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--------------------------------------------------------ABSTRACT--------------------------------------------------------------- 

Based on Darcy-Brinkman-Forchheimer flow model, this study analyzed the viscous dissipation effect on the 

forced, fully developed convection heat transfer in the flat channel filled with saturated porous medium of 

power-law fluid. Moreover, it derived the dimensionless calculation formulas for the axial velocity distribution 

and temperature distribution. Then the dimensionless formulas were numerically simulated by using classical 

Runge-Kutta method under constant heat flux boundary condition. The simulation results show that the 

dimensionless temperature distribution were affected greatly by Brinkman Number B r , Darcy number D a , 

Integrated Inertial Parameter F , and power-law index n . 
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I. INTRODUCTION 
The flow and heat transfer in porous media is of great engineering application background [1] and has 

become a very active research field recently. In the study of convection heat transfer in porous media, the effect 

of viscous dissipation on the temperature distribution and convection heat transfer characteristics has been 

widely concerned. The researches of Nield et al.[2,3], Haji-Sheikh et al.[4,5], Hooman et al.[6,7], Hung and Tso 
[8,9] and Chen and Tso [10,11] et al. have showed that the viscous dissipation greatly affected the convection 

heat transfer in porous media. However, the studies above merely used the Newton fluid for research, while pay 

less attention to non Newton fluid and the viscous dissipation in the energy equation. Limited studies such as 

Chen and Tso [11] analyzed the influences of the viscous dissipation on forced convection heat transfer in the 

saturated porous medium channel of power-law fluid. Moreover, they compared the forced convection heat 

transfer with that of Newton fluid while neglected the influences of inertia effect. 

In the studies above, aiming at the problems of “Brinkman-Brinkman” equation [12], the viscous 

dissipation model of energy equation mainly included endogenous heat dissipation and frictional heat 

dissipation. The endogenous heat dissipation is generally considered to be the work made by forcing the fluid 

flowing through porous clearance and depends on flow velocity. The frictional heat dissipation is still 

controversial: Nield [13] proposed a model that viscous dissipation was equal to the work made by drag force; 

on the basis of pure fluid N S  equation, Al-Hadhrami [14] deduced a viscous dissipation match term, 

namely, the frictional heat was treated as an additional term formed by the heat dissipation generated by viscous 

force, and frictional heat dissipation depends on the shear strain rate. 

Based on the analysis of the problems above, this study employed the Darcy-Brinkman- Forchheimer 

flow model and considered the viscous dissipation model proposed by Al-Hadhrami [14] into the energy 

equation to solve the problems of power-law fluid. Using classical forth-order Runge-Kutta method, the 

influences of Brinkman Number B r , Darcy number D a  and Integrated Inertial parameter F  on the 

dimensionless temperature distribution of the fluids bearing different rheological indexes was numerically 

simulated under constant heat flux boundary condition. It was expected that the results obtained can provide 

certain theoretical basis for the study and application of non-Newtonian fluid in engineering field of oil thermal 

recovery, environmental protection, chemical engineering and so on. 

 

II. PHYSICAL AND MATHEMATICAL MODEL 
As shown in Figure 1, this study mainly investigated the convection heat transfer in a flat channel of 

height 2 H  filled with isotropic porous media. Moreover, constant heat flux boundary condition was applied to 
the upper and lower flat plate surfaces. The flow was steady and full developed, the fluid was the 

incompressible power-law fluid, and the porous skeleton was rigid. 
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Fig.1 Schematic Diagram of Flow Model in a Flat Channel Filled with Porous Media 

 

The momentum equation of the modified Darcy-Brinkman-Forchheimer flow model is: 
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Where, u  is the Darcy flow velocity based on porous medium structure, 
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By substituting the dimensionless parameters above into equation (1), the dimensionless momentum equation is: 
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Corresponding dimensionless boundary condition are expressed as: 

 0 ,  0Y u                  (3a) 

 1,  0
d U

Y
d Y

                (3b) 

Basing on the viscous dissipation model [14], the energy equation can be given by: 
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Where, T  is fluid temperature, K ; 
e f f

k  is the effective thermal conductivity of power-law fluid, 

1 1
W m K

 
  ; 

p
c  is the constant-pressure specific heat of power-law fluid  

1 1
J kg K

 
  ;   is the 
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viscous dissipation term of power-law fluid,  
3

W m


 . It includes two terms of endogenous heat dissipation 

and frictional heat dissipation. 

Under a fully developed heat transfer process with constant heat flux boundary condition, the axial heat 

conduction is negligible. The axial thermal gradient can be simplified into a constant: 
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; where, 
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As shown in Figure 1, the velocity field and temperature field is symmetric about centreline y H . A thin 

infinitesimal slice is taken along the flow direction of the fluid. According to the first law of thermodynamics, 

there is: 
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Where, 
w

q  is the heat flux applied by plate surface. The heat flux is positive during the heating process and is 

negative during the cooling process. It is expressed as: 
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Definitions are further given: dimensionless temperature 
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(4) and integration over the cross section of flat channel, the dimensionless energy equation can be obtained: 
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corresponding dimensionless boundary condition are: 

0 ,   0Y                      (9a) 

1,   0Y
d Y


                   (9b) 

The dimensionless Nusselt number is: 
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III. NUMERICAL SOLUTION PROCEDURE 
According to eq. (2) and eq. (8), it can be deduced that the convection heat transfer of the non Darcy 

flow of power-law fluid is intensively nonlinear in porous media. It is difficult to obtain the analytic solution. 

Therefore, a numerical solution is necessary to describe the physics of the problem. Firstly, the eq. (2) and eq. 

(8) are recombined to first-order differential equations (11). 

Subsequently, by setting initial value and proper step length, we conduct variables-alternating numerical 

iteration in range of 0  to 1  using the classical four order Runge-Kutta method until reaching to the 
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After solving the velocity distribution and temperature distribution, the expression of Nusselt number is gettable 

through equation (10). 
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To validate the validity of numerical scheme, the results obtained are compared with the results of reference [6] 

when 1
k

M R   and 0B r  , For Newton fluid  1n  , in the case of small Darcy number 
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 0 .001D a  , one finds 5 .92N u  , the results approximates 6N u   for the case of Darcy flow. For the 

case of large Darcy number  1000D a  , one finds 4 .121N u   approaching to 7 0
1 7

 for the plane 

Poisueille flow limit. 

 

IV. RESULTS AND DISCUSSION 

The main influencing factors of dimensionless temperature distribution as follows: 

4.1 Brinkman Number 

 
(a) 0 .5n   

 
(b) 1 .0n   

 
(c) 1 .5n   

Fig.2 The Effect of Brinkman Number on the Dimensionless Temperature Distribution 

 

Figure 2 shows the variations of dimensionless temperature with Br under the influences of power-law 

index n  when 1M  , 0 .1D a   and 1F  . As shown in this figure, when B r , the dimensionless 

temperature reduces toward the channel center gently. In addition, the temperature distribution profiles of the 

three fluids are close to each other. As B r  increase, dimensionless temperature decreases rapidly. Meanwhile, 

the shear thinning fluid displays larger variations than the other two fluids due to the high velocity gradient 

(large convection heat transfer rate). However, the higher frictional thermal viscous dissipation generated on the 

region near the plate surface reduces the effective convection heat transfer rate at high B r  value. As a result, 
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the shear thinning fluid is greatly influenced by the viscous dissipation. 

 

4.2 Darcy Number 
Fig.3 The Effect of Darcy Number on the Dimensionless Temperature Distribution 

 
(a) 0 .5n   

 
(b) 1 .0n   

 
(c) 1 .5n   

 

Figure 3 illustrates the variations of dimensionless temperature with D a  under the influences of 

power-law index n when 1M  , 10B r   and 0F  . It is observed that the dimensionless temperature 

reduces toward the channel center gently for small D a  number. The temperature of shear thickening fluid 

maximizes attributing to the large velocity gradient of shear thickening fluid (large convection heat transfer 

rate). More frictional thermal viscous dissipation generated in the region near the plate surface reduces the 

convection heat transfer rate. Nevertheless, in the case of small D a  number, the dominant endogenous heat 

viscous dissipation overcomes the frictional thermal viscous dissipation and suffers less influences from viscous 
dissipation. 

At the same time, dimensionless temperature decreased rapidly when given large D a . Moreover, as D a  

increase, the shear thickening fluid presents more obvious variations than the other fluids. This is because of that 

the shear thickening fluid is subjected to great influences  1 .5n   of D a . On one hand, larger D a  enables 

more frictional thermal viscous dissipation being generated on the region near the plate surface and thus reduces 
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the convection heat transfer rate; on the other hand, owning to the small velocity gradient (small convection heat 

transfer rate), shear thickening fluid is greatly influenced by the viscous dissipation. 

 

4.3 Integrated Inertial Parameter 

Figure 4 is a description of the variations of dimensionless temperature distribution with F  under the 

influences of power-law index n when 1M  , 10B r  , and 0 .1D a  . As illustrated in Fig.4, the shear 

thinning fluid reduces more significantly than the other two fluids because of the high velocity gradient. The 

more frictional thermal viscous dissipation generated declines the convection heat transfer rate. In addition, 

shear thinning fluid shows smaller velocity gradient variation ranges in three fluids and is less influenced by the 

viscous dissipation. In contrast, shear thickening fluid suffers from more influences of viscous dissipation 

owning to the large variations of velocity gradient. 

Moreover, as F  increase, the dimensionless temperatures of the three fluids all sharply decrease 
toward the channel center. The shear thinning fluid and shear thickening fluid show minimum and maximum 

temperature variations respectively. In case of neglecting viscous dissipation, the velocity gradient increase of 

the fluid near the plate surface produces stronger convection heat transfer as increasing F , resulting in the 
temperature rise rather than temperature reduction. However, if viscous dissipation is taken into consideration, 

the situation is just the reverse. The increase of F  strengthens the velocity gradient of the fluid near the plate 

surface, leading to the increase of the frictional thermal viscous dissipation generated. The increased frictional 

thermal viscous dissipation reduces the overall convection heat transfer rate and the dimensionless temperature 

finally. 
 

 
(a) 0 .5n   

 
(b) 1 .0n   
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(c) 1 .5n   

Fig.4 The Effect of the Integrated Inertial Parameter on the Dimensionless Temperature Distribution 

 

V. CONCLUSION 
The study investigated the convection heat transfer of power-law fluid in the flat plate channel filled 

with porous media based on Darcy-Brinkman-Forchheimer flow model. It is observed with increasing Br or 

more intense viscous dissipation, the dimensionless temperature of power-law fluid reduced sharply, resulting in 

the reduction of the convection heat transfer rate. The results suggest that viscous dissipation greatly affect the 

temperature distribution and should not be neglected. The temperature distribution of fluid was also subjected to 

the influences of dimensionless parameters, such as Darcy number, integrated inertial parameter, and power law 

index. 
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