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ABSTRACT

Numerical solutions to various types of plate structures are indispensible in engineering since it provides
approximate solutions to mathematically expressed equation governing a plate. On the other hand, analytical
solution provides exact solution to plate bending problems but has restrictions in areas of practical interest. In
this study, an improved finite difference method (IFDM) which is a numerical method was used to transform the
governing differential equation of a rectangular stiff plate on elastic foundation into improved finite difference
coefficients using the central difference method on the discretized plate on elastic foundation. The coefficients
obtained from the numerical method were applied into the governing differential equation of the rectangular
stiff plate on elastic foundation to obtain the mathematical model for deflection of the plate. Thereafter, 25
interior nodal points of the plate were considered, and the improved finite difference coefficients were evaluated
at nodal points to obtain a set of simultaneous linear equations using the boundary conditions for an all edge
clamped plate CCCC. The set of simultaneous linear equations were presented in matrix form and solved in a
MAT-LAB environment to obtain the unknown deflections at nodal points. The non-dimensional central
deflections for the improved finite difference method were compared with that of analytical solution and other
numerical solutions from literature, for various sub-grade reactions, ranging from0to 6 (0 < K, < 6), and the
result were found to be very close. The improved finite difference solutions have an average percentage
difference of 0.000076% to Ozgan and Daloglu, 0.000069% to Mishra and Chakrabarti and 0.000068% to
Ogunjiofor and Nwoji. Hence, the mathematical model for deflection developed can be used for the analysis of
plates on elastic foundation.
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. INTRODUCTION

Plates are straight, plane, two dimensional structural components of which one dimension
referred to as thickness, h, (the distance between the plane faces) is smaller than the other dimensions
referred to, as length and width [1]. Plates resist transverse loads by means of bending, and therefore, its
flexural rigidity depends significantly on its thickness [1]. In engineering, plates have widely been used by
different researchers to solve the problem of bending in different areas such as offshore and port foundations,
railway structures, pressure pipes used as liquid and gas pipes and bio-mechanics this is because they
combine light weight with a high load carrying capacity to provide technological effectiveness and
economic advantage. Hence Szilard stated that the analyses of plates are in three ways which are static
analysis, dynamic analysis and stability analysis.

Foundation on the other hand is that part of the structure which transmits the loads from the
superstructure to the surrounding soil in which it is in contact with. The response of structures in contact
with bearing soils depends greatly on the soil and foundation properties.

The key issue in the analyses of plates in contact with soil is modeling the contact between the
structural

Element (plate) and the soil [1]. Since the main task is the analysis of the plate in contact with
foundation soil and not the soil itself, the foundation is made elastic foundation by replacing it with simple
models, usually spring elements which are closely spaced and discretized [1]. The stiffness of the spring
describes the behavior of the elastic foundation [2]. Since plate bending refers to the deflection of a plate
perpendicular to the plane under the action of external forces and moments, hence bending analysis of rectangular
stiff plate on elastic foundation refers to the determination of deflection of the rectangular stiff plate resting on an
elastic foundation under the action of external forces and moments. The amount of deflection is determined by
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solving the governing differential equation of the stiff plate on elastic foundation. The stresses in the plate can be
calculated from the deflections [2]. For plates on elastic foundation, the most commonly used modal for the
analysis of such plate is that Winker model because of its simplicity.

Winkler idealization assumes that the soil medium is a system of identical but mutually independent,
closely spaced, discrete, linearly elastic springs. In 1867, winker assumed that the vertical displacement of a
point on the elastic foundation is proportional to the pressure outside the loaded regions, winker model is a vital
tool used for the analysis of most structures in contact with the soil. But, it does not give a realistic
representation of the practical soil accurately, since displacement discontinuity does not occur between the
loaded and unloaded regions of the foundation [2]. Winker foundation deficiencies was overcome by connecting
them to other elements such as flexural elements (beams in one dimensions, plates in 2-D); shear layers;
deformed layers and pretensioned membranes [3]. Finalenko (1940), restored continuity between the individual
spring elements in the Winkler model by connecting them to a thin elastic membrane under a constant tension,
T. Pasternak (1954), connected the individual spring elements in the winker model to shear layers which
deforms in transverse shear only. Hetenyi (1950), incorporated an elastic beam or plate which undergoes
flexural deformation, D. long-chyuan etal, [3] developed an edge function approach using furrier series on
boundary value problem on polygonal domains. They solved the governing differential equation for a polygonal
plate with a convex domain and obtained a levy type solution for each edge which serves as fundamental
functions. Mama et al, [3], solved the governing differential equation of a rectangular Kirchhoff plate on
Winkler foundation using the finite furrier series transform method and obtained solutions for deflection for the
case of point load applied at any point (x, y) on the plate surface, and for the uniformly distributed load applied
over the entire plate domain. They compared their results with that of Navier series solutions that yielded exact
results and their results were identical. Ozgan and Daloglu,[3], used a computer program based on finite element
method to analyze thin and thick plates on elastic foundations. They considered a four-noded plate bending
quadrilateral (PBQ4) and an eight-noded quadrilateral (PBQ8) based on Mindlin plate theory for the analyses of
the plate on Winkler foundation. Mishra and Chakrabarti,[3], worked on shear and attachment effects on the
behaviour of rectangular plates resting on tensionless elastic foundation using finite element techniques. In their
analyses, a nine-noded Mindlin element was used to account for transverse shear effects. Ogunjiofor and Nwoji
[3] used characteristic orthogonal polynomial to obtain solutions for deflection for the case of uniformly
distributed load applied on an all clapped isotropic rectangular plate on elastic foundation. They compared their
results with results from Ozan and Dalglu; Mishra & Chakrabarti and they obtained satisfactory results for
different values of subgrade reaction K ranging from 0-10 (0< k < 10).

Hence, this study presents an understandable and easy to use mathematical model for deflection of all
clamped rectangular stiff plate on elastic foundation. In this paper, an improved finite difference method
(IFDM) was used to solve the differential equation of a rectangular stiff plate on elastic foundation and a
mathematical model was used to obtain set of simultaneous linear equations which is transformed in matrix
form. The analysis was carried out in mat lab environment using dimension less parameter in both axes for
various values of subgrade reaction Ks ranging from 0to 6 (0< Ks<6) .

Of 49 nodes and the deflection at various nodes is Wy to Wig.

The governing differential equation of the plate on elastic foundation is given as;
Ow L, dw 2w Kew g

axt + 20)(2 dy? + ay* + D D (1)
D = oM )
12 (1-pp)°

D is the flexural rigidity of the plate, Ep is the young’s modules of elasticity of the plate, hp is the plate’s thickness,
v is the Poisson’s ratio of the plate, w is the deflection and q is the uniformly distributed load applied over the
entire plate to main. Considering Figure 1 and taking wg as the pivotal point, the improved finite difference

expressions along the x-axis Taylor’s series expansion are. 14
12 hz " h3 1/ h4 iv
w, = wy + hwg + (7) wy + (?) wy' + (Z) wi¥ (3)
I h? n h3 m n* A
wy = wy — hwg + (7) Wy — (?) wy + (Z) wg’ (4)
The above equation (3) and (4) are the forward difference and backward difference of wy respectively for mesh
size Ax = h.

Taking differences between nodes w, and ws; and nodes w,, and w,

3 4 .
ws = wy + 2w} + (2h?)wg + (%) wi' + (%) w¥ (5)
3 4 .
wy = wo — 2hwg + 2h2wy — () wy' + () wl? (6)
Equations (3), (4), (5) and (6) transforms into:
wg = ﬁ (— 8wy, + 8w, +w, —wg) (7)
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wg = Tlhz(_ w, + 16w, + 16w, — 30w, —ws) (8)
wl = 241;13 (29w, — 16w, + ws — 29w, + 16w: — w,) 9)
wiv = 121;12 (—ws + 18w, — 63w, + 92w, — 63w, + 18ws — wy)
(10)
o 5 X
| a |
| = |
—N35 Wzs W7 W zg Mg Wag Wy
Woq W2 W23 Wzs Wos Wog Wzl
y - Ws W Wi Wi Wiz WA
. -
A V3 V2 W A W Wz 5
L Wiy Wiz Wig W 1= MV 15 Mg Wao
M2z Ws MWzg Wsg Wss Wz Waa
—N_,E W;; Wa WLS WLS ""II—'T" Wias|
Figure 1: CCCC discretized rectangular stiff plate on Elastic Foundation.
1
Wy = m (8W1 - 2W2 + 8W4_ - ZWS) (11)

Also, the improved finite difference expressions along the y-axis using Taylor’s series expansion are:
I hz n h3 m h* A
way = wo+ g+ ()wd o+ ()l + (5w (12
! h? " h3 n h* i
Wi = Wy — hwy + (7) wy — (?) wy' + (Z) wi¥ (13)
Equations (12) and (13) shows the forward difference and backward difference of w, respectively for mesh
sizeAy =h

Taking difference between nodes w, and ws,, and nodes w, and w,,, the forward difference and backward
difference of w, are given in Equations (14) and (15) respectively as:

3 4 .
wy, = wy + 2hwg + 2h?)w] + (%) wy' + (%) wg” (14)
3 4 .
Wy, = Wy — 2hw) + 2h?)w] — (%) wy' + (%) wg” (15)
Equations (14) and (15) transforms into:

' 1
wy = — (— 8wy + 8wy + Wy, —wyy) (16)
wy = Tlhz(_ Wy, + 16wy, + 16w, — 30wy — ws,) a7)
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mo_ ;(29W10 — 16wy, + w3g — 29W17> (18)
0 ™ 24n3 +16w;, — wys
wl¥ = 12h2( Wsg + 18wy, — 63wy + 92wy — 63wy, + 18wsy — wys)
(19)
Wo = 12h0 (Bwyg — 2w,y + 8wy; — 2wsy) (20)

. MATHEMATICAL MODEL OF IMPROVED FINITE DIFFERENCE FOR
DEFLECTION

The improved finite difference for deflection is obtained by substituting Equations (7) to (11) and Equations
(16) to (20) into equation (1) to get Equation (21)
_ o ws 18W3 _ 63wy | 92wp 63w4 18ws ] [900w0 _ 480wy 480wy 30wyy 30w3; 480w, +

12h4 12h*  12h*  12h% 12h4 12r%  12h% 72h* 72h* 72h% 72h% 72h% 72h%
256wl1172/4+ 256w1872/4— 16uw2572/4— 16w3272/4— 480ul172/4+256u972/4+256 w1672 /44—
1612372/4—16w3072/4+30u572/4—16w1272/4—16 w1972 /4+ w2672 /4+w3372/4+30u272/4—16
wB72/A—16w1572/4+w2272/4+w2972 /44—

wA512/A+18w3112/4—63wl1712/4+921012/14—63w1012/4+18w2412 /44— w3812/4+KsD
8wl12/0— 2w212/0+ 8uAl12/0— 2w512/0+ 8wl012/0— 2u2412/0+ 8ul1712/0— 2w3112/0=gx,yD
(21)

When considering a rectangular mesh, (Szilard, 2004),

Ax = oc( Ay)} 22)

m 1
Pl
Where Ax = distance along the x — axis
Ay = distance along the y-axis
M=length per mesh, «c = width
Per mesh and oc= aspect ratio
Substituting for Ax=oc Ay into Equation (21) and simplifying gives:
46woD+75x?woD+46xc*woD  w3D | 18w,D+5x?w,D—2Kswyh*  63w;D—800c?w; D+8Kswqh*
6h* T 12nt 12n* - 121 -

63w,D—-80x?w,D+8Kswah*  18wgD+50x?wsD—2Kswsh*  wgD  800?wqoD—63x*w,(D+8Kswqgh*

12n% + 1214 T 12mt 121 -
800<2w17D—63o<4w17D+8K5w17h4+So<2w24D+180<4w24D—2K5w24h4+50(2W31D+180(4W31D—2KSW31h4 320<2w16D_

12h% 12h% 12h% 9h#

202wo3D  20Pwgg D 20?WqD 202wigD | awagD . «PwgsD  202wgD  20?wqgD | <PwaaD o «PwaeD  octwygD
K T T ont  ont  opt 721 720  on*  opt 721 720%  120%
«*wzgD _
— =4 y) (23)

The mathematical model for deflection developed from Equation (23) is shown in Fig 2
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—xt
2ksh* 8/ &2
_8f2 o2 5o+ 18 oet— — —%/q
/-
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8/ o2 — e or_ g s DHsT 128 8/ o2
_ ;33< 3 80 o 6,x+—D 3 o /3 >
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Figure 2: Mathematical Mode!l of Improved Finite Difference for Deflection

2.1 The Improved Boundary Conditions
For a stiff rectangular plate on elastic foundation with all edge clamped, and having an edge length, a, and edge
width, b, the prescribed boundary conditions are;

W)=0
), 000 0|

X/ x=0,a=0

W), =0 I} (24)

dw
(dy)y=0,b=0 - OJ
2.1.1 Improved boundary conditions along x-axis
w),=0= 121h0 (8w, — 2w, + 8w, — 2w;)

dw 1 (25)

(E)x = 0 = E (WZ - 8W1 + 8W4_ - Ws)

Balancing equation (17) gives,
(w, —8w,) = +(ws — 8w,)

Hence, along X-axis the improve boundary condition can be expressed as:
Wypr = +Wyq (27)

2.1.2 Improved boundary conditions along y-axis
The improved boundary conditions along y-axis are

w), =0= Tlno (—2wy, + 8wy + 8wy — 2wsy)

d 1 (28)
(%) =0= E(Wm — 8wy; + Bwyg — wy,)

y

Balancing Equation (20) gives

(Bwyg — 2wy,) = +(2wsy — 8W17)} (29)
(W31 — 8wy7) = +(Wyq — Bwyg) N )
From Equation (21), the improved boundary condition along y-axis can be expressed as:

Wy = Wy (24)
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2.2 Numerical Analysis
An all edge clamped static/elastic, isotropic and homogeneous rectangular stiff plate on elastic
foundation as shown in Figure 3, is subjected to a uniformly distributed load, g. Using the mathematical model
of the improved finite difference for deflection in Figure 2, the deflection of the plate can be calculated by
applying the developed model for deflection on the rectangular stiff plate on elastic foundation with equally
spaced 25 interior nodal points. The plate has the following non dimensional parameters.
i. Length of plate=a
ii. Width of plate=b
iii. Thickness of plate= h,
iv. Modulus of elasticity of plate = E, = 51.6667 Gpa
V. Poisson’s ratio of plate = [, = 0.15
vi. Aspect ratio == 1.2
vii. Flexural rigidity of plate =D=0.0257

2.2.1 Description of Problem
Considering the plate in figure 3 with 25 interior nodal points and taking a step size.

AL= Aa===h
AL = Ab = .=
There are total of 25 nodes on the plate. All the nodes along the clamped edges have zero deflection and are

marked with zero value. Due to symmetric loading and support, all nodal points with the same deflection
components are marked with the same deflection notation. Hence there are 9 unknown deflections.

23

IS o |

2.2.2 Application of the Improved Finite Difference Equation at the Nodal Points
Applying the improved finite difference model for deflection at node O; and substituting Ks=0; and the non-
dimensional parameters D, h and o, we have

0 3 1 g T -1 ]
0 & 7 5 7 g 0
[ ] N I Y o o
0 a 0 0 0 il 0 0 o a 0
7 g _:j 8 7 & 7 8 q g 7
4 5 0 5 4 H 4 5 0 . R
1 2 I 2 1 0 1 2 q 2 1
A 3 -] 5 4 3 3 5 q| R 1
7 3 0 8 7 g 7 8 4 & 7
0 2 0 Q 0 0 3 0 B a g
LI Lt 1]
0 L 7 3 7 8 i
0 5 4 3 4 z aQ

Figure 3: Plate with equally spaced 25 nodal points having all edges clamped

(498.7712 W, — 356.4 W, + 50.4 — 491.6736 W, + 245.76 W, — 15.36 W, + 89.0496 W, — 15.36 W, +
OW8=1214 gAI4D (A)

Applying the improved finite difference model for deflection at node 1
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(—178.2w, + 523.9712 w, — 180.2 w, + 122.88 w; — 499.3536w, + 122.88w; — 7.68w, + 89.0496 w, —
7.68w8 =124 gAl4D (B)

Applying the improved finite difference model for deflection at node 2
(25.2wy — 180.2w, + 523.9712w, — 7.68w; + 122.88w, — 499.3536w; + 0w, — 7.68w, + 89.0496wg) =

12h* M (C)
D
Applying the improved finite difference model for deflection at node 3

(—245.8368 w,, + 122.88w, — 7.68 w, + 543.296 w; — 364.08w, + 50.4 wg — 249.984 w,, + 122.88w, —
7.68w8=12h4 gAI4D (D)

Applying the improved finite difference model for deflection at node 4
(61.44 w, — 249.6768 w; + 61.44 w, — 182.04 w; + 523.9712 w, — 180.2 wg + 61.44 w, — 253.824w, —
61.44w8=12%4 gA/4D (E)

Applying the improved finite difference model for deflection at node 5
(—3.84w, + 61.44 w; — 249.67678 w, + 86.64 w; — 183.04 w, + 568.496 ws — 3.84 w, + 61.44 w, —
253.824w8=12h4 gA/4D (F)

Applying the improved finite difference model for deflection at node 6
(44.5248w, — 7.68 w; + 0 w, — 249.984w, + 122.88w, — 7.68 wg + 543.296w, — 364.08w, +
50.04w8 =12h4 gAI4D (G)

Applying the improved finite difference model for deflection at node 7
(—3.84 w, + 44.5248 w; — 3.84 w, + 61.44w; — 253.824 w, + 61.44 ws — 182.04 w, + 568.496w, —
184.04w8=12%4 gAI4D (H)

Applying the improved finite difference model for deflection at node 8
(0 wy — 3.84w; + 44.5248w, — 3 .84w; + 61.44 w, — 253.824ws + 25.2 wy, — 184.04w, + 568.496w) =

12pt 1@0° 0
D

Solving equations (A) to (I) with MAT LAB program, we get
Wy = 0.1351

wy = 0.1073

Wy = 0.0251

ws = 0.1124

A = 0.0906

We = 0.0139

W = 0.0496

w;, = 0.0398

Wy = 0.0084

These Mat lab values are then multiplied by 12x(AL)*x100 to get the actual deflections at various nodal points
as shown below.

w, = 0.1251
w, = 0.0994
w, = 0.0232
w; = 0.10407
w, = 0.0839
ws = 0.0129
wg = 0.0459
w, = 0.0369
wy = 0.0078

The process is repeated for Ks=1, 2, 3, 4, 5 and 6; and the results are shown in Tables 1 to 10.

Table 1: Numerical Result for Aspect Ratio 1.2 and Ks=0

Nodal point (distance) Mat lab Value Multiplied Mat-lab
Value by 12(Al)* (deflection)
W, 0.1351 0.00125
wy 0.1073 0.00099
w, 0.0251 0.00023
wy 0.1124 0.00104
w, 0.0906 0.00084
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Ws 0.0139 0.00013
We 0.0496 0.00046
wy 0.0398 0.00037
Wy 0.0084 0.00008

Table 2: Numerical Result for Aspect Ratio 1.2 and Ks=1

Nodal point (Distance) Mat lab Value Multiplied Mat-lab
Value by 12(AD*
W, 0.1312 0.00121
wy 0.1051 0.00097
W, 0.0263 0.00024
W 0.1092 0.00101
W, 0.0886 0.00082
Wws 0.0146 0.00014
W 0.0482 0.00045
wy 0.0390 0.00036
Wy 0.0086 0.00008

Table 3: Numerical Result for Aspect Ratio 1.2 and Ks=2
Nodal  point | Mat lab Value Multiplied Mat-lab
(Distance) Value by 12(AD*

Wy 0.1215 0.00113
w, 0.0970 0.00090
w, 0.0234 0.0002
W, 0.1013 0.00094
w, 0.0821 0.00076
ws 0.0133 0.00012
We 0.0450 0.00042
w. 0.0363 0.00034
Wg 0.081 0.00008

Table 4: Numerical Result for Aspect Ratio 1.2 and Ks=3

Nodal point | Mat lab Value Multiplied Mat-lab

(Distance) Value by 12(AD*
Wy 0.1178 0.00109
wy 0.0946 0.00088"
w, 0.0241 0.00022
Wy 0.0982 0.00091
Wy 0.0800 0.00074
Weg 0.0138 0.00013
W 0.0436 0.00040
wy, 0.0354 0.00033
Wy 0.0082 0.00008

Table 5: Numerical Result for Aspect Ratio 1.2 and

Ks=4
Nodal point Mat lab Multiplied Mat-lab
(Distance) Value Value by 12(AD*
wq 0.1087 0.00101
wy 0.0874 0.00081
w, 0.0219 0.00020
wy 0.0906 0.00084
w, 0.0740 0.00069
ws 0.0127 0.00012
We 0.0399 0.00037
w, 0.0328 0.00030
wg 0.0078 0.00007
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Table 6: Numerical Result for Aspect Ratio 1.2 and

Ks=5

Nodal Mat lab | Multiplied Mat-lab
point Value Value by 12(AD*
(Distance)

wq 0.1053 0.00098

Wy 0.0846 0.00078

W, 0.0212 0.00020

ws 0.0880 0.00081

W, 0.0718 0.00066

Ws 0.0124 0.00011

We 0.0394 0.00036

w, 0.0321 0.00030

Wg 0.0076 0.00007

Table 7: Numerical Result for Aspect Ratio 1.2 and Ks=6

Nodal point Mat lab Multiplied Mat-lab
(Distance) Value Value by 12(AD*
W 0.0833 0.00077
wy 0.0640 0.00059
w, 0.0097 0.00009
W 0.0698 0.00065
Wy 0.0540 0.00050
Ws 0.0022 0.00002
W 0.0320 0.00030
w, 0.0250 0.00023
Wg 0.0037 0.00003

Il.  COMPARISON WITH PREVIOUS WORKS
To check the validity of the mathematical model for deflection, the non dimensional central deflection
of the improved finite difference model from the present study for various non dimensional subgrade reactions
is compared with the non dimensional central deflection from characteristic orthogonal polynomials by
Ogunjiofor and Nwoji, (2017); a computer coded program based on finite element method by Ozgan and
Daloglu (2007) and finite element techniques by Mishra and Chakrabarti, (1997), (Table 8).
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Table 8: non-dimensional central defections for the clamped plate with uniformly distributed load

100 2
D
Ks Ozgan and Mishra and Ogunjiofor and Present study % difference % difference % difference
Daloglu (2007) Chakrabarti Nwoji (2017) with O & D withM & C with O & N
(1997)
0 0.1369 0.1360 0.1327 0.1250 0.000119 0.00011 0.000077
1 0.1367 0.1350 0.1315 0.1250 0.000157 0.00014 0.000105
2 0.1350 0.1340 0.1307 0.1130 0.00022 0.00021 0.0000177
3 0.1277 0.1270 0.1288 0.1090 0.000187 0.00018 0.000198
4 0.1114 0.1110 0.1182 0.1010 0.000104 0.00001 0.000172
5 0.0874 0.0870 0.0873 0.0980 -0.000106 -0.000011 -0.000107
6 0.0622 0.0620 0.0623 0.0770 -0.000148 -0.00015 -0.000147
LEGEND: O & D = Ozgan and Daloglu;
M & C= Mishra and Chakrabarti;
O & N = Ogunjiofor and Nwoji
0.16 -
0.14 - » -
0.12 A
== 0zgan and Daloglu (2007)
0.1 A
\

0.08 - == Mishra and Chakrabarti
_\ (1997)
0.06 - 0

Non-dimensional centraal deflection

i Ogunjiofor and Nwoji
(2017)
0.04 -
=36=Present study
0.02 -
0 T T T T T T 1

0 1 2 3 4 5 6
Subgrade reaction (K,)

Figure 4: Variation of non-dimensional central deflection of the clamped plate with different K, values subjected
to uniformly distributed load.
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0.16 -

W Ozgan and Daloglu (2007)
0.14 - ® Mishra and Chakrabarti (1997)
0.12 - m Ogunjiofor and Nwoji (2017)

M Present Study

0.1

0.08

0.06

0.04

Non-dimensional central deflection

0.02

Subgrade Reaction (Ks)

Figure 5: Bar chart showing variation of non-dimensional central deflection of the clamped plate subjected to
uniformly distributed load with different K values

IV.  CONCLUSIONS

In this study, a 49 noded rectangular stiff plate resting on elastic foundation was considered for the
deflection analysis of the plate. The improved finite difference expression along the x and y axes was
formulated by obtaining the displacement of each node in figure 3.1 using central difference method, and the
fourth-order expansion for the deflection was obtained using Taylor series with step size (Ax) = (Ay)=h.
Thereafter, the mathematical model of improved finite difference for deflection was developed. The developed
model for deflection was used to obtain coefficient matrix of the unknown deflections at nodal points by
considering 25 interior nodal points and applying the appropriate boundary conditions of an all edged clamped
plate. The coefficient matrix was solved in mat lab environment to obtain the unknown deflections which gives
satisfactory results comparing with solutions available from literature for subgrade reactions 0 < ks < 6. Hence,
the mathematical model of improved finite difference developed for the deflection analysis of rectangular stiff
plate on elastic foundation can be used for the analysis of plates on elastic foundation.
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