
The International Journal Of Engineering And Science (IJES)

|| Volume || 4 || Issue || 2 || Pages || PP.46-68|| 2015 ||

ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805

www.theijes.com The IJES Page 46

Process-Centred Functionality View of Software Configuration

Management: A Contextualized Model

1
Davis Nyakemwa Onsomu, Msc.

 2
Elisha Ondieki Makori, PhD

3
Patrick Kinoti , Msc.

1
Department of Computing Sciences, Kisii University

2
Department of Computing Sciences, Kisii University

3
Department of Computing Sciences, Kisii University

--ABSTRACT--
This paper aims to propose a contextualized software configuration management model that is relevant and

beneficial to small and medium software development firms operating in developing countries including Kenya.

The study involved qualitative and quantitative research that focused on selected small and medium software

development firms in Nairobi City, Kenya. Expert opinions and ideas of software engineering professionals

especially lead developers and developers provided vital knowledge. Findings from the study indicate that most

of the software firms employed the traditional software configuration management models with a significant

minority without any model. Interestingly, majority of the firms did not practice conventional and standard

phases of SCM. In addition, most firms did not practice software configuration management across all software

projects undertaken. There is no specific contextualized SCM model in existence to address the needs of small

and medium software development firms in developing countries including Kenya. The study identified

numerous challenges faced by these firms such as bureaucratic nature of existing SCM standards and models,

time consuming to implement nature of existing standards and models; limited skilled manpower to handle

SCM; perception of SCM as being time-intensive and therefore time consuming; frequently changing demands

from clients viewed as hindrance to applying SCM; perception of SCM as being cost intensive and therefore

uneconomical to practice; perception of SCM as being labour intensive and therefore leads to schedule delays;

finding the process of handling the tracking of change requests and defect reports difficult to manage; challenge

when it comes to simultaneous update of changes made by different developers; challenge of logical conflict

whereby when changes are committed, a component of the program that has not been modified leads to the

generation of software errors when the software or program is run; challenges in smoothly managing the

various sub-processes involved when practicing SCM. The study proposed SCM model for capturing the

aspirations and satisfying the needs of small and medium software development firms. The effectiveness of the

employed SCM models was robustly questioned as numerous challenges regarding the SCM practice of such

firms were identified. The proposed SCM model was highly approved and recommended by the respondents, a

clear indication that it captured the aspirations and needs of a significant majority of the study participants.

This study purposively focused on selected sample of the small and medium software development firms in

Nairobi city, Kenya in addition to expert opinions and ideas from software engineers in the industry. This study

proposed a software configuration management model that is adaptable and customizable to the needs and

aspirations of small and medium software development firms. This is significant for the small and medium

software development firms that operate in different policy, regulatory, industry and organizational contexts.

The applicability of the models designed for developed countries is not always relevant to small and medium

software development firms in developing countries. The proposed software configuration management model

integrates a process-centered functionality view of the software configuration management process that

includes context into process descriptions enabling process owners to design own processes for change and be

able to switch such processes during execution resulting in adaptive and modular processes. Moreover, the

process designs can be reused by different projects with similar context and also switched during process

execution if the given project’s context changes. Approval of the proposed software configuration management

model by majority of the respondents is proof enough that the proposed model can meet the needs and

requirements of small and medium software development firms operating in developing countries. Willingness

to adopt the proposed SCM model by majority of the respondents in own software development firms indicates

that small and medium software development firms, lead developers, developers and stakeholders in the

software engineering industry are satisfied with the operations of this proposed model, and the need for further

development into a software tool for commercial use. Most of the small and medium software development firms

do not appreciate and embrace existing software configuration management models due to the bureaucratic

nature of the design and perceived bias portrayal towards large firms. Software configuration management is a

Process-Centred Functionality View…

www.theijes.com The IJES Page 47

key component in the general software engineering process to useful realization of quality software and

software products. As a result, there is need to address this particular gap by proposing a contextualized

software configuration management model for small and medium software development firms, more so in

developing countries. Such firms operate in different policy, regulatory, industry and organizational contexts,

and as a result, the applicability of the models designed for developed countries is not always relevant to these

firms. There is need to develop a software configuration management model that is relevant to the needs and

demands of small and medium software development firms in developing countries including Kenya.

Keywords: Contextualized, functionality view, context definition, process sequence, process abstraction, solid

processes.

Date of Submission: 1 September 2014 Date of Accepted: 06 March.2015

--- ----------

I. INTRODUCTION
Studies indicate that various software configuration management models have been proposed in

developed countries such as China, United States of America, Brazil and Denmark. The models have been

developed using different architectures and include: component-based software development, POEM, Odyssey-

VCS and Ragnarok architectural model (Mei, Zhang & Yang, 2002; Lin & Reiss, 1995; Murta et al, 2007;

Christensen, 1999). Component-based software development model was designed to support software

development process together with traditional software configuration management in order to solve issues in

management of logical software constituents and relationships. The United States of America, POEM, software

configuration management model, stores large software artifacts such as source code, object code and

documents as files in the underlying file system without allowing users to directly access files and directories of

the underlying file system. The Odyssey-VCS model proposed and designed in Brazil, is the integrated software

configuration management model for unified modelling language models. This model composes of version

control system and two complementary components: customizable change control system and traceability link

detection tool that uses data mining to discover change traces among versioned UML model elements and

provides the rationale of change traces, automatically collected from the integrated SCM infrastructure. This

model is focused towards software configuration management on software developed using fine-grained UML

model elements (Murta et al, 2007). In Denmark, Ragnarok architectural Model allows tight version control and

configuration management of the architecture of the software system. The model takes the logical software

architecture as the starting point and uses this structure to drive the version-and-configuration control process.

Ragnarok places strong emphasis on reproducibility of configurations and architectural changes. In addition, this

model emphasizes the application to the handling of software with evolving architecture tendency, (Christensen,

1999). Findings reveal that most of the software configuration management models in existence in the world

today, evolved completely independent of each other, based on the needs of the unique platforms design and

perceived ways in which the software was developed in respective environments. Many companies created

home-grown SCM models to meet own specific needs while software vendors responded with a plethora of

models, most with bias towards single platform or context (Cravino et al, 2009).

In some developing countries including Kenya, different studies show that there is lack of software

configuration management model that specifically addresses the needs of small software development firms

(Pino, Garcia & Piattni, 2009; Mohan et al, 2008; Er & Erbas, 2010; Kogel, 2008). Small and medium software

development firms in developing countries operate in different policy, regulatory, industry and organizational

contexts.

Additionally, the applicability of the models designed for developed countries is not always relevant to

small and medium software development firms in developing countries. In addition, there is a lack of a software

configuration management model that looks at the SCM practice from a process-centered functionality area

view of configuration management functionality requirements with an aim of providing a contextualized

approach for small software development firms in addressing pertinent issues, problems and weaknesses

inherent in existing SCM models and even systems (Humble & Farley,2010; Balamuralidhar & Prasad,2011;

Ochuodho & Brown,1991; Hong et al,2002; Rosenblum& Krishnamurthy,1991).

There are four traditional standard SCM models in existence from which SCM models accepted and applied in

business organizations today as exemplified by Feiler (2010) and identified in the literature (Sovran et al, 2011;

Dix & Gongora, 2011; Rodriguez et al, 2011; Rubin et al, 2008; Zhu et al, 2011; Kaur & Singh, 2011): the

check-out/check-in, composition, long transaction and change set. The classification is based on certain patterns

Process-Centred Functionality View…

www.theijes.com The IJES Page 48

observed in support of the repository which is the centralized library, that consists of objects that are under

configuration management control. Most SCM systems today are essentially based on any one of these models.

Despite this, this study has identified paramount weaknesses in these four models and hence shall capitalize on

the same to yield contextualized software configuration management model that is specific to the needs of small

and medium software development firms in developing countries.

Statement of the Problem

In the current era, small and medium software development companies form large population out of the

total number of software companies in the world. Start-up companies play significant role in the booming

software economy, although literature discussing the issues of small and medium software development firms in

terms of software configuration management process or methods is virtually non-existent.

One of the greatest difficulties in applying software configuration management in small companies is the

unawareness of the importance of that activity and, sometimes, the idea that the task is a bureaucratic service

that only produces delays.

 There is evidence that majority of small and medium software firms are not adopting existing

standards, perceiving the standards as being oriented towards large organizations. Existing standards and models

are more complex for small enterprises to comprehend owing to inadequate availability of skills and resources.

Studies show that small and medium firms’ negative perceptions of process model standards are primarily

driven by negative views of cost, documentation and bureaucracy. Different studies indicate lack of software

configuration management model that specifically addresses the needs of small and medium software

development firms especially in developing countries (Pino, Garcia & Piattni, 2009; Mohan et al, 2008; Er &

Erbas, 2010; Kogel, 2008).

Small and medium software development firms in developing countries operate in different business

environment that is not always conducive for the applicability of the models designed for developed countries.

Additionally, there is lack of software configuration management model that looks at the SCM practice from

process-centered functionality area view of configuration management functionality requirements in relation to

providing contextualized approach for small and medium software development firms in addressing pertinent

issues, problems and weaknesses inherent in existing models and even systems (Humble & Farley,2010;

Balamuralidhar & Prasad,2011; Ochuodho & Brown,1991; Hong et al, 2002; Rosenblum &

Krishnamurthy,1991).

Purpose of the Study

The main objective of this study was to propose software configuration management model that is

suited to the needs and captures the aspirations of small and medium software development firms in developing

countries including Kenya.

Objectives of the Study

i. Propose contextualized SCM model that is relevant and beneficial to small and medium software firms

in Kenya and other developing countries.

ii. Evaluate the effectiveness of the proposed contextualized SCM model in small and medium software

firms.

Research Question

i. To what extent is the proposed SCM model relevant and beneficial to small and medium software firms

in Kenya and other developing countries?

ii. To what extent is the proposed SCM model effective to small and medium software firms?

Process-Centred Functionality View…

www.theijes.com The IJES Page 49

II. LITERATURE SURVEY

2.1 Research Gaps in Existing SCM Models

Existing models have numerous challenges or research gaps as noted by various authors grouped as process

functionality, auditing functionality, accounting functionality and controlling functionality.

2.1.1 Process Functionality

Process functionality involves a number of aspects such as clear definition of processes, support and indiscipline

indistinction, invalidated effectiveness of life cycle support, unclear task management process, informational

indecisions in tool use and invalidation of automated workflow systems.

In the aspect of clear definition of processes, although every SCM system comes with built-in process in the

small (check-out/ check-in cycle and long transactions), the degree to which large scale processes are supported

varies. Professional experience advises that the big leap forward is the clear definition of software processes.

Use of tools is beneficial only if the tools are really supportive although such tools take the role of bureaucrats

increasing the number of required interactions for the developers. SCM systems that are too rigid in enforcing

the process are cursed by developers and reduce effectiveness (Fruhauf & Zeller, 1999; Loumos et al, 2010;

Aiello & Sachs, 2010; Berzisa & Grabis, 2011).Resource implications – particularly that of management time –

mean that the implementation process is markedly more taxing for small and medium enterprises than large

companies. Consequently, well-designed development process, with clear focus and effective process

management improves efficiency and the likelihood of success, (Hudson et al, 2001).

In relation to support and discipline indistinction, the distinction between support (use of tools) and discipline

(use of standard) remains to be validated in existing SCM models (Schmidt, 2012).The SCM automated tools

used for the project and described in the software configuration management plan need to be compatible with

the software engineering environment development or maintenance occurs. SCM tools offer wide range of

capabilities, and the most useful tool set for supporting the engineering and management environment has to be

chosen from among other available tool sets (IEEE Standard for SCM Plans, 1990).

In the context of quality, SMEs are finding it hard to distinguish between use of tools and use of standards as the

requirement for marketing rather than for quality reasons. As a result SMEs in particular are not benefiting

sufficiently from the quality industry, and thus, affecting the quality of products and services, confusing the

system and displaying alarming lack of appreciation (Jones et al, 2010; Schmidt, 2012; European

Telecommunications Standards Institute, 2011).

In invalidated effectiveness of life cycle support, one failure of existing SCM models is that the effectiveness of

life cycle support has not been validated. The distinction between support and discipline, and thus, the

effectiveness of life cycle support remains to be validated (Fruhauf & Zeller, 1999; Chen et al, 2011; Weinreich

& Buchgeher, 2012; Crowston et al, 2012). Software SMEs view life-cycle support as being infeasible (overly

time-consuming or costly to implement) rather than non-beneficial. Unlike the high-process focus in life cycle

support, SMEs often adopt low process focus electing only to implement process improvements in response to

negative business events (Clarke et al, 2010; Baddoo & Hall, 2010; Clarke et al, 2011).

In the aspect of unclear task management process, rather than enforcing activities, more advanced SCM systems

offer means to track current and pending processes. Task management is the area overlapping with (project)

management. If tools are used then there is need to carefully decide the type of information to be kept in the

SCM model and the project management tool. Tight coupling of work activities with the state control of the

work results leads to sluggish SCM systems (Fruhauf & Zeller, 1999; Klosterboer, 2010; Sarma & Hoek, 2008);

therefore, in the existing models, task management is not clear. Considering evidence of important software

process improvement occurring to the system life cycle, SMEs find it difficult to distinguish between task

management and project management. This can be the case where there is SCM-specific process that has

corresponding parent project level process, for example, the configuration identification and the software

configuration identification process. There is strong overlap between task management and project management

processes (Clarke et al, 2010; Baddoo & Hall, 2010; Clarke et al, 2011).

Regarding informational indecisions in tool use, task management is the area overlapping with (project)

management. If tools are used, then there is need to carefully decide the type of information to be kept in the

SCM model and project management tool. Failure of existing SCM models involves where the SCM tools used,

is not carefully decided which type of information is kept in the model and project management tool (Fruhauf &

Zeller, 1999; Heer et al, 2010; Dabbish et al,2010).

Most SMEs share characteristics that distinguish them from large enterprises. In contradiction, such

characteristics may also impose restrictions on such firms’ economic, human and technological aspects such as

technology adoption (Rivas et al, 2010).

Process-Centred Functionality View…

www.theijes.com The IJES Page 50

In invalidation of automated workflow systems, ultimate process support is achieved with automated workflow

systems. To the contrary, such systems are not yet validated raising queries on how such systems handle

workflow automatically. In practice, work flow is typically organized by informal communication. Most SCM

systems support triggers that are associated with specific events like automatic notification by e-mail whenever

change occurred. These communication features are well-understood, cheap and effective means for simple

work flow support (Wang et al, 2012; Elmroth et al, 2010; Fruhauf & Zeller, 1999).One weakness or failure of

existing SCM models is that automated workflow systems that achieve ultimate process support need to be

validated. Workflow system that achieves process support in software SMEs is evidently deficient giving room

for non-validation of processes within business operations that may hamper process improvement initiatives

(Yahaya et al, 2012 & Ozcelik, 2010).

2.1.2 Auditing Functionality

Auditing functionality involves the aspect of traceability of related documents that is lacking in existing SCM

models. Queries are raised on how changes during implementation can be traced back to the design phase and

the requirements phase. Further queries have been raised regarding the relationship between changes in

implementation and in documentation.

Every SCM system provides mature and widely used features to inquire about the change history of specific

configuration items. In contrast, the unsolved problem is the traceability of related documents although change-

based versioning or activity-based SCM (Micallef & Clemm, 1996), allows these changes to be associated with

each other. There is still room for improvement in this particular aspect (Anquetil et al, 2010; Mader et al, 2012;

Fruhauf & Zeller, 1999).Software configuration status accounting is the record keeping and reporting activity

performed by the configuration librarian to maintain the traceability of changes and product versions. This may

not be applicable in majority of software SMEs since such firms tend to view the procedure as overly

bureaucratic and time-consuming (Habra et al, 2011).

 2.1.3 Accounting Functionality

Accounting functionality involves the aspect of deficiencies in tagging. Accounting facilities let users (and

managers) inquire about the status of the product. SCM systems at least allow classifying components and

versions according to specific properties (experimental, proposed or stable). Consequently, existing SCM

models are facing pending problems in the simple tagging method used to facilitate the classification of

components and versions according to specific properties (experimental, proposal or stable) (Fruhauf & Zeller,

1999; Treude & Storey, 2009; Kim & Youn, 2010).Software SMEs disregard the techniques and procedures that

guarantee proper tagging used to facilitate classification of versions and components during software status

accounting of the SCM. This results in misclassification of versions that undermines version and component

traceability (Habra et al, 2011; Ozcelik, 2010; Yahaya et al, 2012).

2.1.4 Controlling Functionality

Controlling functionality involves the aspect of failed control processes. Tracking of change requests and defect

reports is at the heart of the maintenance process, starting as soon as independent testing begins. The process of

handling these, especially responsibility for decisions and definitions of records to be kept, determines the

responsiveness of the organization on user needs. In small organizations, simple Excel sheet provides enough

support, however, bigger organizations require elaborated database with dedicated queries, failure in existing

SCM models. Tracking of product defects is significant SCM topic that provides immediate insight on the

current product quality. Bug-tracking tools frequently come as standalone tools, from the freely available

GNATS system to elaborated commercial systems. On the contrary, the integration with SCM repositories as

well as automated testing facilities still leaves a lot to be desired, raising challenges for SCM vendors and

researchers (Rupareila, 2010; Chen & Chen, 2009; Fruhauf & Zeller, 1999).Software SMEs are evidently noted

for casually handling the issue of change request tracking and this undermines the quality of the final software

product considerably (Rivas et al, 2010; Mader & Gotel, 2012; Loumos et al, 2010).

2.2 Other Research Gaps in Existing SCM Models

Other challenges or research gaps identified in SCM Models are explained as follows: In the aspect of

mismanagement of change requests, advanced SCM systems (Whitgift, 2001) offer elaborated management of

change requests. The effectiveness of the process remains to be validated, although improvements are more

likely to come from SCM vendors than from SCM researchers (Hadden, 1998 & Fruhauf & Zeller, 1999). The

effectiveness of the elaborated management of change requests whereby the whole development process is

organized along the processing of change requests as depicted in the LIFESPAN SCM system/ model needs to

be validated. Software SMEs are evidently noted for casually handling the issue of change request tracking and

this undermines the quality of the final software product considerably (Rivas et al, 2010; Mader & Gotel, 2012;

Loumos et al, 2010).

Process-Centred Functionality View…

www.theijes.com The IJES Page 51

Disintegration of interfacing processes is where advanced SCM models like LIFESPAN offer elaborated

management of change requests where the whole development process is organized along the processing of

change requests. The effectiveness of the process remains to be validated by existing SCM models. Tracking of

product defects provides immediate insight on the current product quality, however, the integration with SCM

repositories as well as automated testing facilities still leaves a lot to be desired which is failure on the part of

existing SCM models (Biffl & Schatten, 2009; Fruhauf & Zeller,1999; Bose et al, 2008).

Integration of product defects tracking, SCM repositories and testing facilities is an area of concern in software

SMEs that hampers collaborative software development when in absence, more so in distributed environment

like that of small scale offshore software development projects (Boden et al, 2008; Katchow et al, 2011; Duhan

et al, 2012).Existing SCM models have not been integrated with the organization’s business process (especially

the software development process) and this is the failure on the part of the existing SCM models (Aiello &

Sachs, 2010 & Moser et al, 2010). SCM systems and the business process are regarded as two different entities

more so in small and medium software SMEs. This may lead to the SCM process that does not bear relevance to

the SME’s business agenda leading to the subsequent withdrawal from business operations. This may

undermine the quality of the final software product (Clarke et al, 2010; Loumos et al, 2010; Clarke et al, 2011).

In inflexibility of SCM models, the software organizations should employ various software tools for completing

projects properly (in terms of budget, schedule and quality) according to defined software process. The necessity

of using tools for software development is increasing steadily due to cost and schedule pressures on software

projects and increasing complexity of projects in terms of management and technical aspects. Indeed, it is

impossible to perform most of the tasks without the use of corresponding tools. As the use and importance of

these tools is increasing, the integration of tools becomes an issue under consideration.

The integration of such tools enabling the streamlining of individual tools by providing sharing of data and

methods among applications (Nalbant, 2004).There exist studies regarding the integration of these tools,

although these studies are not in the desired level (Forte, 1989 & Sharon & Bell, 2000). These studies focus on

the achievement of collaborative working of tools with each other. On the contrary, the need for the integration

to collect and unify high-level operational information in order to enable quantitative management (planning,

execution, monitoring) of software projects, remains uncovered (Nalbant, 2004).

The existing SCM systems/models were initially designed for bigger structures. The cost of evaluation process

and its duration is disproportional to the available resources. The number of actors involved in the SCM process

is very small and usually, one actor plays many roles. These factors compound to make flexibility of the SCM

systems/models to blend with the software SME business process almost impossible (Aggarwal, 2012; Jimenez

et al, 2010; Habra et al, 2011).

In the aspect of double maintenance, the problem occurs when the same version of a program, component or file

has to be maintained in different places. With the growing maturity and increasingly powerful functionality of

SCM systems, parallel development has become a norm rather than an exception. It is rare to find project in

which locking is practiced (Sarma et al, 2007). Double maintenance is form of direct conflict and according to

(Sarma et al, 2007), direct conflicts are caused by concurrent changes to the same artifact. Double maintenance

is a problem to software SMEs as it leads to problematic issues of coordination and communication thus

affecting productivity and product quality (Jimenez et al, 2010; Aggarwal, 2012; Duhan, 2012).

Simultaneous update is whereby the problem occurs when two developers check-out a component (Shamsaie &

Habibi, 2011).The first developers commits modifications, while the second one checks-in the same, erasing the

ones made by the first one. Simultaneous update occurs when two or more developers take the copy of the

configuration item and make changes.

When the developer returns the modified configuration item to the master library, modifications made by

developers who have returned own configuration item earlier are lost. Charge-out/charge-in or locking

mechanism is required to prevent simultaneous update (ESA Board for Software Standardization and Control,

1995). Simultaneous update in software SMEs leads to substantial loss of time and computing resources as the

work in question has to be re-done. This strains the already limited resources of the software SME and may

affect productivity and product quality in the long run (Ghobakhloo et al, 2011; Alzaga & Martin, 2010;

Jimenez et al, 2010).

Process-Centred Functionality View…

www.theijes.com The IJES Page 52

In logical conflict, the problem occurs when changes are committed while the component or part of the program

that has not been modified stops the changes from working (Priedhorsky & Terveen, 2011). The authors add that

logical conflict may hamper the development of products in software SMEs leading to vast resource-

consumption in solving the subsequent problems encountered under such situations.

In the aspect of bad branching strategy, the problem is manifested when the complex branching strategy applied

creates difficulties in knowing the purpose of each branch or how the branches should be merged. In addition,

this also can lead to merge problems. In relation to studies conducted by Shihab et al (2012), branching plays

major role in the development process of large software. Branches provide isolation so that multiple pieces of

the software system can be modified in parallel without affecting each other during times of instability. The

need to move code across branches introduces additional overhead whereby the branch in use can lead to

integration failures due to conflicts or unseen dependencies. Branches are used extensively in commercial and

open source development projects, however, the effects that different branch strategies have on software quality

are not well understood. Merge problems as a result of bad branching strategy are common in software SMEs as

these firms do not have clearly established structures to manage branching during the firms’ software

development process. This may lead to problems in productivity and product quality (Anquetil et al, 2010; Kaur

& Singh, 2011; Ruparelia, 2010).

Users need to better understand configuration management processes in order to be able to demand better

supportive implementations for such processes. This requires detailed definition of CM processes;

understanding of how much control is to be enforced compared to how much guidance is to be given by the

process manager; adequate implementations; and monitoring of how well the process is followed and where

implementations can be made. Better understanding and implementation of process enables improved support

for users in attaining higher quality of product, more time for being productive on creative tasks and better

forecasting of software costs (Loumos et al, 2010; Aiello & Sachs, 2010; Berzisa & Grabis, 2011).Certain steps

must be carried out in logical or orderly manner, but there is little automated guidance as to which steps should

be done when. The order of commands in the menu suggests the command order, but this is really a simple

guide. At any point in time user cannot immediately know the next step. Furthermore, to implement the process,

more than step sequences (control flow) are needed and some semantic context required too. The configuration

and change control (CCC) turnkey system keeps audit trail of the CCC commands that the user issues. On the

spotlight is the fact that the audit trail for emergency fixes gives no indication whether any file was checked out

and changed. Consequently, there is no data associated with the audit trail, only some logging of actions. This

information may be insufficient for particular organization where simple mechanism for the audit trail is

provided as customers may want semantic content in the audit trail. In regard to this, the process implementation

involving control flow of commands and avoiding capturing of data state is likely to be insufficient for the

customer (Loumos et al, 2010; Aiello & Sachs, 2010; Berzisa & Grabis, 2011).

III. CHALLENGES THIS STUDY ADDRESSED
This study concentrated on the aspect of clear definition of processes in the process functionality requirement of

SCM models. The following areas of weakness under this aspect were of major concern to this study,

simultaneous update, logical conflict and tracking of change requests and defect reports.

In simultaneous update, charge-out/charge-in or locking mechanism is required to prevent simultaneous update.

This study proposed the use of elements of the check-out/check-in model to prevent simultaneous update.

Activities that use repository have long duration, while treating the entire activity as one transaction is

impractical. Systems crashing during such an activity results in loss of days of work. As a result, the repository

manager must support check-out and check-in of objects. The check-out operation copies the object from the

shared repository into the user’s private workspace. After working on the object, the user issues the check-in

operation, which copies the object from the private workspace into the shared repository. Check-out and check-

in execute as (separate) short transactions. Essentially, check-out sets a persistent lock on the object, which is

released by check-in. Check-out should support shared and exclusive modes (Ghobakhloo et al, 2011; Alzaga &

Martin, 2010; Jimenez et al 2010).

In logical conflict, this study proposed the embracement of elements of the long transaction model in order to

address the problem of logical conflict. Transaction is started when making the change. The change is made in

the workspace, which represents the working context and provides local data storage visible only within the

scope of the workspace. This (workspace) may be mapped into the file system allowing transparent access to the

repository for the development tools. The workspace consists of working configuration that are frozen states of

previous working configurations. The working space originates from bound configuration in the repository or

Process-Centred Functionality View…

www.theijes.com The IJES Page 53

preserved configuration of enclosing workspace. When the changes are finished, the transaction is committed,

which effectively creates new version of the configuration in the repository or enclosing workspace and makes

the changes visible outside the workspace. Finally, the workspace may be deleted or used for further changes. If

the workspace originates from another workspace, the results is hierarchy of workspaces. The different levels in

the hierarchy represent different levels of visibility. The bottom workspaces belong to the individual developers,

one level up is the workspace for the team and the next level may be visible to the testing team and until the

hierarchy ends to the repository (Priedhorsky & Terveen, 2011).

In the aspect of tracking of change requests (CRs) and defect reports (DRs), the change process begins when the

need for the change occurs. The proposer of the change fills the change request form describing the change,

reason, items and versions to be worked on. Each change request should also get an identification number. CRs

go through the whole change process and shall be complemented with more information in each stage. After the

CR has been initiated, it is evaluated and either approved or rejected by the configuration control board. After

the evaluation, the configuration control board (CCB) may reject the CR and include the reason to the change

request. If the CR is approved, it is delivered further for implementation. During the implementation of the

change request, this study proposed that the change set model shall be applied, after which the process shall be

verified (Rupareila, 2010; Chen & Chen, 2009; Fruhauf & Zeller, 1999).

The main concept in the change set model is the change set, which represents the set of modifications to

different components making up the logical change. Typically when implementing the requested change to

software requires modifications to several components. Change sets involve several aspects. Developers can

work with groups of components belonging to the same logical change instead of dealing with each component

separately. Change requests, which are descriptions of the changes to be made, may be easily linked to the

actual changes made to the components. Queries on the dependencies between logical changes, changed

components, and versions of configurations can be made (Rupareila, 2010; Chen & Chen, 2009; Fruhauf &

Zeller, 1999).

These queries include determining which:

i. Component has been modified as part of the logical change

ii. Change sets are included in the particular configuration

iii. Configurations include the particular change

During the stage of change request, who is responsible for decisions and the definition of the records to be kept

is determined. The next stage is to determine why the change request has been made. This involves two aspects

– enhancements and error corrections. If the change request has been to correct errors, the next level shall be

product defect tracking. The product defects tracking is integrated with two levels:

i. SCM repositories under which the check-out/check-in model shall be applied

ii. Automated testing facilities

The next stage after product defect tracking is “investigation to ascertain the cause of the error.” At this stage,

the cause of the error is determined. The next and final stage shall be “proposal to fix error and cost estimation

to fix the error.” To document the product knowledge, this study proposed the use of the SCM repository

(Rupareila, 2010; Chen & Chen, 2009; Fruhauf & Zeller, 1999).

IV. DESIGN AND DESCRIPTION OF THE CONTEXTUALIZED SCM MODEL
To address these challenges, this study proposed process modeling approach that includes the context into

process descriptions, enabling process owners to design processes that can be changed and switched during

execution. In this approach, the firm is viewed as the value producing mechanism with modular capabilities and

flexible organization design for action. Change should be regarded as the switching of context of a software

project using the process. The proposed process model integrates the context into software processes, enabling

the process owners to “design processes for change” resulting in adaptive and modular processes. Moreover, the

process designs can be reused by different projects with similar context and switched during process execution

if the given context changes. The proposed model adopts two ideologies to the processes, namely: definition of

context and designing for change. In the former ideology, the context includes the reason for being and restraints

of the projects set by the environment or the software development firm. Whereas, in the latter ideology, instead

of inert process descriptions, a modular and ready-to-change design is suggested by the model. The structural

and logical elements of the proposed model are process sequence, process abstraction, context and solid

processes. In process sequence, the ISO/IEC 12207 standard is adopted to decompose the software configuration

management process. In process abstraction, the unified modelling language is applied to define the operations

performed, the inputs and outputs of the processes were portrayed together with the attributes. In context

Process-Centred Functionality View…

www.theijes.com The IJES Page 54

definition, the context is defined in terms of the strategy of the software firm, whether the firm focuses on

research and development, market focused or client-focused. In solid process, each context above is handled

with the same abstract process with the same operations, but the way of accomplishment varies according to the

context. In adopting these four structural elements that are in line with the two ideologies aforementioned, the

“element of contextualization from the study” aspect of the proposed model is realized.The proposed model then

focuses on three of the most significant weaknesses/challenges identified in the existing four standard SCM

Models to realize a contextualized model that is suitable for small and medium software development firms

within the Kenyan context. The proposed model adopts elements of the check-out/ check-in model to solve the

challenge of simultaneous update, elements of the long transaction model to solve the challenge of logical

conflict and elements of the change set model to solve the challenge of tracking of change requests and defect

reports. The process chain of the SCM process is shown below: The processes are broken down until the level

where the process is performed by a single owner. At the end of the breaking-down, the process abstraction and

the solid processes summarizing the differences in contexts of different projects are illustrated:

Figure 1: Software Configuration Management Process (adopted from ISO/IEC 12207:2008 Standards)

The element of contextualization from the study can be structured into four main structural elements,

namely: process sequence, process abstraction, context definition and solid process. Firstly, in process sequence,

the ISO/IEC 12207 Standard is adopted to decompose the software configuration management process.

The software configuration management process is decomposed into the following sub-processes that occur in a

successive definite chain: software configuration identification, software configuration control, software

configuration status accounting, software configuration auditing and software release and delivery as shown in

Figure 1 above.

This provides the model with a process-centric approach that enables it to be easier to apply, easier to adopt,

easier to contextualize, easier to adapt to varying scenarios and contexts, easier to debug in case of occurrence

of errors and easier to implement due to it modularity. The illustrated “software configuration management

process” is decomposed using ISO/IEC 12207 standard, and the process sequence is shown in figure 2 below:

Figure 2:”Software configuration management” sequence (adopted from ISO/IEC 12207:2008 Standards)

Secondly, in process abstraction, assuming that “software configuration management” is performed by a single

role in the firm (the process owner can be a person or group of people), breakdown is deemed to be complete

and the definition of the process abstraction starts. The portrayal of the abstraction is undertaken by the process

owners. The process abstraction is depicted by notation derived from the unified modeling language. The

operations performed, the inputs and outputs of the process are represented together with the attributes. The

inputs of the process are produced by supplier processes and the inputs are used as inputs to the consumer

processes. The supplier processes in this case are the preceding processes to the current process in progress. The

consumer processes are the processes being fed by the preceding process. The attributes are the individualities

of the process that determine the changing behavior of the operations. For the “software configuration

management process”, the operation is “developing software configuration management processes” and the

inputs are process implementation, configuration identification, configuration control, configuration status

accounting, configuration evaluation and release management & delivery.

Process-Centred Functionality View…

www.theijes.com The IJES Page 55

The outputs are the “software configuration management processes”. The attributes are the participation of end-

users/customers, variety of project features, and diversity of SCM processes. There can be as many operations

and attributes as desired. The process abstraction provides the same interface to all projects using the “software

configuration management” process. The changes in the context are summarized in solid processes which are

determined in accordance with the context. In the next section, determination of context is portrayed.

Thirdly, after process abstraction, the next step in the model is context definition in alignment with the strategy

of the software development firm. The firm strategy pervades in the portfolio of projects with different

conditions through the context. Since the conditions and limitations can be different for singular projects,

several contexts need to be defined. The reason to exist and the restraints of the projects are portrayed through

the context. To illustrate the model, three different possible contexts are involved, namely:

Context 1 – Research and development (R&D) focused context: these types of projects exist to develop software

for the purposes of gaining technical capability in a certain domain. The restraints are conformance to certain

standards, a minimum profit level, and a given level of client satisfaction. There are no or few clients at the time

of development.

Context 2 – Market-focused context: whose reason for existence is profit. The restraints are conformance to

Capability Maturity Model Integration (CMMI) Level 5, and given level of client satisfaction. The number of

clients and/or end-users is high in this kind of projects.

Context 3 – Client-focused context: This type of project aims to fulfill the client’s requirements. The restraints

are conformance to Capability Maturity Model Integration (CMMI) Level 5, a minimum profit level and strict

adherence to client requirements. These are usually client-specific projects developed with the participation of

the client.

For context 1, high technology requirements may exist, whereas for context 2, use of familiar technologies and

similarity to previous projects is of importance. For the third context, adherence to client requirements takes

priority and the operations need to be carried out accordingly. Integrating the context in the process model

enables the firm to act dynamically in response to changes in the environment. Afterwards, the solid processes

are described for each context.In context definition, determination of context is portrayed. Context is defined in

terms of the strategy of the software firm. That is, whether the firm is focused on research and development,

market focused or client-focused. In solid process, each context above is handled with the same abstract process

with the same operations, but the way of accomplishment varies according to the context. Fourthly, in solid

process, each context is addressed by a solid process as shown in Figure 4 below. Each solid process describes

the same abstract process with the same operations, but the way of accomplishment varies according to the

context. Thus, the number of solid process portrayals depends on the number of different portfolios in the

software firms, and new contexts can be added to respond to the changes in the environment. Moreover, projects

having different contexts can use a solid process from the repository suitable to their specific context, by

switching the solid process being used. The process models are organized into a library of abstract and solid

processes.

Process-Centred Functionality View…

www.theijes.com The IJES Page 56

Figure 3: Solid Process Representation

 After the contextualizable management of the SCM process, the next process is the software

configuration identification, which leads to the software configuration system comprising of the process-

centered functionalities of SCM that occur sequentially as process functionality, controlling functionality,

accounting functionality and the auditing functionality. To address the challenge of simultaneous update, an

element of check-out/check-in element is adopted. To address the challenge of handling logical conflict, an

element of the long transaction model is adopted. To address the challenge of handling the tracking of change

requests and defect reports, an element of the change set model is adopted. This entire chain of sub-processes

forms the SCM system that supplies the final process of software release management and delivery eventually

realizing a quality software that has undergone all the necessary rigours, checks and balances of an effective and

standard SCM model. The achieved SCM Model has process-centered functionality view of the software

configuration management process. This approach includes the context into process descriptions, enabling

process owners to design their processes for change and switch processes during execution resulting in adaptive

and modular processes. Moreover, the process designs can be reused by different projects with similar context

and can be switched during process execution if the given project’s context changes. This contributes

significantly to addressing pertinent issues, problems and weaknesses inherent in existing SCM models and

even systems that have adopted these existing SCM models in such systems’ functionalities. Figure 4 below

illustrates the proposed SCM model:

Process-Centred Functionality View…

www.theijes.com The IJES Page 57

Figure 4: Summarized Diagrammatic Representation of Proposed SCM Model (Researcher, 2014)

Figure 4: Summarized Diagrammatic Representation of Proposed SCM Model

V. RESEARCH ELABORATIONS
5.1 Research Design

This is both a qualitative and quantitative study that was confined to selected sample of small and

medium software development firms in Nairobi, Kenya. In addition, expert opinions and ideas from software

engineering professionals more so lead developers and developers were purposively selected and utilized.

5.2 Population, Sampling Strategy and Techniques

The unit of analysis for the study was any small and medium software development firm. The target population

included all small and medium software development firms within the city of Nairobi, Kenya, which develop

software for sale as well as in-house development groups within organizations. In this study, the small and

medium firms targeted were the firms with employees not exceeding 50 in number. The number of small and

medium software development firms in Nairobi is enormous as the influx of new small and medium firms is

estimated at 200 - 250 per annum which stood at 1850 firms as at 2013 (Kenya Companies Registry, 2014). The

listing of these companies was acquired from the authenticated listing source of Kenyan software development

firms at the Government Registrar of Companies Department.

 END
Software Release

Management &

Delivery

SCM SYSTEM

ACCOUNTING

FUNCTIONALITY

AUDITING

FUNCTIONALITY

Software

Configuration

Status

Accounting

Software

Configuration

Auditing

PROCESS FUNCTIONALITY

Element

of the

Check-

Out/In

Model

(To handle

simultaneo

update)

Element of

the Long

Transaction

Model

(To handle

logical conflict)

Element

of the

Change

Set

Model

(To handle

tracking of

change

requests

and defect

reports)

CONTROLLING

FUNCTIONALITY

Software

Configuration

Control

START

Contextualizable

Management of the

SCM process

(The Element of

Contextualization

from the study)

Software

Configuration

Identification

Process-Centred Functionality View…

www.theijes.com The IJES Page 58

The sample of this study comprised of small and medium software development firms drawn from five distinct

strata of the city of Nairobi, namely Nairobi central business district, Eastlands, Westlands, Upper Nairobi and

Southlands.

In this study, it is clearly indicated which sort of firms fall under the category of small and medium software

development firms. The study’s long-term intentions are for the proposed software configuration management

model to be internationally acceptable and adopted. The study proposed to use the sample population of small

and medium software development firms within the city of Nairobi, Kenya as the yardstick to test the

practicability and adoptability of the proposed software configuration management model to the firms. To

determine the sample size for the study, Fisher’s formula was employed as follows:

n=Z
2
pq/d

2

Where, n= desired sample size

Z= standard normal deviation, which is set at 1.96 (95% confidence level)

P= proportion of the targeted population that have the characteristic focused in the study, which is estimated at

85% (0.85).

q=1-p

d= degree of accuracy, which is set at 5%. The degree of proportion of error that should be accepted in the study

is 0.05, since the study has 95% confidence level.

Therefore, Desired Sample (n) = {1.96
2
(0.85(1-0.85)}/0.05

2

n= 196

Since the total population for each region is less than 10,000, the researcher applied the finite correction

formulae (nf). This is applied together with the Fisher’s formulae in successive steps as indicated:

N = 1850, n = 196

nf= 196/(1+196/1850) = 177

Crucial aspect of the sampling technique is determining the unit or level of analysis. This study recognized that

research work is often couched in social setting and identified ten different levels (units) of analysis, namely

society, profession, external business context, organizational context, project, group team, individual, system,

computing element (program) and abstract concept. The unit of analysis for this study is the organization, which

is, small and medium software development firms. In the sampling of the population, the study used the cluster

sampling technique. The rationale for the sample cluster sampling is where the population is divided into units

or groups called strata (usually there are units or areas in which the population has been divided in), which

should be as representative as possible for the population, representing the heterogeneity of the population being

studied and the homogeneity within each of the strata. The sample of this study was selected from the

population of small and medium software development firms within Nairobi city. In sampling of the population,

the study area was divided into five distinct strata - Nairobi Central Business District, Eastlands, Westlands,

Upper Nairobi and Southlands. Each of these strata represented the heterogeneity of the population being

studied and the homogeneity within each of the strata as justified by the fact that the firms are located in the

same geographical zone.

The preferred sample size selected for this study was 177 small and medium software development firms. From

each software development firm, 2 software developers were selected to participate in the study. These were

preferably the software lead developers and one of the developers, who was selected through the use of simple

random method from the other developers/employees. This made total of 354 respondents for the study as

tabulated in Table 1.

TABLE 1: SAMPLE DISTRIBUTION

STRATA NUMBER OF

FIRMS

TOTAL

PARTICIPANTS

PERCENTAGE

Nairobi CBD 37 74 20.8

Eastlands 35 70 19.8

Westlands 35 70 19.8

Upper Nairobi 35 70 19.8

Southlands 35 70 19.8

TOTAL 177 354 100

Process-Centred Functionality View…

www.theijes.com The IJES Page 59

5.3 Data Collection Methods and Approaches

In this study, only primary data was collected and included both qualitative and quantitative in nature. The data

collection procedures or methods employed were questionnaires for the software developers and interviews for

the lead developers. The questionnaire comprised of four sections each based on the objectives of the study. The

questions were both open and closed ended or structured in such a manner that all objectives of the study were

captured. The questionnaire tool was used to collect data from the software developers. This was through drop-

and-pick method for the sake of the respondents’ convenience. Data from the lead developers was collected

using the interview method. Questions in the interview were designed to acquire both qualitative and

quantitative data. The interview questions consisted of four sections each based on the study objectives. The

questions captured various themes and sub-themes based on the study’s objectives.

5.4 Data Analysis and Presentation
Data analysis involved the systematic application of statistical and/or logical techniques to turn raw

data into information that was used in making decisions. The questionnaires were coded and edited for analysis

in Statistical Package for the Social Sciences (SPSS) and the quantitative data analysis was used to give

descriptive statistics such as mean and standard deviation that were then presented in form of tables and figures

for easy understanding and interpretation. Thematic representations were employed to present the qualitative

data obtained from the interviews as well from the questionnaires.

VI. RESULT AND DISCUSSION

6.1 Proposed Contextualized SCM Model

Table 2 provides the means and standard deviations derived from the responses of questions that sought the

opinion of the respondents regarding the proposed contextualized SCM model demonstrated to them. Based on

the mean values of the responses given, all the means fall within the interval 4.0-4.9. This indicates that the

respondents highly approved the proposed contextualized SCM model, and were ready and willing to adopt and

assimilate it into the firms’ practice during software development. These findings indicate that the proposed

model meets the SCM requirements in terms of the approach employed; addresses the challenges the software

development firms face during the process; highly adaptable, relevant and beneficial to the software development

firms if adopted as well as being effective if adopted for use by the firms in managing the process. The standard

deviations for all the means obtained are all of values less than one. This shows that, the study results could not

have been much different from the current ones in a case where the study would have been conducted using the

entire population of the study other than a sample (that has been used in this case).

TABLE 2: PROPOSED CONTEXTUALIZED SCM MODEL

QUESTION

MIN MAX MODE

MEAN

STD.

DEVIATION

Does the proposed model meet your firm’s SCM

requirements in terms of the approach employed?

3 5 4 4.0000 .92582

Does the proposed SCM model address the

challenges your firm faces during the process?

2 5 4 4.1111 .60093

Shall the proposed SCM model be adaptable,

relevant and beneficial to your firm if adopted?

3 5 4 4.2500 .46291

Shall the proposed SCM model be effective if

adopted for use by your firm in managing process?

4 5 4 4.1750 .99103

6.1.1 Firms’ Recommendation of the proposed SCM model

The participants also suggested recommendations to the proposed SCM model as indicated in Figure 5. From

the findings indicated in the figure, all the respondents of the study recommended the application of the

proposed contextualized SCM model in software development processes; 20% of the respondents recommended

with reservations whereas 80% highly recommended its adoption to software development activities.

Process-Centred Functionality View…

www.theijes.com The IJES Page 60

Figure 5: Recommendations for the Model Adoption

The study findings indicate that, all the respondents agreed that the proposed SCM model shall be practically

beneficial to firms once the model is commercialized and customized to meet the specific individual needs of

each firm once adopted. The extent of agreement however varied amongst different respondents. 50.9% of the

developers strongly agreed, 42.9% agreed while 6.2% agreed with reservations. Similarly, 53.5% of the lead

developers strongly agreed, 41.5% agreed and 5% agreed with reservations. This clearly illustrates that the

respondents were highly positive about the benefits that could be reaped from the proposed SCM model.

TABLE 3: COMMERCIALIZATION AND CUSTOMIZATION OF PROPOSED SCM MODEL

RESPONSE DEVELOPERS LEAD DEVELOPERS

 FREQUENCY PERCENTAGE FREQUENCY PERCENTAGE

Strongly Agree 82 50.9 76 53.5

Agree 69 42.9 59 41.5

Agree with Reservation 10 6.2 7 5.0

TOTAL 161 100.0 142 100.0

The study further tested the difference between the means of the responses given by the developers and the lead

developers on the level of agreement, and the benefits of the proposed SCM model. The findings presented in

Table 4 below illustrate that the mean response given for the lead developers and the developers has mean value

of 1.196 assuming equal variation of the usefulness of the model. The p-value is .004, implying that the

difference in means is statistically significant at the .05 level with a 2-tailed test. Thus, based on these results,

the study findings are statistically significant and can be relied on to explain the usability and the relevance of

the model developed.

TABLE 4: T-TEST FOR DIFFERENCE BETWEEN MEANS

T Df Sig. (2-tailed) Mean Difference

95% Confidence Interval of the

Difference

Lower Upper

18.811 71 .004 1.98611 1.7756 2.1966

Process-Centred Functionality View…

www.theijes.com The IJES Page 61

6.2 Effectiveness of Proposed Contextualized SCM Model

The second objective of this study was to evaluate the effectiveness of the proposed contextualized SCM Model.

6.2.1 Perception towards Proposed SCM Model

On evaluating the respondents’ perception towards the proposed model, the study findings indicated that most of

the respondents (47.2%) had high perception towards the proposed model. 38.6% of the respondents were found

to have moderate perception while 14.2% of the respondents had low perception. This reveals that a great

number of the software developers and lead developers have above moderate level of perception towards the

proposed contextualized SCM model.

TABLE 5: PERCEPTION TOWARDS PROPOSED SCM MODEL

 FREQUENCY PERCENTAGE

High 143 47.2

Moderate 117 38.6

Low 43 14.2

TOTAL 303 100

6.2.2 Effectiveness of Proposed SCM Model in Software Development Firms

In Table 6, the results on the effectiveness of the proposed SCM model are based on the Likert scale responses

given. These were analyzed to give various statistical measures which measure the variation of the effectiveness

among different firms. The minimum value, shows the lowest rank given on the level of agreement whereas the

maximum value provides the highest rank given. The mode statistics show the rank with the highest number of

respondents. The mean provides the average ranks given whereas the standard deviation shows the extent to

which various responses varied from the mean.

The major statistical measure is the mean, which according to the results in Table 6, for all the aspects, was in

the range of 4.0 – 4.9, with all standard deviations less than 1. This indicates that all the aspects had mean

response in the interval for agreement, as the respondents agreed to the various aspects. However, the extent of

agreement varied for different aspects as minimum and maximum values indicate. Most of the aspects had

minimum value of 2 indicating that some respondents disagreed whereas all the aspects had maximum score of

5 for strong extent of agreement. Measuring the mode statistics, most of the aspects in the table obtained mode

of 4 meaning that majority of the respondents agreed.

TABLE 6: EFFECTIVENESS OF PROPOSED SCM MODEL IN SOFTWARE DEVELOPMENT

FIRMS

QUESTION

MIN MAX MODE MEAN STD.

DEVIATION

Does this SCM Model support clear definition of

processes through the process modelling approach

used?

3 5 4 4.7320 .97202

Does this SCM Model address the challenge of

simultaneous update effectively?

2 5 5 4.8791 .72170

Does this SCM Model address the challenge of

logical conflict effectively?

2 5 4 4.6724 .69027

Does this SCM Model address the challenge of

tracking of change requests and defect reports

effectively?

3 5 4 4.7729 .70163

Does this SCM Model address the general

challenges your firm faces in its application of

SCM?

2 5 4 4.8219 .8461

Process-Centred Functionality View…

www.theijes.com The IJES Page 62

6.2.3 Effectiveness of Proposed Model in Improving SCM Process Application

According to the results presented in Table 7, majority (81.2%) of the respondents reported that the proposed

contextualized SCM model is effective in improving how their firms apply the SCM process. However, 18.8%

of the respondents felt that the model had not effectively improved their application of the SCM process.

This generally shows that the proposed model has positive significant effect on the firms’ application of the

SCM process in their software development projects.

TABLE 7: EFFECTIVENESS OF PROPOSED MODEL IN IMPROVING SCM PROCESS

APPLICATION

 FREQUENCY PERCENTAGE

Yes 246 81.2

No 57 18.8

TOTAL 303 100.0

6.2.4 Effectiveness of Proposed Model in Comparison to Existing SCM Models

Performing a comparative analysis of the effectiveness of the proposed contextualized SCM model in

comparison with the existing SCM models, the results presented in Table 8 illustrate that none of the statements

given (aspects studied) had below average level of effectiveness. This is illustrated by the mean statistics

obtained, with standard deviations which are all above 3.0 and below 1 respectively.

However, of important concern, is that three aspects obtained high mean scores of responses: the check-

out/check-in model in the aspect of simultaneous update with a mean value of 4.8721; the Long Transaction

model in the aspect of logical conflict with a mean value of 4.9321 and the change set model in the aspect of

tracking of change requests and defect reports with a mean value of 4.8296. These had small variance from the

mean in the responses given as indicated by the minimum and the maximum values obtained. The minimum

value for all the three aspects are all 3 and maximum values of 5.

For the other aspects, the variation was insignificant as the standard deviations are all less than 1. However,

some aspects (change set model and simultaneous update, check-out/check-in model and logical conflict,

composition model and logical conflict aspect, composition model and tracking of change requests and defect

reports, and the change set model and the principles of definition of context and designing for change aspects)

indicated a minimum value of 1. This indicated that some respondents felt that these aspects had very low extent

of effectiveness. In addition, the aspects had maximum values of 5 as well.

TABLE 8: EFFECTIVENESS OF PROPOSED MODEL IN COMPARISON TO EXISTING SCM

MODELS

QUESTION MIN MAX MODE MEAN STD.

DEV

Does the check-out/check-in model effectively address

the aspect of simultaneous update?

3 5 5 4.8721 .67372

Does the composition model effectively address the

aspect of simultaneous update?

3 5 3 3.7240 .82473

Does the long transaction model effectively address the

aspect of simultaneous update?

2 5 4 4.1104 .79129

Does the change set model effectively address the aspect

of simultaneous update?

1 5 3 3.9281 .94138

Does the check-out/check-in model effectively address

the aspect of logical conflict?

1 5 4 4.7149 .76932

Does the composition model effectively address the

aspect of logical conflict?

1 5 4 4.0381 .81203

Does the long transaction model effectively address the

aspect of logical conflict?

3 5 5 4.9321 .47380

Does the change set model effectively address the aspect

of logical conflict?

2 5 3 3.9926 .97729

Does the check-out/check-in model effectively address

the aspect of tracking of change requests and defect

reports?

2 5 4 3.9999 .88392

Process-Centred Functionality View…

www.theijes.com The IJES Page 63

Does the composition model effectively address the

aspect of tracking of change requests and defect reports?

1 5 3 3.5392 .75190

Does the long transaction model effectively address the

aspect of tracking of change requests and defect reports?

2 5 4 4.3018 .91382

Does the change set model effectively address the aspect

of tracking of change requests and defect reports?

3 5 5 4.8296 .52105

Does the check-out/check-in model effectively support

the principles of definition of context and designing for

change?

2 5 3 3.3121 .77482

Does the composition model effectively support the

principles of definition of context and designing for

change?

1 5 2 3.0018 .85941

Does the long transaction model effectively support the

principles of definition of context and designing for

change?

2 5 3 3.9732 .97324

Does the change set model effectively support the

principles of definition of context and designing for

change?

1 5 3 3.6937 .69045

6.2.5 Levels of Superiority of SCM Models

The findings in Table 9 show that apart from the first aspect in the table, all other aspects of comparison had

mean response of values in the interval 2.0 – 2.9 for disagreement/ low level of superiority. This indicates that

the proposed SCM model has superior level of addressing pertinent SCM issues in small and medium software

development firms as indicated by the mean response of 4.9327 for the comparison between the existing SCM

models and the proposed contextualized SCM model in terms of collectively addressing SCM issues in small

and medium software development firms.

The standard deviations are all less than 1 indicating that the responses did not vary significantly from the mean

value of the responses and therefore in a case where different population would have been used, the results

would not be much different from the current results. In all the aspects, the minimum response was 1, with mean

response in the range 2.0-2.9 and mode of 2. All the aspects in the table obtained maximum score of 5.

TABLE 9: LEVELS OF SUPERIORITY OF SCM MODELS

QUESTION MIN MAX MODE MEAN STD.

DEV

Compared to the existing SCM models, is the proposed

contextualized SCM model superior in terms of

collectively addressing SCM issues in small and

medium software development firms?

3 5 5 4.9327 .53302

Compared to the proposed contextualized SCM model,

is the check-out/check-in model superior in terms of

collectively addressing SCM issues in small and

medium software development firms?

1 5 2 2.7141 .61570

Compared to the proposed contextualized SCM model,

is the composition model superior in terms of

collectively addressing SCM issues in small and

medium software development firms?

1 5 2 2.8164 .69122

Compared to the proposed contextualized SCM model,

is the long transaction model superior in terms of

collectively addressing SCM issues in small and

medium software development firms?

1 5 2 2.7219 .73138

Compared to the proposed contextualized SCM model,

is the change set model superior in terms of collectively

addressing SCM issues in small and medium software

development firms?

1 5 2 2.8719 .56911

Process-Centred Functionality View…

www.theijes.com The IJES Page 64

VII. DISCUSSION

7.1 Proposed Contextualized SCM Model

The study results indicated that: the proposed contextualized SCM model meets the SCM requirements

of a significant majority of the small and medium software development firms in Nairobi, Kenya in terms of the

approach it employs; its effectiveness as an SCM model; its ability to efficiently address the challenges faced by

a majority of the small and medium software development firms during the SCM process; its structurally-

inherent nature of being adaptive, contextualizable, relevant and beneficial to the firm in question regardless of

the context upon which the firm operates in if adopted as well as the fact that its process-oriented approach

qualifying it to be faster to use, less tedious to apply, less bureaucratic to implement and overally easier to

understand compared to the existing traditional standard SCM models. The study findings indicate that a

majority (80%) of the study participants recommended highly the application of the proposed SCM model to

own software development processes, more so in own SCM practice. This is a strong indication of the high

capability of the proposed contextualized SCM model to meet the needs and requirements of small and medium

software development firms in Nairobi, Kenya. This also confirms the proposed model’s effective approach and

ability to address the numerous challenges faced by small and medium software development firms in Nairobi,

Kenya in such firms’ practice of SCM as depicted in this study.

The study findings illustrated that, an overwhelming majority of the respondents (90%) are of the view

that the proposed SCM model ought to be commercialized and customized to the specific needs of each of the

individual software development firms in order for maximum benefits to be derived by the individual software

development firms in such firms’ SCM practice and general software engineering activities. This according to

the study participants, will qualify the model as a SCM tool offering a precious solution to the numerous SCM

challenges currently faced by such software development firms. A majority of the respondents looked forward

to the proposed SCM model being developed into a software tool that can be commercialized and customized to

the needs of individual firms.

7.2 Effectiveness of Proposed Contextualized SCM Model

The second objective of this study was to evaluate the effectiveness of the proposed contextualized

SCM model in small and medium software development firms. The study results indicate that majority of the

respondents had high perception towards the proposed SCM model (47.2%) while 38.6% of the respondents had

moderate perception towards the proposed SCM model. This is indication towards the fact that the proposed

SCM model was effective in the sense that majority of the respondents had high level of perception (47.2%) and

moderate level of perception (38.6%) towards its functionalities and application. This enables this particular

proposed SCM model to be effective towards addressing pertinent SCM issues faced by the small and medium

software development firms.

The study results as indicated by the mean value in the range of 4.0 – 4.9, indicate that the respondents

strongly agreed that the proposed SCM model effectively addresses pertinent issues of SCM such as the clear

definition of processes through the process modeling approach used; the challenge of simultaneous update; the

challenge of logical conflict; the challenge of tracking of change requests and defect reports; and the general

challenges faced by small and medium software development firms in their SCM application. This is explicit

indication that the proposed SCM model is effective as evidenced by the fact that it addresses the pertinent

challenges in existing SCM models identified previously in this study.

Findings from the study indicate that majority (81.2%) of the respondents are of the view that the

proposed SCM model is effective in improving how their firms apply the SCM process. This is significantly

positive indication of the effectiveness of the proposed SCM model in addressing the needs of small and

medium software development firms.

The study results shown in Table 8 indicate strong level of agreement by the respondents as shown by

mean value range of 4.0 – 4.9. The proposed SCM model has adopted elements of the check-out/check-in model

to address the challenge of simultaneous update. According to the results in Table 8, the check-out/check-in

model has mean score of 4.8721 which is higher compared to the composition model (3.7240), the long

transaction model (4.1104) and the change set model (3.9281). This is indication that by adopting elements of

the check-out/check-in model, the proposed SCM model is better placed in addressing the challenge of

simultaneous update. The proposed SCM model in addition, as adopted elements of the long transaction model

to address the challenge of logical conflict. Based on the results in Table 8, the long transaction model has mean

score of 4.9321 which is higher as compared to the check-out/check-in model (4.7149), the composition model

Process-Centred Functionality View…

www.theijes.com The IJES Page 65

(4.0381) and the change set model (3.9926). This is an indication that by adopting elements of the long

transaction model, the proposed SCM model is better placed in addressing the challenge of logical conflict. The

proposed model has adopted elements of the change set model to handle the challenge of tracking of change

requests and defect reports. The results in Table 8 show that the change set model has mean score of 4.8296

which is higher as compared to the check-out/check-in model (3.9999), the composition model (3.5392) and the

long transaction model (4.3018). This is indication that by adopting elements of the change set model to handle

the challenge of tracking of change requests and defect reports, the proposed SCM model is better placed in

addressing the challenge of tracking of change requests and defect reports.

The study results in Table 9 show that the proposed contextualized SCM model has higher superiority

level as indicated by the mean score of 4.9327 as compared to other existing SCM models which score: check-

out/check-in model (2.7141), composition model (2.8164), long transaction model (2.7219) and change set

model (2.8719). This is explicit indication that the proposed contextualized SCM model is superior in terms of

collectively addressing SCM issues in small and medium software development firms.

VIII. CONCLUSION
The study results indicated that: the proposed contextualized SCM model meets the SCM requirements

of a significant majority of the small and medium software development firms in Nairobi, Kenya in terms of the

approach it employs; its effectiveness as an SCM model; its ability to efficiently address the challenges faced by

a majority of the small and medium software development firms during the SCM process; its structurally-

inherent nature of being adaptive, contextualizable, relevant and beneficial to the firm in question regardless of

the context upon which the firm operates in if adopted as well as the fact that its process-oriented approach

qualifying it to be faster to use, less tedious to apply, less bureaucratic to implement and overally easier to

understand compared to the existing traditional standard SCM models. This is a robust indication that the

proposed contextualized SCM Model captures the aspirations of the software developers and lead developers of

acquiring an SCM model that is: effective to use; addresses the numerous challenges they encounter during the

SCM practice; adaptive; customizable; contextualizable; less bureaucratic in its operation; less labour intensive;

less expensive to apply; modular and easier to follow due to its process-centric approach to SCM and last but

not least modifiable to suit the context of the particular firm’s environment. The study findings indicate that a

majority (80%) of the study participants recommended highly the application of the proposed SCM model in

own software development processes, more so in such firms’ SCM practice. This is a strong indication that the

proposed contextualized SCM model captures the aspirations of the purpose of this study. This study

proposed a software configuration management model that is adaptable and customizable to the SCM

requirements of the specific firm and actively took into consideration the context under which the firm operates.

This is especially significant for the small and medium software development firms that operate in different

policy, regulatory, industry and organizational contexts. The applicability of the models designed for developed

countries is not always relevant to small and medium software development firms in developing countries.

In addition, this study proposed an SCM Model that has a process-centered functionality view of the

software configuration management process. This approach includes the context into process descriptions,

enabling process owners to design their processes for change and switch processes during execution resulting in

adaptive and modular processes. Moreover, the process designs can be reused by different projects with a

similar context and can be switched during process execution if the given project’s context changes. This

contributed significantly to addressing pertinent issues, problems and weaknesses inherent in existing SCM

models and even systems that have adopted these existing SCM models in such systems’ functionalities.

The study findings illustrated that, an overwhelming majority of the respondents (90%) are of the view that the

proposed SCM model ought to be commercialized and customized to the specific needs of each of the individual

software development firms in order for maximum benefits to be derived by the individual software

development firms in such firms’ SCM practice and general software engineering activities. This according to

the study participants, will qualify the model as a SCM tool offering a precious solution to the numerous SCM

challenges currently faced by them as software development firms. A majority of the respondents looked

forward to the proposed SCM model being developed into a software tool that can be commercialized and

customized to the needs of individual firms.

Process-Centred Functionality View…

www.theijes.com The IJES Page 66

IX. RECOMMENDATIONS
This study recommends the adoption of the proposed Contextualized SCM Model to ensure that the

concerned firms follow the SCM practice in a conventional, standard, accountable, relevant and auditable

manner. By robustly adopting the “context” element into its structure, this proposed SCM model ensures that

firms are able to practice SCM in a manner that is relevant to such firms’ environment of operation and in doing

so, the firms reap maximum benefits from own SCM practice. Below is a description of the contextualized

software configuration management model for small and medium software development firms in Nairobi,

Kenya:

Figure 6: Proposed Contextualized SCM Model for Small and Medium Software Development Firms in

Nairobi, Kenya (Researcher, 2014)

Figure 6: Proposed Contextualized SCM Model for Small and Medium Software Development Firms

END
Software Release

Management &

Delivery

SCM SYSTEM

ACCOUNTING

FUNCTIONALITY

AUDITING

FUNCTIONALITY

Software

Configuration

Status

Accounting

Software

Configuration

Auditing

PROCESS FUNCTIONALITY

Element

of the

check-

out/in

Model

(To handle

simultaneo

uupdate)

Element of

the Long

Transaction

Model

(To handle

logical conflict)

Element

of the

Change

Set

Model

(To handle

tracking of

change

requests

and defect

reports)

CONTROLLING

FUNCTIONALITY

Software

Configuration

Control

START

Management rocess

Software

Configuration

Identification

Process Sequence

Process Abstraction

Context Definition

Solid Process

Process-Centred Functionality View…

www.theijes.com The IJES Page 67

REFERENCES
[1]. Aggarwal, H. (2012). Identification of Effective Key Processes in Software Process Improvement Models for SMEs. International

Journal of Research in Engineering & Applied Sciences, 2(2):
[2]. Aiello, R., and Sachs, L. (2010). Configuration Management Best Practices: Practical Methods that work in the Real World, 1st

edition. Addisson-Wesley Professional.

[3]. Alzaga, A., and Martin, J. (2010). A Design Process Model to Support Concurrent Project Development in Networks of SMEs.
Foundation TEKNIKER, Eibar, Spain.

[4]. Anquetil, N., Kulesza, U., Mitschke, R., Moreira, A., Royer, J., Rummler, A., and Sousa, A. (2010). A model-driven traceability

framework for software product lines. New York: Springer-Verlag.
[5]. Baddoo, N., and Hall, T. (2010). De-Motivators for Software Process Improvement: An Analysis of Practitioners’ views. Journal of

Systems and Software, 66(1), 23-33.

[6]. Balamuralidhar, P., and Prasad, R. (2011). Self-configuration and Optimization for cognitive networked devices. Wireless Personal

Communications: An International Journal, 59(3), Kluwer Academic Publishers.
[7]. Berzisa, S., and Grabis, J. (2011). Combining project requirements and knowledge in configuration of project management information

systems. Profes ’11: Proceedings of the 12th International Conference on product focused software development and process

improvement. ACM.
[8]. Biffl, S., and Schatten, A. (2009). A platform for service-oriented integration of software engineering environments. Proceedings of

the 2009 Conference on New Trends in Software Methodologies, Tools and Techniques. IOS Press.

[9]. Boas, G.V., Cavalcanti, A.R., and Amaral, M.P. (2010). An Approach to implement Software Process Improvement in Small and Mid-
Sized Organizations. Proceedings of the 2010 Seventh International Conference on the Quality of Information and Communications

Technology, IEEE Computer Society.

[10]. Boden, A., Muller, C., and Nett, B. (2011). Conducting a Business Ethnography in Global Software Development Projects of Small
German Enterprises. Information and Software Technology, 53(9), Butterworth-Heinemann.

[11]. Bose, I., Pal, R., and Ye, A. (2008). ERP and SCM systems integration: The case of a valve manufacturer in China. Information and

Management, 45(4). Elsevier Science Publishers.
[12]. B.V.Capability Maturity Model Integration (CMMI) Overview. Carnegie Mellon University: Software Engineering Institute.

[13]. Chen, C.Y., and Chen, P.C. (2009). A Holistic approach to managing software change impact. Journal of Systems and Software,

82(12). Elsevier Science Inc.
[14]. Chen, N., Hoi, S., & Xiao, X. (2011). Software process evaluation: A machine learning approach. ASE ’11: Proceedings of the 2011

26th IEEE/ACM International Conference on Automated Software Engineering. IEEE Computer Society.

[15]. Christensen, H.B. (1999). The Ragnarok Architectural Software Configuration Management Model. Proceedings of the 32nd Hawaii
International Conference on System Sciences.

[16]. Clarke, P., O’Connor, R. (2011). An Approach to evaluating Software Process Adaptation. In: Proceedings of the 11th International

Conference on Software Process Improvement and Capability Determination, pp.28-41. Springer-Verlag, Hiedelberg/Berlin,
Germany.

[17]. Clarke, P., O’Connor, R., Yilmaz, M. (2010). A hierarchy of SPI activities for software SMEs: results from ISO/IEC 12207-based SPI

assessments. Dublin City University, Ireland.
[18]. Cravino, P., Lawrence, D., Lopez, A., Onorato, B., and Shen, Z. (2009).Enterprise Software Configuration Management Solutions for

Distributed and System Z. International Business Machines (IBM).

[19]. Crowston, K., Wei, K., Howison, J., and Wiggins, A. (2012). Free/Libre open-source software development: What we know and what
we do not know. Computing Surveys (CSUR), 4(2). ACM.

[20]. Dabbish, L.A., Wagstrom, P.,Sarma,A., and Herbsleb, J.D. (2010). Coordination in innovative design and engineering: observations

from a lunar robotics project. Group ’10: Proceedings of the16th ACM international conference on supporting group work. ACM.
[21]. Dix, A., &Gongora, L. (2011). Externalisation and Design. DESIRE ’11: Proceedings ofthe second conference on creativity and

innovation in design. ACM.

[22]. Duhan, S., Levy, M., and Powell, P. (2012). Is Strategy in SMEs using Organizational Capabilities: The CPX Framework. United
Kingdom.

[23]. Elmroth, E., Hernandez, F., and Tordsson, J. (2010). Three fundamental dimensions of scientific workflow interoperability: model of

computation, language, and execution environment. Future Generation Computer Systems, 26(2). Elsevier Science Publishers B.V.

[24]. Er, N.P., and Erbas, C. (2010). Aligning software configuration management with governance structures. SDC ’10: Proceedings of the

2010 ICSE Workshop on Software Development Governance, ACM.

[25]. European Telecommunications Standards Institute. (2011). Small and Medium-sized Enterprises (SMEs) in Standardization;
Understanding and Supporting SME involvement in ICT standardization. Sophia AntipolisCedex- France.

[26]. Feiler, P.H. (2010). Configuration Management models in commercial Environments.Tech Rept. CMU/SEI-91-TR-7, ADA 235782,

Software Engineering Institute,Carnegie Mellon University.
[27]. Forte, G. (1989). In search of the Integrated Environment. CASE Outlook. Retrieved on July19, 2012, from journals.tubitak.gov.tr.

[28]. Fruhauf, K., and Zeller, A. (1999).Software Configuration Management: State of the Art, State of the Practice.

[29]. Ghobakhloo, M., Sabouri, M.S., Hong, T.S., and Zulkifli, N. (2011). Information Technology Adoption in Small and Medium-Sized
Enterprises; An Appraisal of Two Decades Literature. Interdisciplinary Journal of Research in Business, 1(7), Pp.53-80.

[30]. Habra, N., Niyitugabira, E., Lamblin, A., and Renault, A. (2011). Software Process Improvement in Small Organizations using

Gradual Evaluation Schema. University of Namur.
[31]. Hadden, R. (1998). “Key Practices to the CMM: Inappropriate for Small Projects Panel”. In: Proceedings of the Software Engineering

Process Group Conference, Chicago.
[32]. Heer, T., Heller, M., Westfechtel, B., and Worzberger, R. (2010). Tool Support for dynamic development processes. Springer-Verlag.

[33]. Hong, M., Zhang, L., and Fuqing, Y. (2002). A Component-based software configuration management model and its supporting

system. Journal of Computer Science and Technology, 17(4). Institute of Computing Technology.

[34]. Hudson, M., Smart, A., and Bourne, M. (2001). Theory and Practice in SME performance measurement systems. International Journal

of Operations & Product Management, 21(8), pp. 1096-1115.

[35]. Humble, J., and Farley, D. (2010). Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation,
1st edition. Addison-Wesley Professional.

[36]. Jimenez, M., Vizcaino, A., and Piattini, M. (2010). Improving Distributed Software Development in Small and Medium Enterprises.

The Open Software Engineering Journal, 4, pp.26-37.

Process-Centred Functionality View…

www.theijes.com The IJES Page 68

[37]. Jones, R., Thomas, P., and Thomas, K. (2010). Quality Management Tools and Techniques: Profiling SME use & Customer

Expectations. The International Journal for Quality and Standards.
[38]. Katchow, R., Weerd, I., Brinkkemper, S., and Rooswinkel, A. (2011). Software Product Manager: A Mechanism to manage Software

Products in Small and Medium ISVs. Utrecht University, The Netherlands.

[39]. Kaur, P., and Singh, H. (2011). A model for versioning control mechanism in component-Based systems. SIGSOFT Software
Engineering Notes, 36(5). ACM.

[40]. Kim, D., and Youn, C. (2010). Traceability Enhancement Technique through the integration of software configuration management

and individual working environment. SSIRI ’10: Proceedings of the 2010 Fourth International Conference on secure software
integration and reliability improvement. IEEE Computer Society.

[41]. Klosterboer, L. (2010). Implementing ITIL Configuration Management, 2nd edition. IBM Press.

[42]. Kogel, M. (2008). Towards Software Configuration Management for Unified Models. CVSM’ 08: Proceedings of the 2008
international workshop on comparison and versioning of software models, ACM.

[43]. Lin, Y.J., and Reiss, S.P. (1995). Configuration Management in terms of modules. Proceedings of the 5th International Workshop on
Software Configuration Management, pp.17-26.

[44]. Loumos, V., Christonakis, G., Mpardis, G., and Tziova, P. (2010). Change Management and Quality of Service through Business

Process Modelling: The N-VIS, a Public Sector Project. ITNG ’10: Proceedings of the 2010 Seventh International Conference on
Information Technology: New Generation. IEEE Computer Society.

[45]. Mader, P., and Gotel, O. (2012). Controversy Corner: Towards automated traceability maintenance. Journal of Systems and Software,

85(10). Elsevier Science Inc.
[46]. Mei, H., Zhang, L., and Yang, F. (2002). A Software Configuration Management Model for Supporting Component-Based Software

Development. Software Engineering Notes, 26(2), 53.

[47]. Micallef, J., and Clemm, G.M. (1996). The Asgard System: Activity-Based Configuration Management. In SCM-6 Workshop, March
1996 (pp.175-187). Berlin, Germany: Springer Verlag LNCS1167.

[48]. Mohan, K., Xu, P., Cao, L., and Ramesh, B. (2008). Improving change management in software development: Integrating traceability

and software configuration management. Decision Support systems, 45(4).
[49]. Moser, T., Mordinyi, R., and Biffl, S. (2010). An ontology-based methodology for supporting knowledge-intensive multi-discipline

engineering processes. ODiSE ’10: Ontology-Driven Software Engineering. ACM.

[50]. Murta, L., Dantas, C., Oliveira, H., Lopes, L., and Werner, C. (2007). An Integrated Software Configuration Management
Infrastructure for UML models. Elsevier, Science of Computer Programming, 65(3).

[51]. Nalbant, S. (2004). An Information System for Streamlining Software Development process. Turk J ElecEngin, 12(2). Retrieved on

July 19, 2012, from journals.tubitak.gov.tr.
[52]. Ochuodho, S.J., and Brown, A.W. (1991). A Process-oriented version and configuration management model for communications

software. SCM ’91: Proceedings of the 3rdinternational workshop on software configuration management. ACM.

[53]. Ozcelik,Y. (2010). Do business process re-engineering projects payoff? Evidence from the United States. International Journal of
Project Management, 28, pp.7-13.

[54]. Pino, F.J., Garcia, F., and Piattni, M. (2009). Key Processes to start software process improvement in small companies. SAC’ 09:
Proceedings of the 2009 ACM Symposium on Applied Computing, ACM.

[55]. Priedhorsky,R. and Terveen,L.(2011). Wiki grows up: arbitrary data models, access control, and beyond. WikiSym ’11: Proceedings of

the 7th International Symposium on Wikis and Open Collaboration. ACM
[56]. Rivas, L., Perez, M., Mendoza, L., and Griman, A. (2010). Tools Selection Criteria in Software-developing Small and Medium

Enterprises. JCS&T, 10(1).

[57]. Rodriguez, C., Sanchez, M., and Villalobos, J. (2011). Executable model composition: a multilevel approach. SAC ’11: Proceedings of
the 2011 ACM Symposium on Applied Computing. ACM.

[58]. Rosenblum, D.S., and Krishnamurthy, B. (1991). An event-based model of software configuration management. SCM ’91:

Proceedings of the 3rd international workshop on software configuration management. ACM.
[59]. Rubin, J., Chechik, M., and Easterbrook, S.M. (2008). Declarative approach for Model composition. MiSE ’08: Proceedings of the

2008 international workshop on models in software engineering. ACM.

[60]. Ruparelia, N.B. (2010). The history of version control. SIGSOFT Software Engineering Notes, 35(1). ACM.
[61]. Sarma, A., Bortis, G., and Hoek, A. (2007). Towards Supporting Awareness of Indirect Conflicts Across Software Configuration

Management Workspaces. University of California. USA: Irvine.

[62]. Sarma, A., &Hoek, A.V. (2008). Palantir: enhancing configuration management systems with workspace awareness to detect and
resolve emerging conflicts. Long Beach: California State University

[63]. Schimdt, C. (2012). SMEs: Using CSR to Achieve Sustainability. ECOLOGIA.

[64]. Sharon, D., & Bell, R. (2000). Tools that Bind: Creating Integrated Environments. IEEE Software.
[65]. Shamsaie, A., and Habibi, J. (2011). Planning updates in multi-application wireless sensor Networks. ISCC ’11: Proceedings of the

2011 IEEE Symposium on Computers and Communications. IEEE Computer Society.

[66]. Shihab, E., Bird, C., and Zimmermann, T. (2012). The Effect of Branching Strategies on Software Quality. Software Analysis and
Intelligence Lab (SAIL). Queens University, Canada.

[67]. Sovran, Y., Power, R., Aguilera, M.K., and Li, J. (2011). Transactional storage for Geo-replicated systems. SOSP ’11: Proceedings of

the Twenty-Third ACM Symposium on Operating Systems principles. ACM.
[68]. Treude, C., and Storey, M.A. (2009). How tagging helps bridge the gap between social and Technical aspects in software

development. Canada: University of Victoria.

[69]. Wang, Y., Yang, J., Zhao, W., and Su, J. (2012). Change impact analysis in service-based Business processes. Service Oriented
Computing and Applications, 6(2).New York: Springer-Verlag.

[70]. Weinreich, R., and Buchgeher, G. (2012). Towards supporting the software architecture life cycle. Journal of Systems and Software,

85(3). Elsevier Science Inc.

[71]. Whitgift, D. (2001). Methods and Tools for Software Configuration Management. John Wiley and Sons, UK: Chichester.

[72]. Yahaya, J., Fithri, S., and Deraman, A. (2012). An Enhanced Workflow Reengineering Methodology for SMEs. International Journal

of Digital Information and Wireless Communications, 2(1).
[73]. Zhu, Y., Tang, F., You, I., Lou, L., Guo, M., and Shen, Y. (2011). PPMLT: A Pipeline Based Processing Model of Long Transactions.

AINA ’11: Proceedings of the 2011 IEEE International Conference on Advanced Information Networking and Applications. IEEE

Computer Society.

