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--------------------------------------------------------ABSTRACT----------------------------------------------------------- 

In this paper, Nusselt numbers for a power-law fluid in a fully developed laminar flow between parallel plates 

with constant, and different, wall heat fluxes in the presence of dissipation effects are presented. The Nusselt 
numbers values were obtained following two different approaches. One is the “classical” approach, based on a 

single bulk temperature, and this approach is used in this work to obtain for the first time generic analytical 

expressions for Nusselt numbers. In the new approach, different bulk temperatures are used for each N u   

determination, one bulk temperature for each side of the location of the temperature profile where the derivative 

0
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NOMENCLATURE  

b  duct spanwise length (m)  

*
B r generalized de Brinkman, 
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c  specific heat of the fluid 
3

J

m K

 
 

 

 

h
D  duct hydraulic diameter,  4

h
D H m  

h  convective heat transfer coefficient
2

W

m K

 
 

 

 

H  half distance between parallel plates  m  

k  thermal conductivity of the fluid 
W

m K

 
 

 

 

n  power law index  

N u  Nusselt number, h
h D
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k

  

N u  Nusselt number, new approach  
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w
q  heat flux at the wall 

2

W

m

 
 
 

 

*
T  nondimensional temperature, 

 

 

0*

h w

T T k
T

D q


  

T  bulk temperature K  

T  local temperature K  

0
T  reference bulk temperature K  

U  bulk velocity (m/s)  

*
u  nondimensional local velocity, 

* u
u

U
  

x  longitudinal coordinate  m  

*
x nondimensional longitudinal coordinate, 

*

h

x
x

D
  

y  coordinate normal to the parallel plates  m  

0
d T

d y

y


 coordinate of the point where  0
T

m
y





 

*
y  nondimensional coordinate normal to the wall, 

* y
y

H
  

Greek Symbols  

  compacting constant,  

  compacting constant, 
   

 

*
1 8 2 1

4 4

B r n

n


 



 

  compacting constant, 
 1n

n



  

  compacting constant, 
 

1

2 1
 

   

 

  compacting constant, 
 

 1

  








 

  compacting constant, 
 

 1

 








 

  density of the fluid 
3

k g

m

 
 
 

 

  wall heat flux ratio, 
,1

, 2

w

w

q

q
   

*
  nondimensional shear stress, 

* *yx

w

y





   

w
  wall shear stress, absolute value  P a  

y x
  local shear stress, absolute value  P a  

Subscripts  

1  relative to wall 1, cf. Fig. 1  
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2  relative to wall 2, cf. Fig. 1  

I  relative to region I, cf. Fig. 1  

II  relative to region II, cf. Fig. 1  

w wall  

 

I. INTRODUCTION 
An analytic study regarding heat transfer in a fully developed laminar flow between parallel plates of 

a power-law fluid with constant, but different, wall heat fluxes, in the presence of viscous dissipation, is 

presented in this work. As it is explained in detail below, the same subject has been partially addressed in the 

literature previously but not in the precise manner undertaken here which, as we will show, may be 

advantageous.  

In the review article of Hartnett and Kostic (1989), restricted to the hydrodynamics and heat transfer 

aspects of non-Newtonian flow in rectangular duct geometries, the analytical solution to this problem presented 

by the authors was due to Skelland (1967), which is only valid for constant and equal heat fluxes at the walls in 
the absence of viscous dissipation. In the review work of Lawal and Mujumdar (1987) where an overview of 

laminar duct flow and heat transfer regarding purely viscous non-Newtonian fluids taking into account viscous 

dissipation and the effect of variables properties is presented, again just the particular case of constant and 

symmetric wall heat fluxes is discussed. Etemad and Majumdar (1994) carried out a numerical study regarding 

the simultaneously developing laminar flow and heat transfer of a power-law fluid flowing between two parallel 

plates. Several different thermal boundary conditions were examined. They showed that the Nusselt number is 

significantly affected by the variation of the fluid viscosity with temperature, viscous dissipation, the power-law 

index value as well as the fluid Prandtl number and thermal boundary conditions. 

Only recently was the asymmetric wall heat fluxes case addressed analytically in the literature by Tso 

et al. (2010). In this work the authors present analytical solutions for the temperature profiles and Nusselt 

numbers, N u , but, because they use only one coordinate system in the mathematical development, the general 

result is, as admitted to by the authors themselves, too complex. Simpler expressions for four specific values of 

the power-law index, n , namely 0 .2 5, 0 .5 ,1  and 2 , are then presented by the authors in order to revel the 

heat transfer characteristics, but the only verification done was via results from the literature for 1n  . For the 

particular case of equal heat fluxes at the walls in the absence of viscous dissipation, the N u  values given by 

those simpler expressions, based on the hydraulic diameter, for 0 .2 5n  , 0 .5n   and 2n  , are 8 .0 , 6 .9  

and 6 .3 , respectively. Those values are different from the corresponding ones in the literature, Skelland (1967) 

and Baptista et al. (2013), that for the same power-law index values are of 9 .5 , 8 .8  and 7 .9 , respectively, 

which may indicate a problem in this analytical solution. Also, by not using the generalized Brinkman number 

definition,
*

B r , Coelho and Pinho (2009), the Nusselt number values rapidly decrease with an increase of the 

Brinkman number, something that, as shown in Coelho and Faria (2011), hinders the graphical representations 

of N u . 

Considering all of the studies discussed above, it is fair to state there is currently no simple and 

generic analytical solution for the Nusselt numbers, N u , i.e., valid for any values of the power index, n , wall 

heat flux ratio, 
,1

, 2

w

w

q

q
  , and generalized Brinkman number. Such an analytical solution and the underlying 

mathematical approach, is one of the main contributions of the present work. 
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Fig. 1 Schematic representation of the parallel plates duct, the boundary conditions and of the coordinate 

systems. A temperature profile is also shown, which is divided by the point where 0
T

y





. 

 

The current study starts by showing the calculation procedure that leads to the analytical expressions of 

the Nusselt numbers at the duct walls. Figure 1 shows schematically the plane walls 1  and 2  of the duct, spaced 

apart by a distance of 2 H , with the wall heat fluxes applied, 
,1w

q  and 
, 2w

q , respectively. The coordinate 

systems used and an asymmetric temperature profile are also shown. By using two coordinate systems, 
I

y  and 

I I
y , c f . Fig. 1, the y  variable in the velocity profile remains always positive, allowing an easy integration of 

the differential equations for any value of n  and giving rise to simpler mathematical expressions. As far as the 

authors are aware, the use of two coordinate systems in this type of problems is also new to the literature and 

here we demonstrate its utility to such problems. The wall temperatures, 
,1w

T  and 
, 2w

T , represented in Fig. 1, 

are naturally a function of the longitudinal coordinate x .  

For the analytical expressions of the Nusselt numbers at the walls 1  and 2 , 
1

N u  and 
2

N u  respectively, the 

“classical” approach was used, i.e., a single bulk temperature was considered for the entire duct cross section. 

When the temperature profile is asymmetric, this approach may lead to negative Nusselt number values and 

discontinuities in the N u  curves and, as will be seen in section 3, even to a case where 4N u   regardless the 

values of n  or the heat flux ratio, 
,1

, 2

w

w

q

q
  .  

In order to obtain Nusselt number values free of the above mention anomalies, what we will term “ N u  ”, and 

therefore comparable with the existing values in the literature for cases where a symmetric temperature profile 

exists, e.g. pipe flow, it is necessary to use two different bulk temperatures, 
1

T  and 
2

T , c f . Fig. 1, to calculate 

the two Nusselt numbers,
1

N u   and 
2

N u   respectively. In section 3.1, the results of the Nusselt numbers 

obtained with this new approach, where a bulk temperature is calculated for each side of the location of the 

temperature profile where 0 , 0
T T

y y
y y

 
  

 
are shown and discussed. This location, 0

T
y y

y


 


, 

effectively divides the duct cross-section in two independent zones, each one with a temperature profile, named 

Profile 1 and Profile 2 in Fig. 1, since there is no heat transfer between the two zones. The use of this new 

approach in the flow between parallel plates is an additional contribution of the present work.  

In a flow with a symmetrical temperature profile, the proposed approach reproduces N u   values equal to the 

ones obtained using the “classical” approach. Therefore, it can be stated that in situations with asymmetric 

temperature profiles, the Nusselt numbers obtained using the new approach are also comparable with the N u  

values of the literature cases where the temperature profile is symmetric. Generally, this new approach can be 

used whenever the temperature profile is asymmetric, e.g. in annular flow, where the flow between parallel 

plates is a limiting case, as explained in the work of Coelho and Poole (2017).  
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II. CALCULATION PROCEDURE 
In a fully developed laminar flow between parallel plates of a power-law fluid, the dimensionless velocity 

profile is given by the following equation,  

 

1
*

* 2 1
1

1

n

n
u n

u y
U n


 

   
  

        (1) 

where u  is the local velocity, U  is the bulk velocity and 
* y

y
H

  is the transversal coordinate in 

dimensionless form, Fig. 1.  

The differential form of the energy conservation equation in Cartesian coordinates, for a fully developed flow 

between parallel plates in the presence of viscous dissipation, is shown in Eq. (2),  

 

2

2 y x

T d u T
k c u

y d y x
 

 
 

 
        (2) 

where T  is the temperature, x the longitudinal coordinate, Fig. 1, , c  and k  are density, specific heat and 

conductivity of the fluid, respectively, and 
y x

  is the absolute value of the local shear stress. 

Using a similar method to the one shown in Çengel and Turner (2005) for a constant wall heat flux in a pipe, but 

considering the presence of viscous dissipation, it can also be shown that,  

c o n s ta n t
w w w

d T q UT d T

x d x d x U H c






   


      (3) 

where T  is the bulk temperature, 
w

q  is the average wall heat flux, 
 ,1 , 2

2

w w

w

q q
q


 , and 

w
  is the wall 

shear stress. Replacing 
T

x




 by 

d T

d x
 in equation (2) leads to the following dimensionless equation,  

where 
 

 

0*

h w

T T k
T

D q


  is the dimensionless temperature (

0
T  is a reference bulk temperature and 4

h
D H  

the hydraulic diameter), 
*

  is the dimensionless local shear stress 
* * *

,
yx

w

y
y B r

H





   is the generalized 

Brinkman number, 
 

*

8

w

w

U
B r

q


 (Coelho and Pinho,  2009), P e  is the Péclet number, 

R e . P r
h

U D c
P e

k


   and 

*
x  is the dimensionless longitudinal coordinate, 

*

h

x
x

D
 .  

The dimensionless form of Eq. (3), 
 

*
*

*

1 8 4B rd T

d x P e


 , is replaced in Eq. (4), and knowing that 

* *
y  , 

yields the following expression for the differential form of the energy conservation equation,  

  
2 * * *

* * *

* *
2 1 8

4

d T d u u
y B r B r

d y d y
          (5) 

By replacing the expressions of 
*

u  and 

*

*

d u

d y
 in Eq. (5), the final form of the energy equation is obtained, Eq. 

(6), where  
     

 

** 1 8 2 12 2 1
,

4 4

B r nB r n

n n
 

 
 


and  

 1n

n



  are used in order to simplify the 

expressions.  
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Since 
*

y  is raised to the power 
 1n

n


, it must be always positive in order to make the integration of Eq. (6) 

possible. To assure this, two coordinate systems are used. The x -axis is the same while the y -axis are distinct, 

I
y  and 

I I
y  axis, one for each region I  and II , separated by the duct symmetry plane as shown in Fig. 1. 

Equation (6) is then integrated in both regions I  and II , subject to the following boundary conditions, 

 
 *

,1 *

1
2 1

I I

w

I Iy H y

T d T
k q

y d y


 

 
     

  
     (7) 

 
*

* *

,1 ,1
1I I

w wy H y

T T T T
 

           (8) 

* *

* *

* *

0 0 0 0
I II I II

I II I IIy y y y

T T d T d T

y y d y d y
   

 
  

 
      (9) 

* *

* *

0 0 0 0I II I II
y y y y

T T T T
   

          (10) 

 *

*

, 2 *

1

1

2 1
II II

w

II IIy H y

T d T
k q

y d y


 


   

  
      (11) 

The boundary conditions given by Eqs. (7) and (8), on one hand, and the boundary conditions given by Eqs. (9) 

and (10) on the other, allow the temperature profile equations in the regions I and II, respectively, to be 

obtained. The boundary condition (11) was used to validate the resulting expressions for 

*

*

d T

d y
. 

III. RESULTS 

The integration of Eq. (6) in the regions I  and II , cf. Fig. 1, leads to the following expressions for the 

temperature profiles, 

  

* 2 * 2

* * *

,1

2 2 2 2

I I

I I w

y y
T y T


   

   
 



           
 

   (12) 

  

* 2 * 2

* * *

,1

2 2 2 2

II II

II II w

y y
T y T


   

   
 



           
 

   (13) 

with 
 

 1

  








and 

 

 1

 








. By defining 

*
1

I I
y  in Eq. (13), the following expression for the 

wall 2  temperature, 
*

, 2w
T , is obtained,  

 
* *

, 2 ,1

1

1 2
w w

T T


  
 

         (14) 

Although 
*

,1w
T  is unknown and a function of 

*
x , which requires the use of a temperature difference in a 

graphical representation of the temperature profiles, for example 
* *

,1w
T T , this does not affect the Nusselt 

number calculations, since these are based on a temperature difference that is always independent of the wall 

temperatures, as will be demonstrated below. 

The derivative of the temperature profile in the duct axis is given by the following expression,  

 *

*

*

0

1 1

4 2 1
I

I y

T

y



 

  
        (15) 

as it can be observed, the expression is independent of n  and 
*

B r , since these two variables have a 

symmetrical effect on the temperature profile. The temperature at the duct axis is generally a function of the 

variables n , 
*

B r  and  , except for the case where the heat supplied at the duct walls equals the heat 

generated by viscous dissipation, i.e., 
*

0 .1 2 5B r  . In this case this temperature is given by the following 

expression,  
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* *

,1
0

1 1

2 1 2
w

y

T T


  
 

        (15) 

being in this particular case also independent of n .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Dimensionless temperature profiles for three different values of n , 
*

0 .1 2 5B r   and 0 .4  . The 

vertical line represents the duct axis. 

 

Figure 2 shows three temperature profiles for three representative power-law index values, ( 0 ,1 and  ), 

*
0 .1 2 5B r   and 0 .4   which illustrate these points. 

To calculate the Nusselt numbers, 1

1

h
h D

N u
k

 and 2

2

h
h D

N u
k

 , where 
i

h  is the convection coefficient, the 

expressions (17) and (18) were used, respectively. They arise via rendering dimensionless the equation 

 , ,w i i w i
q h T T   for each wall. 

  
 

1

,1 1 ,1 1 * *

,1

2

1

h

w w

w

h D
q h T T N u

k T T


    

  

     (17) 

  
 

2

, 2 2 , 2 2 * *

, 2

2 1

1

h

w w

w

h D
q h T T N u

k T T
    

  

    (18) 

The bulk temperature, T , used in the Nusselt numbers calculation was obtained through the following integral, 

 

1 1

* * * * * * * *

0 0

1 1

2 2 2

H

H

I II

u b T d y

T T u T d y u T d y
U H b


   



       (19) 

where b  is the duct spanwise length. The analytical expression for this bulk temperature is given by Eq. (20).  

 
 

 

 

   

2

* *

,1

4 2 9 2 4 9

3 3 3 2 3
w

T T
        


  

    
    

  
    (20) 

The mathematical expressions for the Nusselt numbers at both walls, 
1

N u  and 
2

N u , are given by Eqs. (21) and 

(22), respectively. 

 
 

       

2

1 * 2 3 2

1 2 2 0 1 3 2

4 1 1 4 1 1 2 2 2 3 1 4 2 1 4 1 1 2

n n
N u

B r n n n n n n

  


          
 (21) 
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2

2 * 2 2 3

1 2 2 0 1 3 2

4 1 1 4 1 1 2 1 4 1 1 2 2 2 3 1 4 2

n n
N u

B r n n n n n n

 


          
 (22) 

The validation of Eqs. (21) and (22), was carried out as it follows: by making 1   both equations reduce to 

the same expression of the Nusselt number, that is equal to the expression presented in Baptista et al. (2013), 

their Eq. (38); imposing 1   and 
*

0B r  , on the Nusselt number equations, the obtained expression is 

equal to the N u  equation presented in Skelland (1967); by making 
*

0B r   and 1n   in Eqs. (21) and (22) 

the following expressions are obtained, 
 

1

1 4 0

2 6 9
N u




 
and 

 
2

1 4 0

2 6 9
N u 

 
, respectively, in  

accordance with the expressions provided in Shah and London (1978); finally, if in one of the previous 

equations, Eq. (21) or Eq. (22), the variable   is replaced by 
1


, the other equation, Eq. (22) or Eq. (21) 

respectively, is obtained, something that is expected in a hydrodynamically symmetrical flow. It is also because 

of this particularity that in the present work the variable   varies between zero and one, since both expressions 

of 
1

N u  and 
2

N u , together, show the effect of   in the range between zero and infinity. 

 

(a) 
1

N u  

 

(b) 
2

N u  

Fig. 3 Nusselt numbers versus the power-law index, n , for 0 .4   and different values of the Brinkman 

number, 
*

B r . Data obtained using the “classical” approach for the bulk temperature Calculation. 
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(a) 
1

N u  

 

(b) 
2

N u  

Fig. 4 Nusselt numbers versus the wall heat flux ratio,  , for 0 .5n   and different values of the Brinkman 

number, 
*

B r . Data obtained using the “classical” approach for the bulk temperature calculation. 
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(a) 
1

N u  

 

 

(b) 
2

N u  

Fig. 5 Nusselt numbers versus the Brinkman number, 
*

B r , for 0 .5n   and different values of the wall heat 

flux ratio,  . Data obtained using the “classical” approach for the bulk temperature calculation. 

 

Figures 3, 4 and 5 show plots of Nusselt numbers, 
1

N u  and 
2

N u , versus the independent variables n , 

  and 
*

B r , respectively. Fig. 3 shows the typical behaviour of 
1

N u  and 
2

N u  with the power law index, n , 

for different Brinkman numbers when   is kept constant, in this case 0 .4  . For low values of 
*

B r , when 

n  decreases, the velocity profile approaches a plug profile, with higher velocities near the walls, while the 

Nusselt numbers increase. For higher values of 
*

B r  however, the viscous dissipation effect, which occurs 

closer to the walls with the decrease of n , surpasses the effect of the increased velocity near the walls and N u

decreases. In the case of 
1

N u  and 
*

0B r  , Fig. 3a), with the decrease of the value of n , the wall 

temperature, 
*

,1w
T , becomes higher than the “classical” bulk temperature, 

*
T , causing a discontinuity in the 

1
N u  curve and negative values of this Nusselt number.  
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Figure 4 shows the variation of 
1

N u  and 
2

N u  with   for different values of 
*

B r  and n=0.5. For wall heat 

flux ratios,  , in the range 0 1   ,
2

N u  is always positive, since 
* *

,2w
T T , see Fig. 4b). For both walls, 

it is clear that an increase of 
*

B r  results in a reduction of the Nusselt numbers. 

When   decreases, meaning that 
,1w

q  decreases in relation to 
, 2w

q ,  the wall temperature 
*

,1w
T  also decreases, 

becoming equal to, and then lower than, the bulk temperature,
*

T , this leads to infinite and negative values of 

1
N u , Eq. (17), cf. Fig. 4a). For higher values of the Brinkman number, this discontinuity in 

1
N u  occurs at 

lower values of  . The value of   for which 
* *

,1w
T T ,

* *

,1w
T T

 , is given by Equation (23).  

 
* *

,1

*

2

*

2

1 4

4 6 2 8 4
4

1 4 1 1 2

w
T T

B r

n n
B r

n n




 

  

 
  

       (23) 

Equation (23) shows that regardless of the value of n , for 
*

0 .2 5B r   the wall temperature 
*

,1w
T  is always 

higher than the bulk temperature, 
*

T , regardless of the positive value of  . 

The variation of 
1

N u  and 
2

N u  with 
*

B r  for different values of   and 0 .5n   is shown in Fig. 5. In 

general, it can be seen, once again, that an increase in the Brinkman number values leads to a reduction in the 

Nusselt numbers and for wall heat flux ratios between 0 0 .5   , according to Eq. (23), the 
1

N u  values 

may become infinity and negative. 

An interesting fact noted when analyzing Fig. 3, 4, and, 5, is that for 
*

0 .2 5B r  , i.e., 2
v isc d iss ip

w

q

q
 , both 

Nusselt numbers are equal, 
1 2

N u N u  regardless of the values of n or  . In fact, when replacing 
*

B r  by 

0 .25  in Eqs. (21) or (22) the result is 
1 2

4N u N u  . The use of a single bulk temperature for the entire duct 

cross-section is responsible for this outcome and again shows that the heat transfer coefficients thus obtained are 

far from the real value. Essentially, if correct, this would mean the “real” convection coefficient is 

simultaneously independent of velocity and temperature profiles as varied when n  and   vary between zero to 

infinity, i.e., a velocity profile varying between plug flow and almost triangular.  

 The results presented in Figs 3-5 show that the “classical” approach, i.e., the use of a single bulk temperature 

for the whole duct crosssection, while useful from a practical standpoint, since this temperature is easily 
determined, experimentally and mathematically, sometimes yields Nusselt numbers that deviate from the values 

and behaviors of the expected heat transfer coefficient. By correctly relating the wall temperature with the bulk 

temperature, which, obviously, is the most relevant in practice, the “classical” approach is an important tool and 

it will continue to be used.  

The next section presents a different approach for the Nusselt numbers calculation that eliminates the 

singularities referred to above, while allowing a direct comparison between the Nu′ values thus obtained, 

regardless of the temperature profile shape, with those in the literature for the cases where the temperature 

profile is symmetrical.  

 

3.1 
1

N u   and 
2

N u   Calculated Using Two Bulk Temperatures 

In this new approach for the Nusselt number calculation, two bulk temperatures are considered, one for each 

side of the location of the temperature profile where 0
T

y





, 

0
T

y

y y





 , cf. Fig. 1. In the case of a 

symmetrical temperature profile, both approaches produce the same values for the Nusselt numbers. Equations 

(24) and (25) are the expressions of the bulk temperatures for the two temperature profiles, cf. Fig. 1, 
* *

,1 ,2w w
T e T

, respectively, since in the present case 0 1   0< Φ <1 the coordinate *

*

*

0
T

y

y






 is always in region I. 
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*

*

, 0
*

*

*

, 0
*

1

* * * * * *

* 0 0

1

1

* * * *

0 0

d T
I

d y

d T
I

d y

y

II I

y

II I

u T d y u T d y

T

u d y u d y











 

 

       (25) 

The new Nusselt numbers are calculated using Eqs. (17) and (18), with 
*

T  being replaced by 
*

1
T  and 

*

2
T , 

respectively. 

The coordinate *

*

*

, 0
d T

I

d y

y


 was calculated as the root of Eq. (26) that only has analytical solutions for 

0 , 0 .5n n  and 1n  , while for other n  values a numerical solution was used.  

 
 

* 1*

*

*
1 1

I

I

I

yd T
y

d y


    

 
 



 
     

 
      (26) 

The relationship between both convection coefficients, given by the  “classical” and the new approach, is shown 

in Equation (27), also valid for the Nusselt numbers. This equation was deduced knowing that the wall heat flux, 

,w i
q , is the same regardless of the approach used.  

       , , ,u n co n ven tio n a l ap p ro ach c lass ica l ap p ro achw i w i i w i i
q h T T h T T        (27) 

Equation (27) shows that both approaches allow correct calculations of the wall temperature, 
,w i

T , given the 

corresponding Nusselt number and bulk temperature, 
i

T  or T  . The advantage of the new approach, as 

previously mentioned, is that it allows more realistic heat transfer coefficients to be obtained, comparable with 

the existing values in the literature for flows inside ducts when the temperature profile is symmetrical. Although 

the new bulk temperatures have these advantages, their calculation is not straightforward potentially hindering 

its use.  

 

(a) 
1

N u  
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(b) 
2

N u  

Fig. 6 Nusselt numbers versus the power-law index, n, for Φ=0.4 and different values of the Brinkman number, 

Br*. Data obtained using two bulk temperatures, the new approach. 

 

Figures 6, 7 and 10, show the results already presented in figures 3 to 5 but now obtained through the 

use of the new approach, i.e., using different bulk temperatures for calculating the Nusselt number on each wall. 

Figure 6 shows the variation of the Nusselt numbers, 
1

N u   and 
2

N u  , with the power law index n , for 

different values of Brinkman number and 0 .4  . Nusselt numbers show a variation similar to the one 

observed in Fig. 3, but now the 
1

N u   curves do not display discontinuities and negative values. For higher 

values of 
*

B r , the Nusselt numbers depend very little of n , with viscous dissipation overlapping the effect of 

the large velocity profile variation with n . The behavior of the Nusselt numbers for other values of   is 

similar to the one presented here.  

 

 

(a) 
1

N u  
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(b) 
2

N u  

Fig. 7 Nusselt numbers versus the wall heat flux ratio,  , for 0 .5n   and different values of the Brinkman 

number, 
*

B r . Data obtained using two bulk temperatures, the newapproach. 
 

Figure 7 shows the variation of 
1

N u   and 
2

N u   with   for different values of the Brinkman number, 
*

B r , 

and 0 .5n  . For other values of n the plots are very similar to the one presented here. With an increase of 

,1

, 2

,
w

w

q

q
   , the coordinate

*

*

*

, 0
d T

I

d y

y


 moves away from the wall 1 , the temperature difference 
* *

,1 1w
T T  

increases and 
1

N u   decreases. On wall 2  the opposite phenomenon occurs and 
2

N u   increases. In the absence 

of viscous dissipation, when   tends to zero, i.e., very low values of 
,1w

q , the coordinate  
*

*

*

, 0
d T

I

d y

y


 

approaches wall1 , the value of  
*

,1w
T  tends to the value of the bulk temperature, 

*

1
T , and 

1
N u  tends to infinity.  

For 0 .2  , when the coordinate 
*

*

*

, 0
d T

I

d y

y


 approaches wall 1 , the temperature profile 1  is also closer to that 

wall and to the zone where the heat generated by viscous dissipation occurs, cf. Fig. 1. Because of that, the 

Nusselt number, 
1

N u  , also starts to depend strongly on the Brinkman number, 
*

B r , as shown in Fig. 7a). In 

the “classical” approach, this dependence goes unnoticed, cf. Fig. 4a). 

For higher values of the Brinkman number, the value of 
1

N u   decreases monotonically with a reduction of  , 

i.e., an increase of 
*

*

*

, 0
d T

I

d y

y


. For small values of the Brinkman number, 
*

0 .1 2 5B r   for 0n   or 

*
0 .1 3 1B r   for 2n  for example, the viscous dissipation effect only surpasses the effect of a decrease in 

 , and the corresponding approximation of 
*

,1w
T  to 

*

1
T , for very low values of  , 0 .0 5  . This leads to a 

localmaximum of the Nusselt number, for a given value of Φ, or 
*

*

*

, 0
d T

I

d y

y


, as it can be seen inFig. 7a) for 

*
0 .0 1 2 5B r  . 
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(a) 
1

N u  

 

(b) 
2

N u  

Fig. 8 Nusselt numbers versus the Brinkman number, 
*

B r , for 0 .5n   and different values of the wall heat 

flux ratio,  . Data obtained using two bulk temperatures, the new approach. 
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Fig. 9 Nusselt number, 
1

N u , versus the corresponding coordinate of the location of the temperature profile 

where 
*

*

*

, 0

0 ,
d T

I

d y

T
y

y 





, for different values of the Brinkman number, 

*
B r , and 0n  . Lines: Grey lines – 

“classical” approach, black lines - new approach, the vertical line marks the duct axis coordinate. 

 

Figure 8 shows the variation of 
1

N u   and 
2

N u   with 
*

B r  for different values of   and 0 .5n  . For other 

values of n  the behaviour is similar. As expected, it is clear that the heat transfer coefficient decreases when the 

Brinkman number increases, since the heat generated by viscous dissipation hinders the heat transfer.  

Once again, it can be seen in Fig. 8a), by contrast with Fig. 8b), that for small values of  , i.e., when *

*

*

, 0
d T

I

d y

y


 

is close to the wall 1, the corresponding Nusselt number, 
1

N u  , is very sensitive to variations in the Brinkman 

number. The higher values of the Nusselt numbers are attained with simultaneously lower values of   and 
*

B r . As expected, for 1   the variations of 
1

N u   and 
2

N u   with 
*

B r  are the same. 

Both approaches produce N u  values at a given wall that are more similar to each other the further away from 

that wall the coordinate 
*

*

*

, 0
d T

I

d y

y


is, as seen in Fig. 9 where the variation of 
1

N u  and 
1

N u  with the coordinate 

of the corresponding location of the temperature profile where 
*

*

*

0
d T

d y

y


, is shown. As expected, when 

*

*

*

, 0

0 ,
d T

I

d y

T
y

y 





 the two approaches have the same result since in this case the temperature profiles are 

symmetrical. The further away from the wall 1 the coordinate *

*

*

, 0
d T

I

d y

y


 is, the closer to each other are the values 

of the bulk temperatures given by the new approach, 
*

1
T , and by the “classical” approach, 

*
T , thus the N u  

values given by both approaches also become closer to each other.  

In section 3 it was found that for 
*

0 .2 5B r  , both Nusselt numbers were constant, 
1 2

4N u N u  , and 

simultaneously independent of   and n . This singular case is inherent to the “classical” approach and does not 

occur in this new and more realistic approach. 
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IV. CONCLUSIONS 
In this work, analytical expressions for the Nusselt number in a laminar flow of a power-law fluid 

between parallel plates were obtained. These results are valid for a fully developed flow, with constant and 

different heat fluxes at the walls in the presence of viscous dissipation. In these analytical solutions the 

“classical” approach was used, i.e., both Nusselt numbers are, as usual, based in the same bulk temperature 

calculated for the entire duct cross-section. This approach occasionally leads to negative values and 

discontinuities in the Nusselt number plots, and for the particular case of the Brinkman number, 
*

B r , equal to 

0 .25  (
v isc  d iss ip

2

w

q

q
 ) a singular result is obtained, i.e., 

1 2
4N u N u  regardless of the wall heat flux ratios, 

 , and the power-law index, n , values.  

It was found that the temperature profile derivative at the duct axis only depends of  , being independent of 

the values of n  or 
*

B r  since the heat transfer across the duct cross-section is symmetrically affected by these 

two variables. In the particular case in which the heat supplied at the duct walls is equal the heat generated by 

viscous dissipation, i.e., 
*

0 .1 2 5B r  , the temperature value, 
*

T , at the duct axis is independent of the power 

law index, n . 

Generally, for low values of 
*

B r , the decrease in the value of n  leads the velocity profile to become closer to 

the plug profile, i.e., greater velocities near the walls, and the Nusselt number increases. For higher values of 
*

B r , the heat generated by viscous dissipation, that approaches the walls when n  decreases, surpasses the 

effect of the increased velocity near the walls and Nu decreases. 

The Nusselt numbers obtained using the traditional approach do not always reflect the anticipated behavior of 

the real heat transfer coefficient. In order to obtain N u   values that are closer to the real ones, and comparable 

with the literature values for the many other cases where the temperature profile is symmetric, a new approach 

for the Nusselt numbers determination was also undertaken. The calculation is made using two different bulk 

temperatures, 
1

T  and 
2

T , one for each side of the temperature profile where 0
T

y





, with the transverse 

coordinate 
0

T

y

y y





 , avoiding the anomalies discussed above. Both approaches allow the correct calculation 

of the wall temperature, once known the corresponding Nusselt number and bulk temperature of each approach. 

The advantage of this new approach is that it also allows the calculation of a more realistic heat transfer 

coefficient, comparable with the current values in the literature for flows inside ducts having symmetrical 

temperature profiles, although at the expense of a bulk temperature calculation that is not as straightforward 

which may hinder its practical implementation.  

The Nusselt number plots, obtained using the new approach, do not show discontinuities or negative values. 

Also, from a didactic point of view, it is relevant to show that negative values of Nusselt numbers and 

discontinuations in the curves that reflect their behavior are not inevitable and that there are ways to avoid this 

apparently unrealistic behavior.  

Another thing that this new approach revealed was the strong variation of the Nusselt numbers with the 

Brinkman number, at the wall with lower heat flux, for   values smaller than about 0.2. Finally, the two 

different approaches produce Nu values in a given wall much more similar to each other the further away from 

that wall the coordinate is *

*

*

0
d T

d y

y


.  

 

REFERENCES 
[1]. Baptista A., Alves M.A., Coelho P.M., 2013, “Heat Transfer in Fully Developed Laminar Flow of Power Law Fluids,” J. Heat 

Transf, 136(4), 041702. http://dx.doi.org/10.1115/1.4025662.  

[2]. Çengel, Y. A., and Turner, R. H., 2005, Fundamentals of ThermalFluid Sciences, 2nd ed., McGraw-Hill, New York.  

[3]. Coelho, P.M. and Faria, J. C., 2011, “On the Generalized Brinkman Number Definition and Its Importance for Bingham Fluids,” 

ASME Trans J Heat Transf, 133(5), 054505-1. http://dx.doi.org/10.1115/1.4003169.  

[4]. Coelho, P.M., and Pinho, F. T., 2009, “A Generalized Brinkman Number for Non Newtonian Duct Flows,” J. Non-Newtonian Fluid 

Mech., 156, 202–206. http://dx.doi.org/10.1016/j.jnnfm.2008.07.001.  

[5]. Coelho, P. M. and Poole, R. J., 2017, “Heat Transfer of Bingham Fluids in an Annular Duct with Viscous Dissipation,” Heat 

Transfer Engineering, paper accepted for publication.  

[6]. Etemad, S.Gh., Majumdar, A.S. and Huang, B., 1994, “Viscous Dissipation Effects In Entrance Region Heat Transfer For A Power 

Law Fluid Flowing Between Parallel Plates,” Int. J. Heat Fluid Flow, 15, 122–131. https://doi.org/10.1016/0142-727X(94)90066-3.  

[7]. Hartnett, J. P. and Kostic, M., 1989, “Heat Transfer to Newtonian and Non-Newtonian Fluids in Rectangular Ducts,” Advances in 

Heat Transfer, 19, 247-356. https://doi.org/10.1016/S0065-2717(08)70214-4. 



Analytical Approaches To Heat Transfer In Fully Developed Laminar Flow Of Power-..  

DOI:10.9790/1813-1101012744                                    www.theijes.com                                                    Page 44 

[8]. Lawal, A.; Mujumdar, A. S., 1987, Laminar non-Newtonian Flow and Heat Transfer in Ducts, Advances in transport processes (A. 

S. Mujumdar and R. A. Mashelkar, ed.). Wiley Eastern Ltd., India, 5, 351-442. 

[9]. Shah, R.K. and London, A.L., 1978, Laminar Flow Forced Convection in Ducts, Academic Press, New York. 

[10]. Skelland, A. H. P., 1967, Non-Newtonian Flow and Heat Transfer, Wiley, New York. 

[11]. Tso, C.P., Sheela-Francisca, J. and Yew-Mun Hung, 2010, “Viscous Dissipation Effects of Power-law Fluid Flow within Parallel 

Plates with Constant Heat Fluxes,” J. Non-Newton. Fluid Mech., 165, 625–630. http://dx.doi.org/10.1016/j.jnnfm.2010.0 2.023. 

 

UWAEZUOKE, M.U. "Analytical Approaches to Heat Transfer In Fully Developed Laminar 

Flow of Power-Law Fluid between Parallel Plates." The International Journal of Engineering 

and Science (IJES), 11(1), (2022): pp. 27-44. 

 

 

http://dx.doi.org/10.1016/j.jnnfm.2010.0

