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I. INTRODUCTION 
The introduction of the paper should explain the nature of the problem, previous work, purpose, and the 

contribution of the paper. The contents of each section may be provided to understand easily about the paper. 

II. BASIC ON RIEMANNIAN MANIFOLDS 
  

2.1:  [Topological Manifold]  

 A topological manifold M of dimension n , is a topological space with the following properties:   

(i) M is a Hausdorff space . For ever pair of points Mgp , , there are disjoint open subsets MVU , such that 

Up  and Vg  . (ii) M is second countable . There exists accountable basis for the topology of M . (c) M is 

locally Euclidean of dimension n  Every point of M has a neighborhood that is homeomorphism to an open 

subset of n

R . 

 

Definition 2.1.1 [Coordinate Charts]  

 A coordinate chart or just a chart on a topological n manifold M   is a pair ),( U , Where U is an open subset 

of M and UU
~

:   is a homeomorphism from U to an open subset n
RUU  )(

~
 .  

Examples 2.1.2: [Topological Manifolds Spheres] :  

  Let n
S denote the (unit) n sphere, which is the set of unit vectors in 1n

R : }1:{
1




xRxS
nn

 with the 

subspace topology, 
n

S is a topological n manifold.    

Definition 2.1.3 [Projective spaces]  

The n dimensional real (complex) projective space, denoted by ))()( CPorRP
nn

, is defined as the set of       

1-dimensional linear subspace of )
11  nn

CorR , )()( CPorRP
nn

is a topological manifold.  

Definition 2.1.4:  

 For any positive integer n , the n torus is the product space )...(
11

SST
n

 .It is an n dimensional 

topological manifold. (The   2-torus is usually called simply the torus).  

Definition2.1.5 [ Boundary of a manifold ] 

The boundary of a line segment is the two end points; the boundary of a disc is a circle. In general the boundary 

of an n manifold is a manifold of dimension )1( n , we denote the boundary of a manifold M as M . The 

boundary of boundary is always empty,   M  

Lemma 2.1.6  

Every topological manifold has a countable basis of Compact coordinate balls.  Every topological manifold is 

locally compact.  
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Definitions 2.1.7 [Transition Map]  

 Let M be a topological space n -manifold. If ),(),,(  VU are two charts such that  VU , the composite 

map                                                                           

(1)                                                                      )()(:
1

VUVU 


   

is called the transition map from  to .  

Definition 2.1.8 [ A smooth Atlas] 

An atlas A is called a smooth atlas if any two charts in A are smoothly compatible with each other.  A smooth 

atlas A on a topological manifold M is maximal if it is not contained in any strictly larger smooth atlas. (This 

just means that any chart that is smoothly compatible with every chart in A is already in A.  

Definition 2.1.9 [ A smooth Structure] 

 A smooth structure on a topological manifold M is maximal smooth atlas. (Smooth structure are also called 

differentiable structure or 
C structure by some authors).  

Definition 2.1.10  [ Lie Algebra]  

A Lie algebra is a real vector space g  endowed with a map called the bracket from gtogg  , usually denoted 

by ],[),( YXYX  , that satisfies the following properties for all gZYX ,, :  

(i)Linearity:  For Rba , ,  ].,[],[],[,],[],[],[ YZbXZaYbXaZZYbZXaZYbXa   

(ii) Ant symmetry: ],[],[ XYYX  .  (iii) Jacobi identity: 0]],[,[]],[,[]],[,[  YXZXZYZYX .  

Example 2.1.11 [Lie Algebra of Vector Fields] 

(i) The space )( M of all smooth vector fields on a smooth manifold M is a Lie algebra under the Lie bracket.: 

(ii) If G is a Lie group, the set of all smooth left-invariant vector field on G is a Lie sub-algebra of )(G  and is 

therefore a Lie algebra. (iii) The vector space ),( RnM of nn   matrices an 
2

n dimensional Lie algebra under 

the commentator bracket:  BAABBA ],[ . Linearity and ant symmetry are odious from the definition, and the 

Jacobi identity follows from a straight forward calculation. When we are regarding ),( RnM as a Lie algebra 

with this bracket, we will denote it by ),( Rngl . 

Definition 2.1.12 [ A smooth Manifold ] 

A smooth manifold is a pair ,( M A), where M is a topological manifold and A is smooth structure on M . When 

the smooth structure is understood, we omit mention of it and just say M is a smooth manifold.   

Definition 2.1.13    

Let M be a topological manifold. (i) Every smooth atlases for M is contained in a unique maximal smooth 

atlas.(ii) Two smooth atlases for M determine the same maximal smooth atlas if and only if their union is smooth 

atlas. 

Definition 2.1.14  

Every smooth manifold has a countable basis of pre-compact smooth coordinate balls. For example the General 

Linear Group The general linear group ),( RnGL is the set of invertible nn  -matrices with real entries. It is a 

smooth 2
n -dimensional manifold because it is an open subset of the 2

n - dimensional vector space ),( RnM , 

namely the set where the (continuous) determinant function is nonzero.  

Definition 2.1.15 [Tangent Vectors on A manifold] 

  Let M be a smooth manifold and let p be a point of M . A linear map RMCX 


)(: is called a derivation 

at p if it satisfies: 

 (2)                                                                                    XfpgXgpffgX )()()(    

For all )(, MCgf


 . The set of all derivation of )( MC
 at p is vector space called the tangent space to M at p , 

and is denoted by [ MT
p

]. An element of MT
p

is called a tangent vector at p .  

Lemma 2.1.16 [Properties of Tangent Vectors.]  

 Let M be a smooth manifold, and suppose Mp  and MTX
p

 . If f  is a const   and function, then   0Xf . If                     

0)()(  pgpf , then 0)( fpX .  

Definition2.1.17 [Tangent Vectors to Smooth Curves] 

 If   is a smooth curve (a continuous map  MJ : ,where RJ  is an interval) in a smooth manifold M , we 

define the tangent vector to   at Jt 


to be the vector  

 (3)                                                                         MT
dt

d
t

tt )(
|)(


 

 












, where 


tdt

d | is the   
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standard coordinate basis for RT
t

. Other common notations for the tangent vector to   are 









 
)(,)(


t

dt

d
t


 and














tt

dt

d
|


. This tangent vector acts on functions by: 

 (4)                                                                    





















)(

)(
||)(








t
dt

fd
f

dt

d
f

dt

d
ft

tt


 .  

Lemma 2.1.18  [ Smooth manifold ] 
Let M be a smooth manifold and Mp  . Every  MTX

p
 is the tangent vector to some smooth curve in M .        

 

2.3 : VECTOR ANLYSIS ONE METHOD LENGTHS   

             Classical vector analysis describes one method of measuring lengths of smooth paths in R̂ if 

  Rv ˆ1,0:  is such a paths, then its length is given by dttvv  )(  Length. Where v   is the Euclidean length of 

the tangent vector )( t  , we want to do the same thing on an abstract manifold, and we are clearly faced with one 

problem, how do we make sense of the length )( tv  , obviously , this problem can be solved if we assume that 

there is a procedure of measuring lengths of tangent vectors at any point on our manifold . The simplest way to 

do achieve this is to assume that each tangent space is endowed with an inner product. (Which can vary point in 

a smooth). 

Definition 2.3.1 

A Riemannian manifold is a pair ),( gM  consisting of a smooth manifold M  and a metric g   on the tangent 

bundle,(i.e.) a smooth symmetric positive definite tensor field on M   . The tensor g is called a Riemannian 

metric on M   . Two Riemannian manifold are said to be isometric if there exists a diffoemorphism 
21

: MM          

such that
12

*
,ˆ gg   . If ),( gM   is a Riemannian manifold then, for any Mx  the restriction  RMTTg

xxx
:     

Is an inner product on the tangent space MT
x

  we will frequently use thee alternative notation  
x

gx  ,,    , the 

length of a tangent vector MTv
x

  is defined as usual      2/1,,  vvgxv
x

 If   Mbav ,:  is a  piecewise 

smooth path , then we defined is length by   dttvbavL )()( . If we choose local coordinates  n
xx ,....,

1  on M  

then we get a local description of g as  21

i
i

ji
dxdxgg   

Proposition 2.3.2 

Let be  a smooth manifold , and denote by
M

R  the set of Riemannian metrics on M  ,then
M

R  is a non –empty 

convex cone in the linear of symmetric  – tensor  

Proof:   

The only thing that is not obvious is that 
M

R  is non-empty we will use again partitions of unity. Cover M by 

coordinate neighborhoods   AU , . Let  

i
x  be a collection of local coordinates on


U . Using these local 

coordinates we can construct by hand the metric 


g  on


U  by    
221

....
n

dxdxg


 . Now, pick a partition of 

unity )(
0

MCB


 . Subordinated to cover   AU , . (i.e) there exists a map AB :  such 

that BUB   ,  then define    )( BgBg  . The reader can check easily g is well defined, and it is 

indeed a Riemann metric on M . 

Example 2.3.3 [The Euclidean Space] 

The space n
R  has a natural Riemann metric    

221

0
....

n
dxdxg


  

The geometry of n

g
R  is the classical Euclidean geometry  

Example2.3.4 [Induced Metrics on Sub manifolds] 

Let  gM .  be Riemann manifold and MS   a sub manifold if: MS  , denotes the natural inclusion then we 

obtain by pull back a metric on S   
s

i

s
ggg  . For example, any invertible symmetric nn   matrix defines a 

quadratic hyper surface in n
R  by  1),(:  xAxRxH

n

A
 where   ,  denotes the Euclidean inner on n

R , 
A

H  has 

a natural  

    

Remark 2.3.5  

On any manifold there exist many Riemannian metrics, and there is not natural way of selecting on of them. One 

can visualize a Riemannian structure as defining    “shape” of the manifold. For example, the unit sphere 

  1
222
 zyx  , is diffeomorphic to the ellipsoid     1)(

22/122/122/1
 zyx .,but they look “different” by. 

However, appearances may be deceiving in is illustrated the deformation of a cylinder they look different, but 
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the metric structures are the same since we have not change length of curves on our sheep. The conclusion to be 

drawn from these two examples is that we have to be very careful when we use the attribute “different”. 

 

3.1.6 Example:2.3.6 [ The Hyperbolic Plane ]  

The Poincare model of the hyperbolic plane is the Riemannian manifold  gD ,  where D  is the unit open disk in 

the plan 2
R  and the metric g is given by )()1/(1

22222
dzdydxyxg   

Example2.3.7 [ Left Invariant Metrics on lie groups ] 

Consider a lie group G  ,and denote by
G

L  its lie algebra then any inner product .,. on  
G

L  induces a 

Riemannian metric 
g

h .,.  on G  defined by TxXGgYLXLgyxYXh
ggg




,,,)(,)(,,),(
11  

Where   GTGTL
gg 1

1
: 



  is the differential at Gg   of the left translation map 1

g
L . One checks easily that check 

easily that the correspondence .,. gG    is a smooth tensor field, and it is left invariant (i,e) hhL 
 If G  is 

also compact  ,we can use the averaging technician to produce metrics which are both left and right invariant . 

 

2.4 :   The Levi-Cavite Connection] 

 To continue our study of Riemannian manifolds we will try to follow a close parallel with classical Euclidean 

geometry the first question one may ask is whether there is a notion of “straight line” on a Riemannian manifold 

.In the Euclidean space 3
R  there are at least ways to define a line segment. A line segment is the shortest path 

connecting two given points. A line segment is a smooth path   3
1,0: Rv   satisfying 0)( tv . Since we have not 

said anything about calculus of variations which deals precisely with problems of type (i) we will use the second 

interpretation as our starting point, we will soon see however that both points of view yield the same conclusion. 

Let us first reformulate. As know the tangent bundle of 3
R  is equipped with a natural trivialization, and as such 

it has a natural trivial connection
0

  defined by 
jij

i

,0
,0  where 

j
i

i

xi 
 ,)( (i.e) all the christoffel 

symbols vanish, moreover, if 
0

g  denotes the Euclidean metric, then . 

                                                       0,,
00

00

10

1

0


kjkjikjikji

k

gvg   

0)(
)(

 tv
tv

 . So that the problem of defining “ lines ” in a Riemannian manifold  reduces to choosing a “ natural 

” connection on the tangent bundle of course , we would like this connection to be compatible with the metric 

but even so , there infinitely many connections to choose from . The following fundamental result will solve this 

dilemma. 

Proposition 2.4.1 [ Levi-Cavite Connection ] 

Consider a Riemannian manifold  gM . ,then there exists a unique symmetric connection  on TM  compatible 

with the metric g, (i,e)   0,0 
g

T  the connection   is usually called the Levi-civet connection associated 

to the   metric g  . 

Proof    

Uniqueness we will achieve this by producing an explicit description of a connection with the above two m  

properties let    be such a connection, (i.e)  0
g

  and   )(,:,, MYXYXXY
yx

  for any we have, 

  )(),(),(, YXgYXgYXZYXZ
zzgg

  since. 

),,(),(),(),,(),(),(),(),(),(),( ZVXYgXYgXZgYXgZYgXZVgYXVgZYXXZYYX
yyzxyzgg

  

We conclude that 2/1),(  YXg
z

          ),,(),,(),,(),(),(),( YXZgXZYgYYXgYXZXZYZYX
ggg

  

The above equality establishes the uniqueness of   using local coordinates n
xx ,....,

1  on M  we deduce from 

with . 

(5)                                                        
XjXkkXii

ZYX  /,/,/  

                                                              
kikkiikiikikikji

gggg  2/1
1

  

Above ,the scalars 1

ij
  denote the Christ symbols of  in these coordinates ,(i.e) 

iijji




1

 If kg
1  denotes the 

inverse of 1

i
g  we deduce  

kijjikkiiikji
gggg 

11
2/1  

Definition 2.4.2 :[ Riemannian Manifold Is Smooth ] 

A geodesic on a Riemannian manifold ),( gM  is a smooth path, Mbav ),(: , satisfying  0)(,)(  tvtv                       

Where   is the “Levi - Cavite ” connection. Using local coordinates n
xx ,....,

1  with respect to which the 

Christoffel simples are k

ji
  and the path v  is described )(),....,()(

1
txtxtv

n
  we can rewrite the geodesic equation 

as a second, order nonlinear system of ordinary differential equations set
i

i
xtvdtd  )(/ , 
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 k

ji

k

ji

k

ji

k

jik

k

ij

ji

iiji
xxxxxxdtdxxtvdtd   ,)/()()/(  

So the geodesic equation is equivalent to nkxx
jk

ji

k
,...,1:,0  . Since the coefficients )( x

k

ji

k

ji
 depend 

smooth up on , x  we can use the classical Banish-Picard  

Proposition 2.4.3 [Riemannian for any Compact subset] 

Let (M,g) be a Riemannian manifold for any compact subset TM , there exists 0  such that for any   kXx ,  

there exists a unique geodesic MXvv
X

 ),(,     such that Xvxv  )0(,)0( . One can think of a geodesic 

as defining a path in the tangent bundle Xvvtvtvt
X

 ,)(),(( . The above proposition shows that the geodesics 

define a local flow   on  TM  by   XvvtvtvXx
X

t
 ,)(),(),( . 

Definition 2.4.4 :[Geodesic Low ] 

The local flow defined above is called the geodesic flow the Riemannian manifold  gM , . When the geodesic 

low is global flow , (i.e) any Xv
x

 is defined at each moment of t for any   TMXx , , then the Riemannian 

manifold is call geodetically complete . 

Proposition 2.4.5  : [ Conservation of energy] 

If the path )( tv  is a geodesic , then length of )( tv  is independent of time  

Proof  : 

we have   0)(),(2)(,)((/)(/
2

 tvtvgtvtvgdtdtvdtd . Thus, if we consider the sphere 

bundles  rxTMxMS
r

 ,)( . We deduce that )( MS
r

 are invariant subset of geodesic flow . 

Definition 2.4.6 :[ Lie algebra Group ] 

Let G  be a connected lie group, and let 
G

L  be its lie algebra. Any
G

Lx  , defines an endomorphism )( Xad  of 

G
L by  YXYXad ,)(   The Jacobi identity implies that  )(),()( YadXadYXad   where the bracket in the right 

hand side is the usual commentator of two endomorphism. Assume that there exists an inner product .,.  on 

G
L such that for any 

G
Lx   the operator )( Xad  is skew-adjoin (i.e)    YXYZYX ,,,,  . We can now extend 

this inner product to a left invariant metric h on G . We want to describe its geodesic first, we have to determine 

associated “Levi-civet” connection .using we get . 

(6)                                        YXZhZYhYXZhXZYZYXhYZh
X

,,(,(),(),(),(,2/1),(   

If we take 
G

LZYX ,,  (i.e) these vector fields are left invariant ,the constYXhconstXZhconstZYh  ),(,),(,),( , 

so that the first three terms in the above formula vanish we obtain the following equality at G1  . 

(7)                                                    XXZXZYZZXYZ
x

,,,,,,,2/1,   

Using the skew-symmetry of )( Xad  and )(Zad  we deduce   YZXYZ
x

,,,2/1,  so that. 

(8)                                                   
Gx

LZXYXZG  ,:,2/1,1              

This formula correctly defines a connection since any )(GvectorX   can be written as a linear combination. 

(9)                                                                
Giiii

LXGCXX 


 ,)(,   

If )( tv  is a geodesic ,we can write  
ii

Xvtv )( , so that 0  
jij

ji
iii

XXvvXvt ,2/1   

Since    
ijji

XXXX ,,   we deduce 0
i

v ,    XXvtv
ii

,)0()( . This means that v is an integral curve of the 

left invariant  vector field X   ,so that the geodesics through the origin with initial direction 
G

TX   are 

xx
tftv )(exp))(   

Definition 2.4.7 :  [ Killing Paring ] 

Let L be a finite dimensional real lie algebra ,the killing paring or form is the bilinear map  

LyxyadxadtryxkRLLK  ,:,)()((),(,:  

The lie algebra L is said to be semi simple if killing paring is a duality .A lie group G is called semi simple if its 

lie algebra is semi simple . 

2.5 :  The Exponential Map Normal Coordinates   

We have already seen that there are many difference between the classical Euclidean geometry and the general 

Riemannian geometry in the large. In particular we have seen examples in which one of basic axioms of 

Euclidean geometry no longer holds .Two distinct geodesic (real lines) may intersect in more than one point. The 

global topology of the manifold is responsible for this “failure” . In this we will define using the metric some 

special collections to being Euclidean. Let ),( gM  be Riemannian manifold and u, an open coordinate 

neighborhood with coordinate n
xx ,....,

1 .We will try to find a local change in coordinate ii
yx   in which the 

expression of the metric is as close are to the Euclidean metric
ji

g 
0

 , ji
dydy , . Let uq  ,be the point with 
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coordinate 0,....,0  via a linear we may as well assume that
jiij

qg )( .We would like “spread” the above equality 

to an entire neighborhood of q . To achieve this we try to find local coordinates j
y  near q  such that in these 

new coordinates the metric is Euclidean up to order one (i,e)  

kjiqyqygqg
k

ji

k

jijiji
 ,;,0)(/)(/)()()/()(,)(   

We now describe a geometric way of producing such coordinates using the geodesic flow .Denote as usual the 

geodesic from q with initial direction MTX
q

 by )( tX
q

  Not the following simple fact )()(,0 StXtXS
qq

      

∀s>0 . Hence , there exists a small neighborhood V  of MT
q

, Such that , for any VX    ,the geodesic )( tX
q

  is 

defined for all  1t .we define the exponential map at q   . 

)1(,:,:exp XXMMqTVq
q

   

The tangent space MT
q

 is a Euclidean space , and we can define MTrD
qq

)( , the open “disk” of radius r 

centered at the origin we have the following result centered at the origin .we have the following result 

Proposition 2.5.1: [Radii ]     

Let  gM ,  and Mq   as above .Then there exists 0r  such that the exponential map 

MrDq
q

)(:exp  

Is a diffoemorphism on to .The supermom of all radii r with this property is denoted )(qP
M

 . 

Definition 2.5.2 : [ Infectivity Radius of M ] 

The positive real number )(qP
M

 is called the infectivity radius of M  at q .the infimum 

)(inf qPP
MqM

  

Is called the infectivity radius of M 

Lemma2.5.3: [ Freshet Differential ] 

The Freshet differential at MT
q

0  of the exponential map. 

MTMqTMTqD
qq

 )0(exp,:exp
0

 

Is the identity MTMT
qq

   

Proposition 2.5.4: [Metric Tensor] 

Let i
x  be normal coordinates at M , and denote by

ji
g , the expression of the metric tensor in these coordinates 

then we have 
jiji

qg )(  and kjiqx
k

ji
 :0)(/  

Thus, the normal coordinates provide a first order contact between g, and the Euclidean metric. 

Lemma 2.5.5: 

In normal coordinates i
x  at q  the christoffel symbols ki

  vanish at q    

2.6 :  [ The Length Minimizing Property Of Geodesics]  

 For each Mq  , there exists )(0 qPr
M

 and 0  such that )(: qBm
r

 , we have Mp
m

  and 

)()( qBmB
r

 in  particular , any two of )(qB
r

 can be joined by a unique geodesic of length  . We must warn 

the reader the above result does not guarantee that the postulated connecting geodesic lies entirely in )(qB
r

.This 

is a different ball game . 

Theorem 2.6.1 : [ Unique Geodesic ] 

Let rq ,  and ε as in the previous and consider the unique geodesic   Mr 1,0:  of length <ε, joining two points of 

)(qB
r

if   Mw 1,0:  is a a piecewise smooth path with the same endpoint as    then. 

  dttwdtt )()(  

With equality if and only if    1,01,0: w .Thus   is the shortest path, joining its endpoints. 

2.7 : Riemannian Geometry  

Definition 2.7.1: [Riemannian Metrics] 

Differential forms and the exterior derivative provide one piece of analysis on manifolds which, as we have seen, 

links in with global topological questions. There is much more on can do when on introduces a Riemannian 

metric. Since the whole subject of Riemannian geometry is a huge to the use of differential forms. The study of 

harmonic from and of geodesics in particular, we ignore completely hare questions related to curvature. 

Definition 2.7.2:  [ Metric Tensor ] 

In informal terms a Riemannian metric on a manifold M  M is a smooth varying positive definite inner product 

on tangent space. To make global sense of this note that an inner product is a bilinear form so at each point we 

want a vector in tensor product. We can put, just as we did for exterior forms a vector bundle striation on 

The conditions we need to satisfy for a vector bundle are provided two facts we used for the bundle of p-forms 

each coordinate system defiance a basis   for each in the coordinate neighborhood and the element .Given a 
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corresponding basis for. The Jacobean of a change of coordinates defines an invertible linear transformation.   

And we have a corresponding.                                               

Definition 2.7.3 : [ Local Coordinate System ] 

A Riemannian metric on manifold M is a section g of which at each point is symmetric and positive definite. In a 

local coordinate system we can write . Where   and is a smooth function, with   positive definite. Often the tensor 

product symbol is omitted and one simply writes. 

Definition 2.7.4 :[ Two Riemannian Manifold Is an Isometric ] 

A diffoemorphism, between two Riemannian manifold is an isometric if    

Definition 2.7.5: [ Upper half-plan ] 

Let  , and   , if   and  then                                        

S0 these Movies transformation are isometrics of Riemannian metric on the upper half-plan.  

Definition 2.7.6:[ Smooth Curve in M ] 

Let M be a Riemannian manifold and  a smooth map  a smooth curve in M . The length of curve is   with and  , 

then  . So these Movies transformation are isometrics of Riemannian metric on the upper half-plan. 

Definition 2.7.7:[ A smooth Curve ] 

Let M a Riemannian manifold and   a smooth map I,e a smooth curve in M . The length of curve is   

Where   , with this definition, any Riemannian manifold is metric space define   are Riemannian and manifold 

space. 

Proposition 2.7.8:[ Manifold admits a Riemannian Metris ] 

Any manifold a demits a Riemannian metric 

Proof : 

Take a converging by coordinate neighborhoods and a partition of unit subordinate to covering. On each open 

set we have a metric. In the local coordinates, define this sum is well-defined because the support of. Are locally 

finite. Since at each point every term in the sum is positive definite or zero, but at least one is positive definite so 

that sum is positive definite. 

Definition 2.7.9 : [ The Geodesic Flow] 

Consider any manifold M  and its cotangent bundle  , with projection to the base  , let X  be tangent vector to  at 

the point then  so that Defines a conical 1-form  on  in coordinates  the projection P  is  so if  so if given take the 

exterior derivative  which is the canonical 2-from on the cotangent bundle it is non-degenerate, so that the map  

from the tangent bundle of  to its contingent bundle is isomorphism. Now suppose f is smooth function an its 

derivative is a 1-form df  d .Because of the isomorphism a above there is a unique vector field X  on such that 

from the g another function with vector field Y  , then. )(.)( ydeffY   On a Riemannian manifold we shall see 

next there is natural function on . In fact a metric defines an inner on   as well as on T for the map defines an 

isomorphism form T to then which means that  where  denotes the matrix    . 

Definition2.7.10: [Geodesist Metric]  

The vector field X   on given by  is called the geodesist flow of the metric g . 

Proposition2.7.11: [Projects Riemannian Manifold] 

The function f a above is If Write in coordinates If   where If   since projects on M  then by the definition of  

.Now let M   be a Riemannian manifold and H , the function on  defined by the metric as a above , if   is an one 

parameter group of isometrics , then the induced diffoemorphism of   will preserve the function H  so the vector 

field   will satisfy  . that  where X  is the geodesic flow along the geodesic flow, and is therefore a constant of 

integration of the geodesic equations 

Theorem 2.7.12 [Harmonic Function is maximum and minimum ] 

Suppose that  is a connected open set and )(
2

 CU , if U  harmonic and attains a global minimum or 

maximum in  .then U   is constant  

Proof: 

Any super harmonic function  U  that attains minimum   is constant since, U  is sup harmonic and attains a 

maximum a harmonic function is both sub harmonic. 

Example 2.7.13   

The function 22
),( yxyxU  is harmonic in n

R  it’s the real part of the analytic function 2
)( zzf  it has critical 

point at 0 meaning  that 0
u

D ,this critical point is a saddle –point however not an extreme value  not also that.  

(1)                                                  0)sincos(
2

1
2

2

0

2

)0(

  






ddydxU

r

                                                                      

as required by mean value property , one consequence of this property is that any non-constant harmonic 

function is an open mapping meaning , that it maps opens set to open set this not true  of smooth function such as 
2

xx  that. Extreme value  
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Theorem 2.7.14 

Suppose that   is a bounded, connected open set in n
R  and     CCU

2 is harmonic in   then.  

(2)
                                                 UU


 maxmax    UU


 minmin                                                                     

Proof: 

Since U  is continuous and   is compact , U  attain its global maximum and minimum on  , if U  attains a 

maximum or minimum value at interior  point then U is constant by otherwise both extreme  values are attained 

in the boundary .In either  cases the result follows  let given a second of this theorem that does not depend on the 

mean value property .Instated we us argument based on the non-positivity of the second derivative  at an interior 

maximum . In the proof we need to account for the possibility of degenerate maxima where the second derivative 

in zero. For    
2

,0 xxUxUlet 


 . Then 02  


nU , since U  is harmonic .if 
U attained a local 

maximum at an interior point then 0


U by the second derivative test. Thus 
U  no interior maximum, and it 

attains its maximum on the boundary .If,  xallforRx , , if follows that. 

(4)
                                                          

   2
RUSupUSupUSupUSup 





 

Letting 
 0  ,we get that    USupUSup


  .An application for the same a grummet to u  given in, 

UU


 infinf  .and the result follows . Sub harmonic function satisfy a maximum principle    UU


 minmin  

,while sub harmonic function satisfy a minimum principle    UUU


 minmin for all x . Physical terms, 

this means for example that the interior of abounded region which contains no heat sources  on heat sources or  

sinks cannot be hotter that the maximum temperature on the boundary  or colder than the minimum temperature 

on the boundary .The maximum principle given  a uniqueness result for ( Dirichlet problem)  for the poison 

equation . 

Theorem 2.7.15 [ Dirichlet Problem Function ] 

Suppose that   is a bounded connected open set in n
R  and     gCf , are given function then is at most 

one solution of the” Dirichlet problem” with     CCU
2 . 

Proof: 

Suppose that     CCUU
2

21
, satisfy equation     ongUinfU , , Let

2
UV  then, 

     CCV
2  is harmonic   and,  onV 0  ,the maximum principle implies that  inV 0  so 

21
UU   and solution is unique .                          

Definition 2.7.16 [ The Maximum Principle and Uniqueness ] 

 Are our solution formulas the only solution of the heat equation with the specified initial and or boundary 

condition by linearity. This amounts to asking whether 0U is the only date 0  the answer is yes . We shall 

prove this using the (maximum principle) .The maximum principle this is an elementary for - reaching fact about 

solutions of linear parabolic equation.  Here is the simplest version. Let D be the bounded domain 

suppose Dxff
t

 ,0   and  Tt 0   Then the maximum of  f  in the maximum closed cylinder 

 TD ,0 is a chive either at the (initial boundary) 0t at the (spatial  boundary)    VV
rr

 . Notice the 

asymmetry between the initial boundary 0t ,  ( where f can easily easily a chive  its maximum )  and the finial 

boundary   (where f does not achieve its maximum except in trivial case when f is constant ) . This asymmetry 

reflects once again time has (preferred  
n

vv ,....,
1

   when solving a parabolic P. D .E)  

 

III. OPECTIONS TENSOR FIELDS AND REMANNIAN MANFOLDS  
3.1 Tensor Fields 

 

Definition 3.1.1 [  a convector Tensor.]  

A convector tensor on a vector space V  is simply a real valued  
rI

vv ,....,  of several vector variables 
rI

vv ,...., of 

V , linear in each separately.(i.e. multiline). The number of variables is called the order of the tensor. A tensor 

field   of order r on a manifold M  is an assignment to each point MP  of a tensor 
P

  on the vector 

space  MT
P

, which satisfies a suitable regularity condition 
orCCC

r
,,

0  as P  varies on M .    

Theorem 3.1.2  

With the natural definitions of addition and multiplication by elements of  R  the set r

s
V )(   of all tensors of order 

),( sr on  V  forms a vector space of dimension sr
n

 . 
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Definition 3.1.3 [Tensor Fields.]  

A 
C covariant tensor field of order  r  on a 

C - manifold M  is a function   which assigns to each MP   an 

element
p

  of   
r

P
MT  and which has the additional property that given any 


C Vector fields on an open 

subset U  of  M , then  
r

XX ,...,
1

  is a 
C function on U , defined by ,      

rPPPr
XXPXX ,....,,...,

11
  . We 

denote by   
r

M   the set of all 


C covariant tensor fields of order r  on M .  

Definition 3.1.4  
We shall say that r

V  , r
V a vector space, is symmetric if for each rji  ,1 , we have : 

  ),...,,...,,...,(,...,,...,,...,
11

vvvvvvvv
ijrrij

  .Similarly, if interchanging the (i-
th

) and (j-
th

) variables, rji  ,1   

Changes the sign,    ),...,,...,,...,(,...,,...,,...,
11

vvvvvvvv
ijrrij

  ,then we say   is skew or anti symmetric or 

alternating; covariant tensors are often called exterior forms. A tensor field is symmetric (respectively, 

alternating) if it has this property at each point.  

Theorem 3.1.5  

Let NMF :  be a 
C  map of 

C  manifolds. Then each 
C  covariant tensor field    on N determines a 

C  

covariant tensor field  
*

F  on M by the formula           .,...,,...,
*

1

*

1

*

rPPPFrPPP
XFXFXXF   The map 

:
*

F  N
r

   M
r so defined is linear and takes symmetric (alternating) tenors to symmetric (alternating) 

tensors. 

Theorem 3.1.6 
The maps A and S are defined on  

r

M  a 


C manifold and  

r

M  the 


C covariant tensor fields of order r  , and 

they satisfy properties   there. In these case of , :
*

F   N
r   M

r  is the linear map induced by a 
C mapping 

NMF : . 

Definition3.1.7 [Multiplication of Tensors on Vector Space]. 

Let V  be a vector space and V  are tensors. The product of   and , denoted 

   is a tensor of order sr   defined by   ),....,(),....,(),....,...,...(
1111 srrrsrrr

vvvvvvvv


  . 

The right hand side is the product of the values of   and  .The product defines a mapping    ,  of  

x  V
r

  V
sr  . 

Theorem 3.1.8 

The product  V
r o  V

r
   V

sr   just defined is bilinear and associative. If n
 ,....,

1 is a basis of . 

(5)                                                                      


V
 













 


!!....!

!...
....

21

21

21

k

k

k

rrr

rrr
  

then     nii
r

ii
r  ,...,1/....

1

1  is a basis of  
r

V .  Finally VWF :
*

is linear, then      
***

FFF  .   

Proof:  

Each statement is proved by straightforward computation. To say   that   is bilinear means that if  ,  are 

numbers ,,
21

  
r

V  and    V
r , then      .

2121
  Similarly for the second 

variable. This is checked by evaluating each Side on sr  vectors ofV ; in fact basis vectors suffice because of 

linearity Associatively,      ,is similarly verified the products on both sides being defined in 

the natural way. This allows us to drop the parentheses. To see that r
ii

  .....1 from a basis it is sufficient to 

note that if
n

ee ,...,
1

is the basis of  V  dual to n
 ,....,

1 , then the tensor r
ii ,...,

1  previously defined is 

exactly r
ii

  .....1 .This follows from the two definitions:  

(6)                                                       
   

   















rr

rr

jj

ii

jjiiif

jjiiif
ee

r

r

,...,,...,1

,...,,...,0
,...,

11

11. ..

1

1 , 

and            r

rr

r

r

r
i

j

i

j

i

jj

i

j

i

j

i

jj

ii
eeeee  ...,...,,...,.... 2

2

1

12

2

1

1

1

1  ,which show that both tensors have the same 

values on any (ordered) set of r basis vectors and are thus equal. Finally, given ,:
*

VWF   if Www
sr



,..,

1
, then  

     ))(),...,((,...,
*11

*

srsr
wFwFwwF


  =   ))(),....,(()(),...,(

1*1* srrr
wFwFwFwF


  

=     ).,.....,(
1

**

sr
wwFF


   

Which proves      
***

FFF   and completes the proof. 
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 Theorem 3.1.9 :  [Multiplication of Tensor Field on Manifold] 
 Let the mapping   Srsr

MMM


 )()( just defined is bilinear and associative. If  n
 ,....,

1  is a basis of  
1

M , 

then every element     
r

M  is a linear combination with 

C coefficients of    },...,1/....{
1

1 nii
r

rii

  .  If 

MNF : is a 
C mapping, M  and    M

s , then      
***

FFF  , tensor field on .N  

Proof:  

Since two tensor fields are equal if and only if they are equal at each point, it is only necessary to see that these 

equations hold at each point, which follows at once from the definitions and the preceding theorem. 

Corollary 3.1.10  

Each r
U  including the restriction to U of any covariant tensor field on M , has a unique expression 

form  rr

r

r

ii

i i
ii

a     ........
1

1
. . . .

. Where at each point  
rr

iiii
EEaU ,...,,

11
. . . .

  are the Components of   in the 

basis  r
ii

  .....1  and is 
C function on  .U    

3.2 :  Tangent Space and Cotangent Space  
The tangent space )( MT

p
is defined as the vector space spanned by the tangents at p to all curves passing 

through point p in the manifold M . And The cotangent space )( MT
p



 of a manifold, at Mp  is defined as the 

dual vector space to the tangent space )( MT
p

. We take the basis vectors 
ii

x
E



 for )( MT
p

, and we write the 

basis vectors for )( MT
p



 as the differential line elements ii
dxe  . Thus the inner product is given 

by j

i

i

i dx
x




 , .  

Definition 3.2.1 [Wedge Product.]  

Carton’s wedge product, also known as the exterior Product, as the ant symmetric tensor product of cotangent 

space basis elements )(
2

1
dxdydydxdydx   dxdy  . Note that, by definition, 0 dxdx . The 

differential line elements dx  and dy are called differential 1-forms or 1-form; thus the wedge product is a rule for 

construction g 2-forms out of pairs of 1-forms. 

Definition 3.2.2  

Let )( x
p

 be the set of anti-symmetric p -tensors at a point x .This is a vectors space of dimension
)!(!

!
pnp

n


. 

The )( x
p

 path together to define a bundle over M . )(
p

C 
  is the space of smooth p -forms, represented by anti-

symmetric tensors )(
. . .

xf
ij

 , having p indices contracted with the wedge product of p   differentials. The 

elements of  )(
p

C 
  may then be written explicitly as follows:  

1dim, )}({)(
0




xfC  

ndim,  })({)(
1


 i

i
dxxfC  

                           2!1)-n(ndim,   }dx(x)dx{)(
ji2




ij
fC  

!32)-1)(n-n(ndim,   })({)(
3


 kji

ijk
dxdxdxxfC  

ndxdxfC n

n

ii

ii

n

 





dim, }...{)( 11

11
. . .

1

 

(7)                                                     
1dim,  }...{)( 1

1
. . .




n

n

ii

ii

n

dxdxfC . 

 

Remark 3.2.3 

Let 
p

   be an element of p


p
 , 

p
  an element of q

 . Then
pq

pq

qp
  )1( . Hence odd forms ant 

commute and the wedge product of identical 1-forms will always vanish. 

3.3 :  Differentiable manifolds  

A differentiable manifolds is necessary for extending the methods of differential calculus to spaces more general 
n

R a subset 3
RS  is regular surface if for every point Sp  the a neighborhood V of P is 3

R and 

mapping SVRux 
2

: open set 2
RU  such that :(i) x is differentiable homomorphism. (ii) the 

differentiable 32
:)( RRdx

q
 , the mapping x is called  a aparametnzation of S at P the important 

consequence of differentiable of regular surface is the fact that the transition also example below if 
1

: SUx 


and 1
: SUx 


are 


 wUxUx )()(  , the mappings 

211
)(: Rwxxx 




 and . 
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(8)
                                                                

  Rwxxx 


)(
11


                                                                                                                                                           

Are differentiable. A differentiable structure on a set M induces a natural topology on M it suffices to 

MA   be an open set in M if and only if ))((
1


UxAx 

 is an open set in n
R for all  it is easy to 

verify that M and the empty set are open sets that a union of open sets is again set and that the finite intersection 

of open sets remains an open set. Manifold is necessary for the methods of differential calculus to spaces more 

general than de n
R , a differential structure on a manifolds M induces a differential structure on every open 

subset of M , in particular writing the entries of an kn  matrix in succession identifies the set of all matrices 

with kn
R

, , an matrix of rank k can be viewed as  a k-frame that is set of k linearly independent vectors in 
n

R , kn  nKV
kn


,

is called the steels manifold ,the general linear group  )( nGL by the foregoing 
kn

V
,

 is 

differential structure on the group n of orthogonal matrices, we define the smooth maps function 

NMf : where NM , are differential manifolds we will say that f is smooth if there are atlases 

 


hU , on M ,  
BB

gV , on N , such that the maps 
1


hfg

B
are smooth wherever they are defined f is a 

homeomorphism if is smooth and a smooth inverse. A differentiable structures is topological is a manifold it an 

open covering 


U where each set 


U is homeomorphism, via some homeomorphism 


h to an open subset of 

Euclidean space n
R , let M be a topological space , a chart in M consists of an open subset MU  and a 

homeomorphism h of U onto an open subset of m

R , a r
C atlas on M is a collection  


hU , of charts such 

that the


U cover M and 1
,




hh

B
the differentiable . 

Definition 3.3.1   Differentiable injective  

A differentiable manifold of dimension N is a set M and a family of injective mapping MRx
n



of 

open sets n
Ru 


into M such that : (i)  Muxu )(

  
(ii)  for any  , with )()(


uxux  (iii) the 

family ),(


xu is maximal relative to conditions (i),(ii) the pair ),(


xu or the mapping


x with 

)(


uxp  is called a parameterization , or system of coordinates of M , Muxu )(


the coordinate 

charts ),( U where U are coordinate neighborhoods or charts , and  are coordinate homeomorphisms 

transitions are between different choices of coordinates are called transitions maps. 

(9)
                                                                             

 1

,
:



ijji
                                                                                                                                                      

Which are anise homeomorphisms by definition, we usually write 
n

RVUpx  :,)(  collection U and 

MUVxp 


:,)(
11

 for coordinate charts with is 
i

UM  called an atlas for M of topological 

manifolds. A topological manifold M for which the transition maps )(
, ijji

  for all pairs
ji

 , in the 

atlas are homeomorphisms is called a differentiable , or smooth manifold , the transition maps are  mapping 

between open subset of m
R , homeomorphisms between open subsets of m

R are 
C maps whose inverses are 

also 
C maps , for two charts

i
U and 

j
U the transitions mapping. 

(10)
                                                       

)()(:)(
1

, jijjiiijji
UUUU 



                                                                                                                      

And as such are homeomorphisms between these open of m
R , for example the differentiability )(

1
   is 

achieved the mapping ))
~

((
1

   and )
~

(
1

  which are homeomorphisms since )( AA   by assumption 

this establishes the equivalence )( AA  , for example let N and M be smooth manifolds n and 

m respecpectively , and let MNf : be smooth mapping in local coordinates 

  )()(:
1

VUff  


 ,with respects charts ),( U and ),( V , the rank of f at Np  is 

defined as the rank of f  at )( p (i.e) 
)(

)()(
pp

fJrkfrk


 is the Jacobean of f at p this definition is 

independent of the chosen chart , the commutative diagram in that. 

(11)
                                                         

    111
~


   ff                                                                                                                                              

Since  1
   and  1

   are homeomorphisms it easily follows that which show that our notion of rank is 

well defined       111 
   fJJfJ ij

yx
, if a map has constant rank for all Np  we simply 

write )( frk , these are called constant rank mapping. The product two manifolds 
1

M and
2

M be two                

k
C -manifolds of dimension

1
n and

2
n respectively the topological space

21
MM  are arbitral unions of sets of 

the form VU  where U is open in
1

M and V is open in
2

M , can be given the structure k
C manifolds of 
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dimension
21

, nn by defining charts as follows for any charts
1

M on  
jj

V , on
2

M we declare 

that  
jiji

VU   , is chart on
21

MM  where )(
21:

nn

jiji
RVU



 is defined so that. 

(12)                                                  )(,)(, qpqp
jiji

 
 
for all  

ji
VUqp ,   

A given a k
C n-atlas, A on M for any other chart  ,U we say that  ,U is compatible with the atlas A if 

every map  1
 

i
and  1

i
 

 
is k

C whenever 0
i

UU the two atlases A and A
~

is compatible if 

every chart of one is compatible with other atlas . A sub manifolds of others of n
R for instance 2

S is sub 

manifolds of 3
R it can be obtained as the image of map into 3

R or as the level set of function with domain 3
R we 

shall examine both methods below first to develop the basic concepts of the theory of Riemannian sub manifolds 

and then to use these concepts to derive a equantitive interpretation of curvature tensor , some basic definitions 

and terminology concerning sub manifolds, we define a tensor field called the second fundamental form which 

measures the way a sub manifold curves with the ambient manifold , for example X be a sub manifold of Y of 

XE : and YEg 
1

: be two vector brindled and assume that E is compressible , 

let YEf : and YEg 
1

: be two tubular neighborhoods of X in Y then there exists a 1p
C . The smooth 

manifold, an n-dimensional manifolds is a set that looks like n
R . It is a union of subsets each of which may be 

equipped with a coordinate system with coordinates running over an open subset of n
R . Here is a precise 

definition. 

Definition 3.3.2 

Let M be a metric space we now define what is meant by the statement that M is an n-dimensional 


C manifold. (i). A chart on M is a pair ),( U with U an open subset of M and  a homeomorphism a   

(1-1) onto, continuous function with continuous inverse from U to an open subset of n

R , think of  as 

assigning coordinates to each point of U . (ii) Two charts ),( U and ),( V are said to be compatible if the 

transition functions. 

(13)            nnnn
RVURVURVURVU 


)()(:,)()(:

11
                                                            

Are 

C that is all partial derivatives of all orders of 1
  and 

1

  exist and are continuous.  (ii)  An 

atlas for M is a family  IiUA
ii

 :),(   of charts on M such that  
Iii

U


 is an open cover of M and 

such that every pair of charts in A are compatible. The index set I is completely arbitrary. It could consist of 

just a single index. It could consist of uncountable many indices. An atlas A is called maximal if every chart 

),( U on M that is compatible with every chat of A .(iii) An n-dimensional manifold consists of a metric 

space M together with a maximal atlas A   

Example 3.3.3 

Let 
n

I be the identity map on n
R , then  

n

n
IR , is an atlas for n

R indeed , if U is any nonempty open 

subset of n
R , then  

n
IU , is an atlas for U so every open subset of n

R is naturally a 
C manifold. 

Example 3.3.4 

The n-space 
 

is a manifold of dimension n when equipped with the atlas 

 11,),(,),(
1

 niVUA
iiii

 where for each 11  ni . 

(14)                       )...,,,,...,(),.....,(0,)....,,(
111111111 


niini

n

ni
xxxxxxxSxxU   

                              )...,,,,...,(),.....,(0,)....,,(
111111111 


niini

n

ni
xxxxxxxSxxV                

So both 
i

 and 
i

 just discard the coordinate 
i

x they project onto n
R viewed as the hyper plane 0

i
x . A 

another possible atlas, compatible with
1

A  is  ),(,),(
2

 VUA   where the domains 

that  1,0....,,0\
m

SU   and  1,0....,,0\ 
n

SV  are the stereographic projection from the north and 

south poles, respectively, both  and  have range n
R plus an additional single point at infinity  

Example 3.3.5  

The torus 2

T is the two dimensional surface  4/1)1(,),,(
222232
 zyxRzyxT  in 3

R in 

cylindrical coordinates 0,sin,cos  zryrx  the equation of the torus is 4/1)1(
22
 zr fix 

any
0

,  say  . Recall that the set of all points in n
R that have 

0
  is an open book, it is a hall-plane that 

starts at the z axis. The intersection of the tours with that half plane is circle of radius 1/2 centered on 

0,1  zr  as   runs form 20 to , the point cos2/11 r and 
0

  runs over that circle. If we now 
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run  from 20 to the point )sin2/11(,cos)cos2/11((),,(  zyx runs over the whole torus. So 

we may build coordinate patches for 2
T using  and   with ranges )2,0(  or ),(  as coordinates). 

3.4: [  Intrinsic Ultracontractivily on Bounded Bomains Manifolds] 

We first consider on d

R  let D  be connected bounded Lipchitz domain in  1dR
nd   . And   with Laplacian with 

Dirichlet boundary conditions on D . It is well Know that the spectrum of   is discrete,
 

1)()( 
i

    

with .....0
21
   ,  and each

i
   is an eigenvalue with finite multiplicity. Denote by D

t
P  The dirichlet heat 

kernel on D, and 0  the first normalized Eigen function of    and D it is also well known that D is 

intrinsically ultra-contractive (i.e). 
 

(15)                                                              t
yx

yxp
e

i

Dyx

t

t
,

)()(

),(
sup

,

1 






















                        

 

Indeed, this is given true for more general domains such as holder domains of order o. The main purpose of this 

section is to clarify the short time behavior of    for Lipchitz domains. When D is a … domain. 
  

(16)                                                                              0,1
2/)2(




tC
d

tt


 
 

Holds for some constant 0  this estimate was extended recently to smooth compact Riemannian manifolds 

(under some additional) geometrical assumptions) our aim is to study similar estimate for less smooth domains 

D. we shall see that the estimate, holds for ,1
C   domains for any 0 , If D is merely lipchitzian (i.e) 0,1

C is no 

larger true. For instance, for  
d

D 1,0   one has ),()(
)1,0(

1 iit

d

k
yxPx




,
),(sin)(

1 i

d

k
xx 


 . and where )(sin r   is 

the first dirichlet Eigen function on [0,1]. Thus combining this with below for,  )1,0(D  we obtain. 

 

(17)                                                                         ]1,0(,
2

1
2/32/3














ttCt

d

t

d
       

 

For some constant 0C . A natural question is therefore whether for Lipchitz domain there exists a 

constant 0C   such that: 

(18)                                                                                 0,1  tCt
t

                                        

We shall see that the answer is no, in general .It is true that p

t
Ct


 1 . For some (qualitative) constant of the 

boundary.  

We prove that for any 0B , there exists alipschitz (connected) domain D such that
t

B

t    is not bounded 0t    

we summarize this as well as the large time behavior and a lower that domain D is called Lipschitzian if for 

any Dx  . There exist 0S  a coordinate system is called (Lipschilzian),   1
,




d
RRr  , and a Lipchitz function 

f on 1d
R   such that x   is the origin and. 

 

(19)                                                                 
 

 














)(:),(),(),(

)(:),(),(),(





frsrsxBDsxB

frrsxBDsxB
   

 

A Lipchitz domain is called ,1
C   for some 0  , if the corresponding Lipchitz function satisfies. 

 

(20)
                                                                     



baCbVaf  )()(
 

 

for some 0C  and for all,  1
,




d
Rba . In this definition it is required that 2   ,  if 1d  , D is an open bounded 

interval. 

 

Theorem 3.4.1  

If D is a ,1

C - domain for some 0   , there exists a constant 0C  , such that. 

(21)                                                        0,)(1
1

,1max
)2(

2/)2(









 



tallforetCt
C

d

t

a



 
 

For any 0B  , there exists a bounded Lipchitz domain RD    such that :
 


 t

B

t
tSup 

0
lim . Now let M be a 

d-dimensional connected Riemannian manifolds and D an open bounded 1,1

C  domain in M. then for any Dx   
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there exist 0S , a local coordinate system in   1
,




d
RRr   in  sxB , . (The open geodesic ball at x with radius, 

s) and )(
11 


d

b
RCf   with bounded second derivatives such that holds. For any. 

 

(22)                                                             DsxBry  ),(),(    Define 0)()(  fryf
 

 

Then DsxBry  ),(),(   has bounded second order derivatives furthermore there exists a constant 0C   such 

that. 
 

(23)                                                                          )(),(),()( ycFfrCyp  
 

Where   is the Riemann Don,
1

  Nina distance to  . This by the partition of unity, there exists a non-

negative function  )(
1

DC
b

 with bounded derivative and 0
D

   such that: 

(24)                                                                                  Don,
1

 
 

 

For some constant 01   , since D   is compact for simplicity we may and do assume that M is compact to. 

 

(25)                                                                       XXNL i i
  1

2                                         

Where X    is a bounded measurable vector field and  
N

ii
X

1
 are 1

C  vector fields we assume that L is elliptic that 

is. 

(26)                                             
   



















 

)(,,0,)()()()(

,,,

1
22

2

1
2

2

MCffrfrBfrf

CfffXff
N

i
i


 

For some constant 02   . Thus under a local coordinate system on has. 
 

(27)                                                                                
i

d

i
iji

d

i
ji

baL  
 11  

Where  
ddji

a


is continuous and strictly positive definite  dib
i

1   are bounded measurable. The L-diffusion 

process uniquely exists. For any D , Let ))(( xX
t

  be the L-diffusion process starting from x   and, 

 DxXtxT
t

 )(,0inf)(  .For all bounded measurable function f  on D .To study the (intrinsic 

ultracontractivity) of 
t

PD . We assume that L is symmetric w.r.t a probability measure )( dx  , dxDdx
xv )(

,1)(   

where V  is abounded. Measurable function and )( dx  the Riemannian volume measure by the elasticity and the 

sobolev in equality, we know that spectrum of L on D with dirichlet boundary condition is discrete, As in section 

1, we let 
21

   be the first two dirichlet eigenvalues and 0  the normalized first Eigen function. 

Remark 3.4.2 [Exterior Derivative]  

The exterior derivative operation, which takes p -forms into )1( p -forms according to the rule : 

(28)                   i
dxCC

i

1d0

x

f
d(f(x))  ;   )()(






   , ji
dxdxCC 








i

jj

j

2d1

x

f
)(x)dxd(f  ;   )()(   

                                             kji
dxdxdxCC 








i

jkj

jk

3d2

x

f
)dx(x)dxd(f  ;   )()(   

Here we have taken the convention that the new differential line element is always inserted before any previously 

existing wedge products.  

 

Property 3.4.3 

An important property of exterior derivative is that it gives zero when applied twice:  .0
p

dwd  This identity 

follows from the equality of mixed partial derivative, as we can see from the following simple example:  

(29)                                                               )()()(
21d0




CCC
d  

                                          
j

j
fdxdf  , .0)(

2

1


ji

ijji

ji

ji
dxdxffdxfdxddf  

Remark 3.4.4 

(i) The rule for differentiating the wedge product of a p -form 
p

 and a q -form 
q

  is  

qp

p

qpqp
ddd   )1()( . (ii) The exterior derivative anti-commutes with 1-forms.  

Examples 3.4.5 
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Possible p -forms 
p

  in two-dimensional space are: 

(30)                                                                           






















.),(

),(),(

),(

2

1

0

dydxyx

dyyxvdxyxu

yxf







 
 

 The exterior derivative of line element gives the two-Dimensional curl times the area 

dydxuvdyyxvdxyxud
yx

 )()),(),((  . 

The three-space p -forms 
p

  are. 

 

(31)                                                                           





































.)(

)(

321

3

21

3

13

2

32

12

3

3

2

2

1

11

0

dxdxdxx

dxdxwdxdxwdxdxw

dxvdxvdxv

xf









 

We see that 

(32)                                                                          

































.)(

2

1
)(

)(

321

3322112

1

1

321

33221121

dxdxdxwwwd

dxdxvd

dxdxdxwvwvwv

m

ijmkjijk







 
 

(Where 
i jk

  is the totally anti-symmetric tensor in 3-dimensions).  

Definition 3.4.6 

An alternating covariant tensor field of order r  on M will be called an exterior differential form of degree  r  (or 

some time simply, r -form).The set  M
r

 of all such forms is a subspace of  
r

M . 

Theorem 3.4.7 

Let )(M denote the vector space over R of all exterior differential forms. Then for  M
r

  and  M
s

 , 

the formula,  
PPP

    defines an associative product satisfying    
rs

1  . With this product, 

 M is algebra over R . If )( MCf


 , we also have        fff    If n

 ,...,
1  is a field of co 

frames on M  (or an open set  U  of M ), then the set 

(33)                                                                                    niii
r

ii
r  ...1/...

21

1 
 

is a basis of  M
r

   Uor  . 

Theorem 3.4.8           

If  NMF :  is a 

C mapping of manifolds, then     MNF :
*  is an algebra homomorphism. (We shall 

call  M  the algebra of differential forms or exterior algebra on M ). 

Definition 3.4.8 

An oriented vector space is a vector space plus an equivalence class of allowable bases, choose a basis to 

determine the orientation those equivalents to it will be called oriented or positively oriented bases or frames. 

This concept is related to the choice of a basis   of  V
n

 . 

Lemma 3.4.9 

Let  0  be an alternating covariant tensor on  V  of order,  n  = dim V  and let 
n

ee ,...,
1

 .be a basis of  V . Then 

for any set of vectors
n

vv ,...,
1

, with ,
j

j

ii
ev  , we have ,      

n

j

in
eevv ,...,det,...

11
  . 

Proof:  

This lemma says that up to a  non-vanishing scalar multiple   is the determinant of the components of its 

variables. In particular, if n
VV  is the space on n-tuples and 

n
ee ,...,

1
 is the canonical basis, then  

n
vv ,...,

1
  is 

proportional to the determinant whose rows are
n

vv ,...,
1

. The proof is a consequence of the definition of 

determinant. Given   and
n

vv ,...,
1

, we use the linearity and ant symmetry of   to write. 

 

(34)                                                                  
n

n

jj

j

n

j

n
eevv ,...,...,...,

1

1

11
   .  
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Since   0,...,
1


n

jj
ee , if two indices are equal, we may 

write.            
n

j

in

n

nn
eeeevv ,...,det,...,)...(sgn,...,

11

1

11
  

 .The last equality uses the standard 

definition of determinant.  

Corollary 3.4.10 

Note that if 0 , then 
n

vv ,...,
1

 are linearity independent if and only if   0,...,
1


n

vv . Also note that the 

formula of the lemma can be construed as a formula for change of component of  , there is just one component 

since   1 V
n , when we change from the basis  

n
ee ,...,

1
of V to the basis  

n
vv ,...,

1
.These statements are 

immediate consequences of the formula in the lemma.  

Definition 3.4.11 

We shall say that M is orient able it is possible to define a 
C n form  on M  which is not zero at any point, 

in which case M  is said to be oriented by the choice of  . A manifold M is orient able if and only if it has a 

covering  


,U of coherently oriented coordinate neighborhoods. 

Theorem 3.4.12  

Let M be any 
C  Manifold and let  M  be the algebra of exterior differential forms on M .Then there exists a 

unique R -linear map    MMd
M

:  such that. 

(i) If   )( MCMf


 , then dffd
M

 , the differential of f . 

        
M

r

MM

sr
dddthenMandM  1,  

(ii) 0
2
d M .This map will commute with restriction to open sets MU  , that is,  

UUUM
dd   , and map  M

r
  

into  M
r 1

 . 
 

IV. CONCLUSION 

         The paper study Riemannian differenterentiable manifolds is a generalization of locally Euclidean
n

E  in 

every point has a neighbored is called a chart homeomorphism, so that many concepts from as differentiability 

manifolds. We give the basic definitions, theorems and properties of Laplacian Riemannian manifolds becomes 

the spectrum of compact support M and Direct commutation of the spectrum, and spectral geometry of operators 

de Rahm.  
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