

On the Construction of Cantor like Sets

Dr. S. M. Padhye¹, Satish B. Khobragade²

Associate Professor, HOD, Department Of Mathematics, Shri R.L.T. College Of Science, Akola, Maharashtra, India¹

Research Student, Department Of Mathematics, Shri R.L.T. College Of Science, Akola, Maharashtra, India²

---**ABSTRACT**--

In this paper we construct a Cantor like set S from any sequence $\{\epsilon_n\}$ with $0 \leq \epsilon_n \leq 1$ with the help of *sequence* $\{S_n\}$ *of subsets of* [0,1] such that $S_n \supset S_{n+1}$, $m(S_n) = \prod_{j=1}^n (1 - \epsilon_j)$ and $S = \bigcap S_n$ with $m(S) =$ $\prod_{n=1}^{\infty}(1 - \epsilon_n)$. *Further* $\sum \epsilon_n = \infty$ *if and only if* $m(S) = 0$. Cantor ternary set comes out to be a particular case of *construction of Cantor like sets by choosing* $\epsilon_n = \frac{1}{2}$ $\frac{1}{3}$ *for all n. Similarly we can construct Cantor -* $\frac{2}{5}$ $rac{2}{5}$ *set by choosing* $\epsilon_n = \frac{1}{\epsilon}$ $\frac{1}{5}$ *for all n. In the construction of Cantor* $-\frac{2}{5}$ *set the length of remaining closed intervals at each stage are equal to* $\frac{2}{5}$ $\}$ ^k, $k = 1, 2, 3, \ldots \ldots \ldots \ldots$ *Also we can construct Cantor -* $\frac{3}{7}$ $rac{3}{7}$ *set by choosing* $\epsilon_n = \frac{1}{7}$ $\frac{1}{7}$ *for all n. Here in the construction of Cantor -* $\frac{3}{7}$ set the length of remaining closed intervals at each stage are equal to $(\frac{3}{7})$ $\frac{3}{7}$)^k, $k = 1, 2, 3, \dots \dots \dots$

KEY WORDS: - *Cantor set, Cantor like sets.*

Lemma 1:- Given any sequence $\{\epsilon_n\}$ with $0 < \epsilon_n < 1$, $\sum \epsilon_n = \infty$ if and only if $\lim_{n\to\infty} \prod_{j=1}^n (1 - \epsilon_j) = 0$ **Proof :-** First step: Let $\sum_{j=1}^{\infty} \epsilon_j = \infty$

Then we have to show that $\lim_{n\to\infty} \prod_{j=1}^n (1-\epsilon_j) = 0$ i.e. $\prod_{j=1}^\infty (1-\epsilon_j) = 0$

```
Here we use 1- \epsilon \le e^{-\epsilon} \cdot 0 \le \epsilon < 1\therefore 1- \epsilon_i \leq e^{-\epsilon_i} \forall i =1,2,3,.............
\therefore \qquad 1 - \epsilon_1 \leq e^{-\epsilon_1}1 - \epsilon_2 \leq e^{-}\ddot{\ddot{\textbf{i}}}\vdots1- \epsilon_n \leq e^-\cdot
```
Multiplying all these inequalities we get,

 (1-)(1-)…………….(1-) ≤ . ۰۰۰۰۰۰) ≤ ………………………(1)

To show that $\lim_{n\to\infty} \prod_{j=1}^n (1-\epsilon_j) = 0$, let $\epsilon > 0$ be given. Put $M = \log(\frac{1}{\epsilon})$ $\frac{1}{\epsilon}$).

Since $\sum \epsilon_j = \infty$ then there is N such that for $n \ge N \implies \sum_{j=1}^n \epsilon_j > M$

$$
\sum_{j=1}^{n} \epsilon_j > \log(\frac{1}{\epsilon})
$$

$$
e^{\sum_{j=1}^{n} \epsilon_j} > \frac{1}{\epsilon}
$$

$$
\epsilon > \frac{1}{e^{\sum_{j=1}^{n} \epsilon_j}}
$$

$$
\epsilon > e^{-\sum_{j=1}^{n} \epsilon_j}
$$

$$
\therefore e^{-\sum_{j=1}^{n} \epsilon_j} < \epsilon
$$
............(2)

From equation (1) and (2) we get ,

$$
\prod_{j=1}^{n} (1 - \epsilon_j) < \epsilon \text{ for all } n \ge N.
$$
\nThus

\n
$$
\lim_{n \to \infty} \prod_{j=1}^{n} (1 - \epsilon_j) = 0
$$
\n
$$
\therefore \qquad \prod_{j=1}^{\infty} (1 - \epsilon_j) = 0
$$

Conversely:-Let $\sum_{j=1}^{\infty} \epsilon_j < \infty$ i.e. $\sum \epsilon_j < \infty$ is convergent.

We show that $\lim_{n\to\infty} \prod_{j=1}^n (1-\epsilon_j) \neq 0$. Let $P_n = \prod_{j=1}^n (1 - \epsilon_j)$ Since $\epsilon_i \geq 0$, $\epsilon_i \neq 1 \forall j$ and $\sum_i \epsilon_i < \infty$.

we choose N so large that ϵ_N + ϵ_{N+1} + $\dots \dots \cdot \frac{1}{2}$ $\overline{\mathbf{c}}$

> Then using induction we prove that for all $n \ge N$, $(1 - \epsilon_N)(1 - \epsilon_{N+1}) \cdots (1 - \epsilon_n) \ge [1 - (\epsilon_N + \epsilon_{N+1}) + \epsilon_N]$ \cdots + + ϵ_n)] For $n = N$, the inequality is obvious. For $n > N$ If $(1 - \epsilon_N)(1 - \epsilon_{N+1}) \cdot \cdot \cdot (1 - \epsilon_n) \geq [1 - (\epsilon_N + \epsilon_{N+1} + \cdot \cdot \cdot + \epsilon_n)]$ then $(1 - \epsilon_{N})(1 - \epsilon_{N+1}) \cdots (1 - \epsilon_{n}) (1 - \epsilon_{n+1}) \geq [1 - (\epsilon_{N} + \epsilon_{N+1} + \cdots + \epsilon_{n})] (1 - \epsilon_{n+1})$ = $[1-(\epsilon_N + \epsilon_{N+1} + \cdots + \epsilon_{n+1})] + \epsilon_{n+1}(\epsilon_N + \epsilon_{N+1} + \cdots + \epsilon_n)$ $\geq [1 - (\epsilon_N + \epsilon_{N+1} + \cdots + \epsilon_{n+1})]$ Thus $(1 - \epsilon_N)(1 - \epsilon_{N+1}) \cdot \cdot \cdot (1 - \epsilon_n) (1 - \epsilon_{n+1}) \geq [1 - (\epsilon_N + \epsilon_{N+1} + \cdot \cdot \cdot + \epsilon_{n+1})]$ By induction the inequality holds for n **≥** N

i.e. $(1 - \epsilon_N)(1 - \epsilon_{N+1}) \cdots (1 - \epsilon_n)$ ≥ $[1 - (\epsilon_N + \epsilon_{N+1} + \cdots + \epsilon_n)]$ for all n ≥ N ………….(4) Now by using equation (3) we get,

$$
(1 - \epsilon_N)(1 - \epsilon_{N+1}) \cdots (1 - \epsilon_n) \ge [1 - \frac{1}{2}] = \frac{1}{2}
$$
\n
$$
(1 - \epsilon_N)(1 - \epsilon_{N+1}) \cdots (1 - \epsilon_n) > \frac{1}{2}, n \ge N
$$
\n
$$
\text{Now for } n \ge N, \ \frac{P_n}{P_{N-1}} =
$$
\n
$$
= (1 - \epsilon_1)(1 - \epsilon_2) \cdots (1 - \epsilon_{N-1})(1 - \epsilon_N)(1 - \epsilon_{N+1}) \cdots (1 - \epsilon_n) / (1 - \epsilon_1)(1 - \epsilon_2) \cdots (1 - \epsilon_N).
$$
\n(5)

$$
= (1 - \epsilon_N)(1 - \epsilon_{N+1}) \cdots (1 - \epsilon_n) > \frac{1}{2} \quad \text{ in } \geq N
$$

(From equation (5))

--------------------- (3)

$$
\therefore \frac{P_n}{P_{N-1}} > \frac{1}{2}, n \ge N
$$
\n
$$
\therefore \inf_{n \ge N} \left\{ \frac{P_n}{P_{N-1}} \right\} \ge \frac{1}{2} \ne 0
$$
\n
$$
\tag{7}
$$

Consider

$$
\frac{P_n}{P_{N-1}} - \frac{P_{n+1}}{P_{N-1}} = (1 - \epsilon_N)(1 - \epsilon_{N+1}) \cdots (1 - \epsilon_n) \cdot (1 - \epsilon_N)(1 - \epsilon_{N+1}) \cdots (1 - \epsilon_{n+1})
$$
\n
$$
\frac{P_n}{P_{N-1}} - \frac{P_{n+1}}{P_{N-1}} = (1 - \epsilon_N)(1 - \epsilon_{N+1}) \cdots (1 - \epsilon_n) [1 \cdot (1 \cdot \epsilon_{n+1})]
$$
\n
$$
\frac{P_n}{P_{N-1}} - \frac{P_{n+1}}{P_{N-1}} = (1 - \epsilon_N)(1 - \epsilon_{N+1}) \cdots (1 - \epsilon_n) \epsilon_{n+1} \ge 0
$$
\n
$$
\therefore \frac{P_n}{P_{N-1}} - \frac{P_{n+1}}{P_{N-1}} \ge 0
$$
\n
$$
\therefore \{\frac{P_n}{P_{N-1}}\} \text{ is monotonic decreasing and bounded below by } \frac{1}{2}.
$$
\n
$$
\therefore \text{ glb}_{n \ge N} \{\frac{P_n}{P_{N-1}}\} = \lim_{n \to \infty} \frac{P_n}{P_{N-1}} \ge \frac{1}{2}
$$
\n
$$
\therefore \lim_{n \to \infty} P_n \ge \frac{1}{2} P_{N+1}
$$
\n
$$
\therefore \lim_{n \to \infty} P_n = \alpha P_{N+1}, \qquad \text{where } \alpha \ge 1/2
$$
\n
$$
\therefore \lim_{n \to \infty} \prod_{j=1}^{n} (1 - \epsilon_j) = \alpha \{P_{N+1}\}, \qquad \text{where } \alpha \ge 1/2
$$
\n
$$
\implies \prod_{j=1}^{\infty} (1 - \epsilon_j) \text{ is a positive number}
$$
\n
$$
\therefore \lim_{n \to \infty} \prod_{j=1}^{n} (1 - \epsilon_j) \ne 0
$$

Lemma 2 :-

 If 0 < < 1, n ≥ 1, = + +۰۰۰۰۰۰+ and = (1-)(1-)…………….(1-) then (1-) ≤ $t_n \leq \frac{1}{\sqrt{n}}$

Proof :- Given

 0 < < 1, n **≥** 1, = + +۰۰۰۰۰۰+ and = (1-)(1-)…………….(1-) **≥** 1 – (+ +۰۰۰۰۰۰+) (From equation (4) of Lemma 1) **≥** 1 - 1 – ≤ …………………………………..(1)

Now,

 $(1 - \epsilon_1)(1 + \epsilon_1) = 1 - \epsilon_1^2 < 1$ $\therefore (1 - \epsilon_1)(1 + \epsilon_1) < 1$ $(1 - \epsilon_1) < \frac{1}{(1 - \epsilon_1)^2}$ $\overline{(1+\epsilon_1)}$

www.theijes.com The IJES Page 51

Similarly, $(1 - \epsilon_2) < \frac{1}{(1 + \epsilon_2)^2}$ $\overline{(1+\epsilon_2)}$ \vdots \vdots $(1 - \epsilon_n) < \frac{1}{(1 + \epsilon_n)^n}$ $\overline{(1+\epsilon_n)}$

Multiplying all these equations we get,

(1-)(1-)…………….(1-) ≤ …………………………(2)

Now

$$
(1 + \epsilon_1)(1 + \epsilon_2) \cdots (1 + \epsilon_n) = 1 + (\epsilon_1 + \epsilon_2 + \cdots + \epsilon_n) + (\epsilon_1 \epsilon_2 + \epsilon_1 \epsilon_3 + \cdots) + (\epsilon_1 \epsilon_2 \epsilon_3 + \cdots) + \cdots
$$

\n
$$
(1 + \epsilon_1)(1 + \epsilon_2) \cdots (1 + \epsilon_n) \ge 1 + \epsilon_1 + \epsilon_2 + \cdots + \epsilon_n
$$

\n
$$
\implies \frac{1}{(1 + \epsilon_1)(1 + \epsilon_2) \cdots (1 + \epsilon_n)} \le \frac{1}{1 + \epsilon_1 + \epsilon_2 \cdots + \epsilon_n}
$$

Putting in equation (2) we get,

(1-)(1-)…………….(1-) ≤ ≤ ≤ ………………………………(3)

From equation (1) and (3) we get,

$$
(1 - s_n) \le t_n \le \frac{1}{(1 + s_n)}
$$

Corollary 3 :-

If in addition $\lim s_n = \alpha$ and $\lim t_n = \beta$ then $(1 - \alpha) \le \beta \le \frac{1}{(1 + \alpha)}$.

Proof :-By lemma 2 we get,

$$
(1 - s_n) \le t_n \le \frac{1}{(1 + \text{Sn})}
$$

Given $\lim s_n = \alpha$ and $\lim t_n = \beta$

$$
\therefore \qquad (1 - \alpha) \le \beta \le \frac{1}{(1 + \alpha)}
$$

Preposition 4 :-

Given any sequence $\{ \epsilon_n \}$ with 0< ϵ_n <1, there is a sequence $\{ S_n \}$ of subsets of [0,1] such that $S_n \supset S_{n+1}$, $m(S_n) = \prod_{j=1}^n (1 - \epsilon_j)$ and $S = \bigcap S_n$ is Cantor like set with

 $m(S) = \prod_{n=1}^{\infty} (1 - \epsilon_n).$

Proof :-

Let $I = [0,1]$

First stage :

We remove middle open intervals $I_{1,1}$ of length ϵ_1 from [0,1]

i.e. intervals $I_{1,1} = \left(\frac{(1 - \epsilon_1)}{2}, \frac{(1 - \epsilon_2)}{2}\right)$ $\frac{(-51)}{2}$).

The remaining two closed intervals are denoted by $J_{1,1} = [0, \frac{(1-\epsilon_1)}{2}]$ and $J_{1,2} = [\frac{(1+\epsilon_1)}{2}, 1]$. We get the set $S_1 =$ $J_{1,1} \cup J_{1,2}$ with measure $(1 - \epsilon_1)$ i.e.m $(S_1) = (1 - \epsilon_1)$

Second stage :

Now we remove two middle open intervals $I_{1,2}$, $I_{2,2}$ of length $(1 - \epsilon_1)\epsilon_2$ from the remaining two closed intervals $J_{1,1}$ and $J_{1,2}$ i.e. we remove $I_{1,2} = \left(\frac{(1-\epsilon_1)(1-\epsilon_2)}{4}\right)$, $\frac{1}{4}$ and

$$
I_{2,2} = \left(\frac{4 - (1 - \epsilon_1)(1 + \epsilon_2)}{4}, \frac{4 - (1 - \epsilon_1)(1 - \epsilon_2)}{4}\right)
$$
. The remaining four closed intervals are denoted by

$$
J_{2,1} = [0, \frac{(1 - \epsilon_1)(1 - \epsilon_2)}{4}], J_{2,2} = \left[\frac{(1 - \epsilon_1)(1 + \epsilon_2)}{4}, \frac{(1 - \epsilon_1)}{2}\right],
$$

$$
J_{2,3} = \left[\frac{(1 + \epsilon_1)}{2}, \frac{4 - (1 - \epsilon_1)(1 + \epsilon_2)}{4}\right], J_{2,4} = \left[\frac{4 - (1 - \epsilon_1)(1 - \epsilon_2)}{4}, 1\right].
$$

: Length of removed intervals = $m(I_{1,2}) + m(I_{2,2}) = (1 - \epsilon_1)\epsilon_2 < (1 - \epsilon_1)$

We get the set S_2 as union of remaining four closed intervals i.e. $S_2 = J_{2,1} \cup J_{2,2} \cup J_{2,3} \cup J_{2,4}$ with measure $(1 - \epsilon_1)(1 - \epsilon_2)$ i.e.m(S_2) =

 $\therefore S_1 \supset S_2$

Third stage :

Now we remove four middle open intervals $I_{1,3}, I_{2,3}, I_{3,3}, I_{4,3}$ of length $(1 - \epsilon_1)(1 - \epsilon_2)\epsilon_3$ from the remaining four closed intervals $J_{2,1}, J_{2,2}, J_{2,3}$ and $J_{2,4}$ i.e. we remove

$$
I_{1,3} = \left(\frac{(1-\epsilon_1)(1-\epsilon_2)(1-\epsilon_3)}{8}, \frac{(1-\epsilon_1)(1-\epsilon_2)(1+\epsilon_3)}{8}\right),
$$

\n
$$
I_{2,3} = \left(\frac{(1-\epsilon_1)[4-(1-\epsilon_2)(1+\epsilon_3)]}{8}, \frac{(1-\epsilon_1)[4-(1-\epsilon_2)(1-\epsilon_3)]}{8}\right),
$$

\n
$$
I_{3,3} = \left(\frac{2(1+\epsilon_1)+4-(1-\epsilon_1)(1+\epsilon_2+\epsilon_3-\epsilon_2\epsilon_3)}{8}, \frac{2(1+\epsilon_1)+4-(1-\epsilon_1)(1+\epsilon_2-\epsilon_3+\epsilon_2\epsilon_3)}{8}\right),
$$

\n
$$
I_{4,3} = \left(\frac{8-(1-\epsilon_1)(1-\epsilon_2)(1+\epsilon_3)}{8}, \frac{8-(1-\epsilon_1)(1-\epsilon_2)(1-\epsilon_3)}{8}\right)
$$

The remaining four closed intervals are denoted by $J_{3,1} = [0, \frac{(1 - \epsilon_1)(1 - \epsilon_2)(1 - \epsilon_3)}{8}]$,

$$
J_{3,2} = \left[\frac{(1-\epsilon_1)(1-\epsilon_2)(1+\epsilon_3)}{8}, \frac{(1-\epsilon_1)(1-\epsilon_2)}{4} \right], J_{3,3} = \left[\frac{(1-\epsilon_1)(1+\epsilon_2)}{4}, \frac{(1-\epsilon_1)[4-(1-\epsilon_2)(1+\epsilon_3)]}{8} \right],
$$

\n
$$
J_{3,4} = \left[\frac{(1-\epsilon_1)[4-(1-\epsilon_2)(1-\epsilon_3)]}{8}, \frac{(1-\epsilon_1)}{2} \right], J_{3,5} = \left[\frac{(1+\epsilon_1)}{2}, \frac{2(1+\epsilon_1)+4-(1-\epsilon_1)(1+\epsilon_2+\epsilon_3-\epsilon_2\epsilon_3)}{8} \right],
$$

\n
$$
J_{3,6} = \left[\frac{2(1+\epsilon_1)+4-(1-\epsilon_1)(1+\epsilon_2-\epsilon_3+\epsilon_2\epsilon_3)}{8}, \frac{4-(1-\epsilon_1)(1+\epsilon_2)}{4} \right],
$$

\n
$$
J_{3,7} = \left[\frac{4-(1-\epsilon_1)(1-\epsilon_2)}{4}, \frac{8-(1-\epsilon_1)(1-\epsilon_2)(1+\epsilon_3)}{8} \right], J_{3,8} = \left[\frac{8-(1-\epsilon_1)(1-\epsilon_2)(1-\epsilon_3)}{8}, 1 \right]
$$

www.theijes.com The IJES Page 53

Now,

Length of removed interval = $m(I_{1,3}) + m(I_{2,3}) + m(I_{3,3}) + m(I_{4,3})$

$$
=(1-\epsilon_1)(1-\epsilon_2)\epsilon_3\langle (1-\epsilon_1)(1-\epsilon_2).
$$

We get the set $S_3 = J_{3,1} \cup J_{3,2} \cup J_{3,3} \cup J_{3,4} \cup J_{3,5} \cup J_{3,6} \cup J_{3,7} \cup J_{3,8}$ with measure $(1 - \epsilon_1)(1 - \epsilon_2)(1 - \epsilon_3)$ i.e. $m(S_3) = (1 - \epsilon_1)(1 - \epsilon_2)(1 - \epsilon_3)$.

Continuing in this way we can construct S_n , $n \ge 4$ of measure $(1 - \epsilon_1)(1 - \epsilon_2)(1 - \epsilon_3)$ (ϵ_3) $(1 - \epsilon_n)$.

:. $m(S_n) = (1 - \epsilon_1)(1 - \epsilon_2)(1 - \epsilon_3) \cdots (1 - \epsilon_n) = \prod_{j=1}^n (1 - \epsilon_j)$

Then $S_1 \supset S_2 \supset S_3 \supset S_4 \supset \cdots$.

If $S = \bigcap_{n=1}^{\infty} S_n$ then $m(S) =$

 $=\prod_{n=1}^{\infty}(1-\epsilon_n)$

* *

Conclusion :- Using this Cantor like set we can construct different Cantor like sets by varying or fixing ϵ_n .

REFERENCES:-

- [1] G.de. Barra, "Measure Theory And Integration", New Age International (p) Limited, 2003.
- [2] Kenneth Falconer, "Fractal Geometry: Mathematical Foundations and Applications", John Willey and Sons.1990.
[3] Kannan V. "Cantor set: From Classical To Modern". The Mathematical Student, Vol 63, No. 1-4(1994)P.243-257
- [3] Kannan V. "Cantor set: From Classical To Modern". The Mathematical Student, Vol 63,No.1-4(1994)P.243-257.
- [4] E. C. Titchmarsh ,"The Theory Of Functions", Oxford University Press, Oxford Second Edition -1987.