselt number are analyzed in the case of 

axial distributions of wall heat flux which yield a thermally developed region, such as 

  0
X

L im B r X
 

          (13) 

and 
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 1
2

X

d B r X
L im

B r X d X


 

          (14) 

where,  is a non-vanishing positive real number. Eq. (13) shows that the effect of viscous dissipation is 

negligible in the thermally developed region. Eqs. (13) and (14) are satisfied by axial wall heat flux distributions 

which tends to infinity when X   , and which behave asymptotically as    
2

,
X

Q X e Q X


 can be a 

polynomial function, or rational function where the degree of the numerator is greater than or equal to the 

degree of the denominator, or any other function satisfying Eq. (13).  

Therefore, in these distributions the dimensionless temperature field for large value of X  can be expressed by 
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By substituting Eq. (15) in Eqs. (9) and (10) and taking into account Eqs. (12)(14), one obtains  
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Eq. (16) can be reduced to a first-order differential equation using the following transformation 
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where, C  is a constant given by the boundary condition at 1R   and  b R b is a continuous and 

differentiable function of R .  

Substituting Eq. (18) into Eq. (16), gives  

2

2

d b R U
R b R b

d R


           (19) 

Eqs. (17) and (18) become then 

  0 0b            (20) 
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Eq. (19) can also be written as: 
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This equation with boundary condition (20) is integrated numerically using fourth-order Runge-Kutta method 

[15, 16]. This method is still one step, but dependent on estimates of the solution at different points, and requires 

4 evaluations of function  ,F R b  at every time step.  

R  is the independent variable,  b b R is the unknown function of  0
, 0R b b  is the given condition (Eq. 

(20)), and F  is a given function of R and b which describes the differential Eq. (22) 

The variable R is discretized, say 
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Thereafter, the constant C and the function  f R  are computed by usingSimpson integration method.The 

asymptotic dimensionless temperature  R


  isdetermined by the following expression 
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Taking into account Eqs. (7), (17), (18),(21) and (24), the asymptotic value of N u is given by 

 

 
        

 

(c) 3n   

Fig. 1 Velocity profiles used in the simulations. 
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Figs. 1a-1c represent the variation of dimensionless axial velocity U versus R for different values of a

and n . 

The obtained asymptotic values of Nusselt number arecomparedwiththoseof Barletta[14] inthepower-

lawfluidcase  0a  (Table1).Wecannote thatthe comparison in the power-law case is verysatisfactory.Figs.2a-

2cshow theasymptotictemperatureprofilefordifferentvaluesof  andfor 0 .4a  . One notes that for large values 

of  such as 1 0 0 0   (Fig. 2c), the temperature  R


  does not vary significantly with respect to n . Figs. 

3a-3c represent the variation of N u


 versus  for different values of a and of n . These figures show that for 

n fixed, N u


 increaseswitha.When  increasesand n decreases,theeffect of the yield stress becomes 

important(Tables 2 and 3). 

 

Table 1 Values of N u


 for various values of n compared with those of Barletta [14] in the power-law 

fluid case  0a  . 

 

  

 
1

5
n   

 
1

3
n   

 3n   

Present work Barletta [14] Present work Barletta [14] Present work Barletta [14] 

1 5.6141 5.6141 5.1431 5.1431 4.1324 4.1324 

5 5.9774 5.9774 5.4818 5.4818 4.4358 4.4358 

10 6.3858 6.3858 5.8613 5.8613 4.7715 4.7715 

20 7.0896 7.0897 6.5129 6.5129 5.3395 5.3395 

30 7.6865 7.6865 7.0634 7.0634 5.8131 5.8132 

40 8.2081 8.2082 7.5436 7.5436 6.2230 6.2230 

50 8.6740 8.6741 7.9717 7.9717 6.5860 6.5860 

60 9.0968 9.0969 8.3597 8.3597 6.9143 6.9144 

70 9.4851 9.4852 8.7159 8.7159 7.2145 7.2146 

80 9.8452 9.8453 9.0459 9.0459 7.4920 7.4921 

90 10.1817 10.1818 9.3542 9.3542 7.7508 7.7509 

100 10.4982 10.4983 9.6439 9.6439 7.9937 7.9938 

200 12.9731 12.9732 11.9067 11.9067 9.8822 9.8824 

500 17.4740 17.4740 16.0133 16.0133 13.2900 13.2902 

1,000 22.0460 22.0461 20.1794 20.1794 16.7352 16.7354 

10,000 48.3120 48.3125 44.0751 44.0751 36.4280 36.4282 
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    (c) 1 0 0 0   

Fig. 2 Evolution the  R


  for various values of n and  , and for 0 .4a  . 

 

 
 

  

(c) 3n   

Fig. 3 Variation of N u


 versus  for various values of a : (a) 
1

3
n  , (b) 1n   and (c) 3n  . 
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Table 2 Asymptotic values of N u for various values of  and a , and for 
1

3
n  . 

  0a   0 .2a   0 .4a   0 .6a   0 .8a   

1 5.1431 5.4157 5.7934 6.3201 7.0691 

5 5.4818 5.7652 6.1624 6.7273 7.5491 

10 5.8613 6.1576 6.5775 7.1849 8.0916 

20 6.5129 6.8333 7.2937 7.9765 9.0367 

30 7.0634 7.4054 7.9014 8.6496 9.8454 

40 7.5436 7.9051 8.4329 9.2390 10.5569 

50 7.9717 8.3511 8.9077 9.7658 11.1949 

60 8.3597 8.7557 9.3385 10.2442 11.7756 

70 8.7159 9.1272 9.7345 10.6839 12.3101 

80 9.0590 9.4717 10.1016 11.0916 12.8070 

90 9.3542 9.7935 10.4448 11.4729 13.2717 

100 9.6439 10.0960 10.7674 11.8314 13.7093 

200 11.9067 12.4610 13.2914 14.6359 17.1407 

500 16.0133 16.7582 17.8824 19.7383 23.3965 

1,000 20.1794 21.1208 22.5471 24.9243 29.7537 

10,000 44.7351 46.1638 49.3499 54.7492 66.2931 

 

Table 3 Asymptotic values of N u for various values of  and a , and for 3n  . 

   0a   0 .2a   0 .4a   0 .6a   0 .8a   

 1 4.1324 4.2393 4.5164 5.0840 6.1377 

 5 4.4358 4.5415 4.8154 5.3939 6.5156 

 10 4.7715 4.8767 5.1493 5.7413 6.9385 

 20 5.3395 5.4461 5.7208 6.3386 7.6655 

 30 5.8331 5.9225 6.2023 6.8438 8.2795 

 40 6.2230 6.3354 6.6217 7.2849 8.8143 

 50 6.5863 6.7021 6.9952 7.6786 9.2904 

 60 6.9143 7.0334 7.3335 8.0358 9.7210 

 70 7.2145 7.3368 7.6437 8.3638 10.1158 

 80 7.4920 7.6175 7.9310 8.6680 10.4809 

 90 7.7508 7.8793 8.1993 8.9522 10.8216 

 100 7.9937 8.1250 8.4514 9.2195 11.1413 

 200 9.8822 10.0373 10.4173 11.3105 13.6280 

 500 13.2900 13.4911 13.9773 15.1144 18.1187 

 1,000 16.7352 16.9843 17.5825 18.9770 22.6725 

 10,000 36.4280 36.9584 38.2165 41.1323 48.8644 

 

IV. Conclusions 
  Laminar and hydrodynamically developed forced convection of aHerschel-Bulkley fluid flowing in a 

circular tube with a prescribed axial distribution of wall heat flux has been studied. The effect of viscous 

dissipation has been taken into account, while the axial heat conduction in the fluid has been considered as 

negligible. It has been supposed that, when  ,
w

x q x  tends to infinity, while 
 

 1 w

w

d q x

q x d x

   

    
  

 

tends to a positive constant. If these conditions are fulfilled, the effect of viscous dissipation becomes negligible 

in the thermally developed region and the asymptotic value of the Nusselt number is a function of n , a and the 

dimensionless parameter  . The asymptotic values of the Nusselt number N u have been evaluated 

numerically for some values of n , a and  . The comparisons between our theoretical results and those 
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published in the literature for the Newtonian fluid case and the non-Newtonian fluid case (power-law fluid) 

show very closeagreement. 
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