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--------------------------------------------------------ABSTRACT----------------------------------------------------------- 

To enhance the optimization ability of classical shuffled frog leaping algorithm, a quantum inspired shuffled 

frog leaping algorithm with adaptive grouping is proposed. In this work, the frog swarms are adaptive grouped 

according to the average value of the objective function of child frog swarms, the frogs are encoded by 

probability amplitudes of Multi-Qubits system. The rotation angles of Multi-Qubits are determined based on the 

local optimum frog and the global optimal frog, and the Multi-Qubits rotation gates are employed to update the 

worst frog in child frog swarms. The experimental results of some benchmark functions optimization shows that, 

although its single step iteration consumes a long time, the optimization ability of the proposed method is 

significantly higher than the classical leaping frog algorithm. 
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I. INTRODUCTION 
Shuffled frog leaping algorithm (SFLA) is a new heuristic cooperative search algorithm, which 

simulates the foraging behavior of a group of frogs jumping in wetlands [1]. As a new bionic intelligent 

optimization algorithm, SFLA combines the advantages of memetic evolutionary algorithm and particle swarm 

optimization algorithm, with the concept of simple, less adjustment parameters, calculation speed, strong global 

search capability, easy implementation, currently used in the rough set attribute reduction [2], fuzzy-means 

clustering [3], drawing water bath to control [4], cooperative spectrum sensing cognitive radio [5- 6], speech 

recognition [7], etc. In terms of performance improvements SFLA, paper [8] by introducing in the frog 

population attraction and repulsion mechanism, effectively avoiding premature convergence; paper [9] by 

introducing the extreme dynamic optimization to improve the optimization efficiency of the algorithm; paper 

[10] through the integration, simulated annealing, immunizations, Gaussian mutation, chaotic disturbance, 

enhanced algorithm optimization capabilities; paper [11] by using a dispersion and fitness, improve the 

convergence speed and accuracy. However, these improvements do not consider the effect of the grouping 

SFLA for optimal performance. Since SFLA each group to update only a worst frog, in general, when a fixed 

number of frog, the fewer packets (the more the number of the group frog), the higher the computational 

efficiency, and optimization capability is relatively weak, so frog group grouping has an important influence on 

the optimization of the performance of SFLA. Taking into account the optimal number of packets SFLA usually 

related to specific issues as well as the optimization phase, this paper presents an Adaptive Grouping Quantum 

Inspired Shuffled Frog Leaping Algorithm. Quantum computing is an emerging interdisciplinary; combining 

information science and quantum mechanics, and its integration with intelligent optimization algorithms began 

in the 1990s. Currently, there are a lot more mature algorithms, such as quantum-behaved particle swarm 

optimization algorithm [12], quantum inspired evolutionary algorithm [13], quantum derivative harmony search 

algorithm [14], quantum inspired immune algorithm [15], quantum inspired genetic algorithm [16], quantum 

inspired differential evolution algorithm [17]. In addition to the literature [12] using the real-coded, the rest are 

encoded using a single bit probability amplitude. Single-bit probability amplitude coding disadvantage is that 

the adjustment of a qubit can only change one gene locus on the individual, while the probability amplitude for 

multi-bit coding, adjust a qubit, can change all of the ground state probability amplitude in multi-bit quantum 

superposition states , thereby changing the position of all genes on the individual. Therefore, this paper will also 

propose a new multi-bit probability amplitude coding mechanism to further improve the SFLA of optimizing 

capacity and optimize efficiency. The results of the optimization criterion function demonstrate the superiority 

of the proposed method. 
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II.SHUFFLED FROG LEAPING ALGORITHM 

First, There is N frogs 1 2
( , , , )

i i i in
x x x x

, calculated the target value 
( )( 1, 2 , , )

i
f x i N

of each 

frog, sort all Target value from good to bad. Order N = k × m, k is the number of sub-group, m is the number of 

subgroups frogs, the N sorted frogs cycle divided into k sub-groups. namely: the first sub-group divided into 

optimal frog, The second sub-group divided into Suboptimal frog, and so on, until all the frogs have been 

allocated. In each subgroup, the best and worst frogs were recorded as b
x

and w
x

, the whole frog group of the 

best frog recorded as g
x

, in each iteration, the following formula is updated sub-group w
x

. 

( )
b b

D r x w 
                                                                                   (1) 

w w
x x D  

                                                                                        (2) 

where m ax m axi
D D D  

, i
D

 is the i
th

 value of the vector D , i = 1, 2,…, n, m a x
D

 is the biggest leap frog step, 

r is a random number between 0 and 1. 

If w
x 

 is better than w
x

, then w
x 

 instead of w
x

; otherwise, b
x

 instead of g
x

, repeat the Eq.(1) and (2). If the w
x 

 

inferior to w
x

,, then randomly generate a solution to replace w
x

. So the cycle until the termination condition is 

met. 
 

III. ADAPTIVE GROUPING STRATEGY 
In SFLA, by updating the group worst frog to achieve local optimization, by mixing and re-grouped in 

each group to achieve global optimization. From the optimization mechanism, the group number reflects the 

optimization of the global characteristics, while the number of frogs in the group reflects the optimization of the 

locality. So, how to achieve the balance of global and localized search, is worthy of in-depth study of the 

problem, and this balance by grouping decision. However, the balance of global and localized search is often 

also associated with specific issues and optimization phase, grouping of frog group cannot be fixed pattern. 

Therefore, this paper proposes an adaptive grouping strategy. 

Let the total number of frogs be N, we rewritten N as following equation 

1 1 2 2 s s
N n m n m n m      

                                                     (3) 

where 1 2
,

s
n n n  

1 2 s
m m m  

. 

Therefore, there are s kinds of groupings. Namely: 1
n

 group, each group has 1
m

 frogs; 2
n

 group, each group 

has 2
m

 frogs; …; s
n

 group, each group has s
m

 frogs. As an example of the minimum value optimization, 

recorded the average value of the objective function as a vg
f

, Frog group is divided into k
n

 groups, each with 

k
n

 frogs, the average value of the i
th

 group objective function is 

i

a vg
f

, the 

i

a vg a vg
f f

 number is 
1

k
n

, the 
i

a vg a vg
f f

 number is 
2

k
n

. Adaptive grouping strategy proposed in this paper can be described as follows. 

(1) If 

1 2

k k
n n

k s

 


 , than 

1

1

k k

k k

n n

m m








 ,         (2) If 

1 2

1

k k
n n

k

 


 , than 

1

1

k k

k k

n n

m m








 . 

For this strategy, we explain below. 1k
n

≥ 2k
n

 represents the sub-groups of 

i

a vg
f

 less than a vg
f

 have advantages, 

This means that the optimization approach tends more parallel sub-groups, and therefore need to increase the 

number of sub-groups; Conversely, 1k
n

 < 2k
n

 represents the sub-groups of 

i

a vg
f

 less than a vg
f

 have 

disadvantages, this means that the optimization approach tends to parallel the minority carrier group, hence the 

need to reduce the number of sub-groups. 
 
 

IV. MULTI-BIT QUANTUM SYSTEM AND THE MULTI-BIT QUANTUM ROTATION GATE 

4.1. Qubits and single qubit rotation gate 

What is a qubit? Just as a classical bit has a state-either 0 or 1- a qubit also has a state. Two possible 

states for a qubit are the state 
| 0 

 and 
| 1

, which as you might guess correspond to the states 0 and 1 for a 

classical bit. 

Notation like 
|

 is called the Dirac notation, and we will see it often in the following paragraphs, as it is the 

standard notation for states in quantum mechanics. The difference between bits and qubits is that a qubit can be 
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in a state other than 0|  or 1| . It is also possible to form linear combinations of states, often called 

superposition. 

T
| c o s | 0 s in | 1 [c o s s in ] ,         

                                                (4) 

where θ is the phase of 
| 

, co s  and s in   denote the probability amplitude of 
| 

. 

In the quantum computation, the logic function can be realized by applying a series of unitary transform to the 

qubit states, which the effect of the unitary transform is equal to that of the logic gate. Therefore, the quantum 

services with the logic transformations in a certain interval are called the quantum gates, which are the basis of 

performing the quantum computation. A single qubit rotation gate can be defined as 

co s s in
( ) .

s in co s

 


 

   
   

  

R

                                                                 (5) 

Let the quantum state 

co s
|

s in






 
   

  , and 
| 

 can be transformed by 

co s( )
( )

s in ( )

 


 

  
   

  

R

. It is obvious 

that 
( )R

 shifts the phase of 
| 

 

4.2. The tensor product of matrix 

Let the matrix A has m low and n column, and the matrix B has p low and q column. The tensor product 

of A and B is defined as. 

1 1 1 2 1

2 1 2 2 2

1 2

,

n

n

m m m n

A A A

A A A

A A A

 

 

  
 

 

 

B B B

B B B
A B

B B B

L

L

M M M M

L
                                                             (6) 

where ,i j
A

 is the element of matrix A. 

4.3. Multi-bit quantum system and the multi-bit quantum rotation gate 

In general, for an n-qubits system, there are 2
n
 of the form 1 2

|
n

x x x L
 ground states, similar to the 

single-qubit system, n-qubits system can also be in the a linear superposition state of 2
n
 ground states, namely 

1 2

1 1 1

T

1 2 1 2 1 2 0 0 0 0 0 1 1 1 1

0 0

| | [ ] ,

n

n x x x n n

x x x

a x x x a a a  

 

      L L L L
L L L L

                        (7) 

where 1 2x x xn
a

L  is called probability amplitude of the ground state 1 2
|

n
x x x L

, and to meet the following 

equation. 

1 2

1 1 1
2

1 2

0 0

1 .

n

x x x n

x x x

a

 

   L
L

                                                                        (8) 

Let
| c o s |0 s in |1

i i i
      

, according to the principles of quantum computing, the 1 2
|

n
   L

 can be written 

as 

1 2

1 1 2

1 2 1 2

1

1 2

c o s c o s c o s

c o sc o s c o s c o s s in
| | | | .

s in s in

s in s in s in

n

n n

n n

n

n

  

   
     

 

  

 

 
  

            
 

   
 

 

L

L
L L L

M M M M

L

             

(9) 

It is clear from the above equation that, in an n-qubits system, any one of the ground state probability amplitude 

is a function of n-qubits phase 1 2
( , , , )

n
  L

, in other words, the adjustment of any i


 can update all 2
n
 

probability amplitudes. 

In our works, the n-qubits rotation gate is employed to update the probability amplitudes. According to the 

principles of quantum computing, the tensor product of n single-qubit rotation gate
( )

i
R

is n-qubits rotation 

gate. Namely 
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2 2
( ) ( ) ( ) ( ) ,

i n i n
              R R R RL L

                                         (10) 

where 

co s s in
( ) , 1, 2 , , .

s in co s

i i

i

i i

i n
 


 

   
   

  

R L

 

Taking n=2 as an example, the 1 2
( )  R

 can be rewritten as follows. 

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2

1 2 1 2 1 2 1 2

1 2 1 2 1

c o s c o s c o s s in s in c o s s in s in

c o s s in c o s c o s s in s in s in c o s
( )

s in c o s s in s in c o s c o s c o s s in

s in s in s in c o s c o s s in

       

       
 

       

     

         


        

  
          


     

R

2 1 2

.

c o s c o s 










                 (11) 

It is clear that 

1 2 1 2 1 2

ˆ ˆ ˆ( ) | | | | ,
n n n n

                 R
L

L L
                                         (12) 

where 
ˆ| co s( ) | 0 s in ( ) | 1 .
i i i i i

            
 

 
 

V. HUFFLED FROG LEAPING ALGORITHM ENCODING METHOD BASED ON MULTI-

BITS PROBABILITY AMPLITUDES 
In this paper, the frogs group is encoded by multi-qubits probability amplitudes. Let N denote the 

number of particles, D denote the dimension of optimization space. Multi-qubits probability amplitudes 

encoding method can be described as follows. 

5.1. The number of qubits needed to code 

For an n-bits quantum system, there are 2n probability amplitudes, which can be used directly as a 

result of an individual encoding. In the D-dimensional optimization space, it is clear that 2
n

D  . Due to the 

constraint relation between each probability amplitude (see to Eq.(10)), hence 2
n

D  . For the D-dimensional 

optimization problem, the required number of qubits can be calculated as follows. 

lo g ( ) 1 .n D 
                                                                          (13) 

5.2. The encoding method based on multi-qubits probability amplitudes 

First, generating randomly N n-dimensional phase vector i
θ

, 1, 2 , , ,i N L  as follows 

 1 2
, , , ,

i i i in
  θ L

                                                                  (14) 

where 
2

ij
ra n d  

, rand is a random number uniformly distributed within the (0,1),
1, 2j n L

. 

Let
| co s | 0 s in | 1

ij ij ij
      

, Using Equation (11), we can obtain following N n-qubits systems 

1 1 1 2 1
|

n
   L

, 2 1 2 2 2
|

n
   L

,…, 1 2
|

N N N n
   L

. In each of the quantum system, the first D probability 

amplitudes can be regarded as a D-dimensional particle code. 

 
 

VI. THE UPDATE METHOD BASED ON MULTI-QUBITS PROBABILITY AMPLITUDES 
In this paper, the multi-bit quantum rotation gates are employed to update particles. Let the phase 

vector of the global optimal frog be 1 2
[ , , ]

g g g g n
  F L

, the phase vector of the group optimal frog is 

1 2
[ , , , ]

b b b b n
  F L

, the phase vector of the group worst frog 1 2
[ , , , ]

w w w w n
  F L

. Similar to traditional 

SFLA, for each subgroup, we only just need to update w
F

. 

By formula (9) it is clear that, once w
F

 has been updated, all its corresponding probability amplitudes will be 

updated. To improve the search capability, in an iteration, all phases w
F

are updated in turn, which allows all 

particles are updated n times. Let 0


 
denote the phase update step size, the specific update can be described as 

follows. 
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Step1. Set j=1,


T

1 2 1 2
( ) co s co s co s , s in s in s in ]

w i i in i i in
      F L L L L，

. 

Step2. Set 1 2
0

i i in
        L

. 

Step3: Determine the value of the rotation angle, where the sgn donates the symbolic function. 

If 
| |

i

b j ij
   

, then 0
sg n ( )

b b

ij ij ij
      

. 

If 
| |

i

b j i j
   

, then 0
sg n ( )

b i

ij b j ij
       

. 

If 
| |

g j ij
   

, then 0
sg n ( )

b

ij g j ij
      

. 

If 
| |

g j ij
   

, then 0
sg n ( )

g

ij g j ij
       

. 

Step4. 
0 .5 0 .5

b g

j j j
      

, 
(1 )

1 2
( ) ( , , , ) ( )

w n n w
R       F FL

. 

Step5: Let 0j
rn d s    

, r n d s is a random number of -1 to 1. 
( 2 ) (1 )

1 2
( ) ( , , , ) ( )

w n n w
R       F FL

. If 
(1 )

( )
w

F
 is better than 

( 2 )
( )

w
F

, then 
(1 )

( ) ( )
w w
 F F

, otherwise, 
( 2 )

( ) ( )
w w
 F F

. 

Step6: If 
j n

, then j = j + 1, back to step2, Otherwise, end. 

 

VII. ADAPTIVE GROUPING QUANTUM INSPIRED SHUFFLED FROG LEAPING 

ALGORITHM 
Suppose that, N denote the number of frogs, D denote the number of optimization space dimension. 

1 1 s s
n l m l m    L

, i
l

and i
m

is positive integers and 1 2 s
l l l  L

 1 2 s
m m m  L

. For adaptive 

grouping quantum-inspired shuffled frog leaping algorithm, called AGQISFLA, the optimization process can be 

described as follows. 

(1) Initialize the frog group  

According to Eq.(12) to determine the number of qubits n, according to Eq.(13) initialize phase of each 

particle, according to Eq.(9) to calculate the probability amplitude of 2
n
 each particle, where the first D 

probability amplitudes are the coding of the particles. Set the j
th

 probability amplitude of the i
th

 particle be i j
x

, 

coding result can be expressed as the following equation. 
T

1 1 1 1 2 1

T

1 2 1 2 2 2

T

1 2

[ , , , ]

[ , , , ]
.

[ , , , ]

D

D

n N N N D

P x x x

P x x x

P x x x

 








 

L

L

L L L L L L L

L
                                                                (15) 

Initialization phase update step 0


, the limited number of iteration G. Set the current iteration step t=1. 

(2) Calculation of the objective function value 

Set the j-dimensional variable range be 
[ , ]

j j
M in X M a xX

, because of the probability amplitude i j
x

values in 

the interval [0,1], it is need to make the solution space transformation. The transformation equation is below. 

1
[ (1 ) (1 )] ,

2
i j j i j j i j

X M a xX x M in X x   

                                    (16) 

where i = 1, 2, ···, N, j = 1, 2, ···, D. 

With the above formula, calculate the objective function values of all frogs. And ascending objective function 

value, global optimal frog phase be 
1 2

ˆ ˆ ˆˆ [ , , , ]
g g g g n

  F L
, global optimal objective function value be 

ˆ
g

f
,tLS is 

the total number of iteration. 

(3) Frog Segmentation 

The N sorted frogs cycle into L sub-groups, each group have M frogs, namely: Optimal frog divided into the 

first subgroup, suboptimal frog divided into the second subgroups, and so on, until all frog allocated. 

(4) Update subgroup worst frog 

The Each subgroup evolution times is LS, in each evolution, update subgroup worst frog , follow the steps in 

the previous section (1) to step (6). As such, the worst frog of each subgroup are updated LS × n times. 

(5) Adaptive calculation of the number of subgroups 
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In each sub-group, the average value of the objective function is 

l

a vg
f

, where l= 1, 2,.., L. Mixing the 

subgroups, and arranged in ascending order according to the value of the objective function, remember the 

objective function is the average of the entire frog groups is a vg
f

, the number of 

i

a vg a vg
f f

is 
1

L
n

, the number 

of

i

a v g a v g
f f

 is 
2

L
n

.The following two steps to recalculate the number of sub-groups are L and the number of 

subgroups frog are M. 

(a)If 

1 2

L L
n n

k s

 


 , than

1

1

k

k

L l

M m








 . (b) If 

1 2

1

L L
n n

k

 


 ,than

1

1

k

k

l l

M m








 . 

 

 

(6) Update the global optimal solution 

Let the optimal frog phase be 1 2
[ , , , ]

g g g g n
  F

, the corresponding objective function value be g
f

. If 

ˆ
g g

f f
, then 

ˆ
g g

f f
, 

ˆ
g g
F F

; otherwise 
ˆ

g g
f f

,
ˆ

g g
F F

. 

(7) Determine the termination condition 

If t <G, t = t + 1, back to (3); otherwise, save the result, end. 

 

VIII. COMPARATIVE EXPERIMENT 
In this study, the 25 standard test functions are employed to verify the optimization ability of 

AGQISFLA, and compare with the traditional leapfrog algorithm (SFLA), adaptive grouping leapfrog algorithm 

(AGSFLA). All test functions are minimal value optimization, All functions belong to minimum optimization, 

where D is the number of independent variables, Ω is the solution space, 
*

X  is the exact minimum point, 
*

( )f X
 is the corresponding minimum. 
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8.2. The experimental scheme and parameter design 

The total number of frog group is set to N = 100, in order to achieve adaptive grouping, the N is 

decomposed into the following eight situations, as follows. 
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algorithms is set to LS=15;phase update step is set to 0
0 .0 5  

. 

For SFLA, each function are used eight kinds of groupings were optimized 50 times, namely, each function is 

independent optimization .400 times. 400 times optimal results averaged and the average value of a single 

iteration of the running time as a comparative index; for AGSFLA and AGQISFLA, The initial number of frog 

groups is L = 10, the group number of frog is M = 10, Each function independently optimized 50 times, taking 

the average of 50 times optimal results, with the average value of a single iteration of the running time as a 

comparison index. 
 

8.3. Comparative Experiment Results 

Experiments conducted using Matlab R2009a. For comparison, the average time of a single iteration of 

the function i
f

is set to i
T

, the average optimal results for i
O

, i = 1, 2,…,25. All test functions, Taking G=50 as 

an example ( 1 6
f

for D = 52), the results of such comparison are shown in Table 1, he average optimization 

results for D=100, are shown in Table 2. 

For the function i
f

, the average time of the single iteration of SFLA, AGSFLA, AGQISFLA is set to
A

i
T

, 
F

i
T

, 
Q

i
T

.the average optimal results is set to 
A

i
Q

, 
F

i
Q

, 
Q

i
Q

.To facilitate a further comparison, Taking AGSFLA and 

SFLA as example, there are the following two formulas. Eq.(18) is the ratio of the average running time. Eq.(19) 

is the ratio of the average optimal results 
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1
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1
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i ii
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                                                               (19) 

For these three algorithms, the ratio of average running time and the average optimal results is shown in Table 3. 

Table 1 The 50 times contrast of the average results for three algorithms optimization (D = 50) 

SFLA AGSFLA AGQISFLA 

i
f

 
( )

i
T s

 
i

O
 ( )

i
T s

 
i

O
 ( )

i
T s

 
i

O
 

2
1 0G   

3
1 0G   

2
1 0G   

3
1 0G   

2
1 0G   

1
f

 
0.0146 2.03E+03 3.09E+02 0.1452 2.61E+02 2.59E-008 0.1700 3:26E-015 

2
f

 0.0163 4.23E+08 3.41E+02 0.1103 5.30E+05 5.64E+02 0.2091 5:19E-008 

3
f

 0.0984 5.16E+04 8.11E+03 0.5064 5.55E+03 3.35E+02 1.2738 1:17E-015 

4
f

 0.0190 14.9593 10.4918 0.1055 15.3773 12.8575 0.2239 0:514605 

5
f

 0.0372 7.04E+07 7.73E+05 0.2028 7.42E+05 2.03E+02 0.3585 48:24962 

6
f

 0.0279 1.58E+03 43.23333 0.1434 85.70000 34.30000 0.2793 0 

7
f

 0.0341 2.84E+07 3.24E+03 0.1532 4.92E+04 0.001770 0.2827 3:55E-028 

8
f

 0.0249 2.40E+03 9.78E+02 0.1377 1.09E+03 9.71E+02 0.2221 3:16E-013 

9
f

 0.0316 17.18656 16.07727 0.1465 14.31819 13.61492 0.4036 0:1850413 

1 0
f

 0.0308 1.62E+02 3.149318 0.0740 4.434261 0.002976 0.3502 1:16E-015 

1 1
f

 0.0317 1.35E+04 1.21E+02 0.1606 1.45E+02 12.72304 0.3003 6:1248557 

1 2
f

 0.0773 8.40E+06 11.55566 0.4046 2.94E+02 17.54648 0.6654 2:99E-005 

1 3
f

 0.0772 2.59E+07 8.99E+03 0.3996 5.32E+04 1.00E+02 0.7448 0:0322664 

1 4
f

 0.0366 6.05E+03 9.57E+02 0.1735 7.94E+02 11.75275 0.4062 1:42E-013 

1 5
f

 0.3756 3.33E+13 2.35E+09 0.7196 1.41E+10 2.52E+03 3.1635 2:90E+002 

1 6
f

 0.0515 3.76E+07 3.98E+05 0.2787 1.97E+05 2.26E+03 0.6207 9:26E-023 

1 7
f

 0.0515 1.93E+02 1.62E+02 0.3485 1.77E+02 1.65E+02 0.5558 0:0016304 

1 8
f

 0.0447 2.42E+03 9.61E+02 0.3161 1.24E+03 9.68E+02 0.3490 1:26E-012 

1 9
f

 0.4529 58.03894 41.94107 0.8332 60.97842 44.34244 3.7331 6:8459530 
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2 0
f

 0.0202 1.55E+07 1.19E+04 0.1772 3.08E+04 7.66E+03 0.2160 5:43E-015 

2 1
f

 0.0338 4.17E+65 2.50E+47 0.2809 4.13E+41 1.53E+15 0.3652 1:27E-206 

2 2
f

 0.0167 1.47E+02 74.83271 0.0969 71.211607 46.331449 0.1750 6:76E-009 

2 3
f

 0.0348 44.76880 43.062524 0.1367 45.373445 42.675330 0.2528 0:1789964 

2 4
f

 0.0158 0.073135 0.0317157 0.0996 0.0041286 1.01E-14 0.1133 0 

2 5
f

 0.0173 1.92E+02 15.005397 0.1037 24.769981 4.357839 0.1543 4:72E-014 

Table2 The 50 times contrast of the average results for three algorithms optimization (D = 100) 

i
f
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3
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2
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3

1 0G   
2

1 0G   

1
f
 

0.0226 4.99E+03 1.02E+03 0.2278 2.16E+03 0.061430 0.2606 8:91E-015 

2
f

 0.0246 3.64E+51 6.45E+04 0.1723 1.27E+35 1.15E+03 0.3227 1:15E-007 

3
f

 0.1544 2.10E+05 3.12E+04 0.7998 1.41E+04 5.87E+03 1.9394 1:61E-013 

4
f

 0.0292 18.15317 13.80720 0.1683 17.63319 11.72408 0.3488 0:559791 

5
f

 0.0589 1.48E+08 2.98E+06 0.3147 2.58E+07 4.78E+02 0.5650 69:8203 

6
f

 0.0442 3.68E+03 3.46E+02 0.2277 8.68E+02 3.80E+02 0.4337 0 

7
f

 0.0531 1.43E+08 2.38E+05 0.2324 6.12E+06 6.29E+03 0.4421 1:39E-027 

8
f

 0.0385 5.66E+03 2.59E+03 0.2200 4.01E+03 2.95E+03 0.3377 013 

9
f

 0.0502 18.44872 17.75022 0.2237 17.56241 12.90171 0.6207 0:404291 

1 0
f

 0.0487 3.37E+02 6.909176 0.1128 27.02232 0.077702 0.5527 9:11E-014 

1 1
f

 0.0495 1.62E+04 2.06E+02 0.2549 5.62E+02 13.19321 0.4708 9:089264 

1 2
f

 0.1222 1.80E+07 17.88713 0.6367 3.51E+05 16.03746 1.0287 1:23E-004 

1 3
f

 0.1208 5.76E+07 7.37E+04 0.6048 1.03E+07 2.06E+02 1.1594 5:01E-002 

1 4
f

 0.0561 1.48E+04 3.04E+03 0.2604 5.33E+03 32.15902 0.6415 2:04E-013 

1 5
f

 0.5742 1.95E+14 2.05E+10 1.1437 6.90E+12 1.47E+04 4.7639 3:99E+002 

1 6
f

 0.0790 5.23E+07 7.03E+05 0.4235 1.03E+06 1.72E+04 0.9684 4:32E-022 

1 7
f

 0.0800 4.16E+02 3.54E+02 0.5331 3.73E+02 1.43E+02 0.8364 0:091603 

1 8
f

 0.0703 5.37E+03 2.70E+03 0.4950 4.30E+03 1.88E+03 0.5379 5:11E-012 

1 9
f

 0.6933 1.39E+02 1.16E+02 1.2734 1.44E+02 21.29647 5.7135 9:935560 

2 0
f

 0.0319 1.17E+05 4.09E+04 0.2741 1.15E+05 1.89E+04 0.3428 3:88E-014 

2 1
f

 0.0526 7.74E+84 1.71E+55 0.4231 1.87E+60 1.63E+17 0.5483 9:36E-187 

2 2
f

 0.0256 3.56E+02 1.98E+02 0.1549 2.64E+02 1.58E+02 0.2759 8:34E-008 

2 3
f

 0.0546 93.59604 92.42014 0.2130 94.61277 90.05981 0.4037 0:9899643 

2 4
f

 0.0245 0.183484 0.096426 0.1536 0.029085 1.12E-08 0.1811 0 

2 5
f

 0.0267 4.92E+02 91.40583 0.1608 2.06E+02 14.42596 0.2436 2:67E-013 

 

Table 3 the ratio of average running time and the average optimal results 

D /
A F

T T  

/
A F

i i
Q Q

 
/

Q A
T T  

1 0 0
/

Q A

G
Q Q

  
/

Q F
T T  

1 0 0
/

Q F

G
Q Q

  
2

1 0G   
3

1 0G   
2

1 0G   
3

1 0G   
2

1 0G   
3

1 0G   
50 5.495 0.2784 0.5133 2.107 0.0819 0.0418 10.06 0.0067 0.0111 

100 5.486 0.4143 0.3492 2.117 0.0602 0.0567 10.04 0.0054 0.0081 

AVG 5.491 0.3463 0.4312 2.112 0.0710 0.0492 10.05 0.0060 0.0096 

From Tab.1-Tab.3, the introduction of adaptive grouping strategy and quantum computing makes AGQISFLA 

single-step running time of about 10 times that of traditional SFLA. Therefore, in order to enhance the fairness 

of the comparison results, we not only need to look at the same contrast iteration number, and must be further 

investigated algorithm to optimize the results of comparison in the same time. This is the fundamental reason for 
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the SFLA and AGSFLA the iteration number is set to G = 100 and G = 1000. According to the optimization 

results of f1 ~ f25, when G = 100, AGSFLA is about 0.35 times of SFLA; when G = 1000, AGSFLA is about 

0.43 times of SFLA. This shows that the introduction of adaptive grouping strategy can indeed enhance the 

ability to optimize the algorithm. When G = 100, AGQISFLA (G = 100) is about 0.07 times of AGSFLA; when 

G = 1000, AGQISFLA (G = 100) of approximately 0.05 times of AGSFLA. This shows that the use of multi-bit 

probability amplitude coding and evolutionary mechanisms can indeed improve the algorithm optimization 

capabilities. From  

 

Table 3, in the same iteration steps, optimization results of AGQISFLA only 6/1000 of SFLA; at the same time 

optimization, optimization results of AGQISFLA only one percent of SFLA. Experimental results show that the 

adaptive grouping and multi-bit probability amplitude coding can indeed significantly improve the ability to 

optimize the traditional leapfrog algorithm.  

In this paper, when D = 50 and D = 100, the average results of the algorithm AGQISFLA is show in Fig.1, the 

average results of 50 times each function after optimization, the figure shows that when the dimension of 

AGQISFLA increases, there is a good stability. 

 
Figure 1 When D = 50 and D = 100, contrast optimization results of AGQISFLA 

8.4 Analysis of experimental results 

About adaptive grouping strategy, when f1 ~ f25 is 100-dimensional. Average number of iteration steps 

show in different groups AGQISFLA and AGSFLA, as shown in Figure 2 ~ 4. 

 

Figure 2 when G = 100, the average value of the iteration number of different groups of AGSFLA 

 

 

Figure 3 when G = 1000, the average value of the iteration number of different groups of AGSFLA 
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Figure 4 when G = 100, the average value of the iteration number of different groups of AGQISFLA 

After adaptive grouping, the percentages of the number iterations for each subgroup in total iterations 

are shown in Table 4. 
Table 4 the percentages of the number iterations for each subgroup in total iterations (%) 

Algorithm Iterations 
Number of Subgroups 

2 4 5 10 20 25 50 100 

AGSFLA 100 0.14 1.22 2.04 3.32 5.08 5.64 5.78 76.78 

AGSFLA 1000 0.02 0.08 0.17 0.35 1.87 3.18 6.66 87.67 

AGQISFLA 100 0.04 2.22 3.62 2.86 4.10 5.18 6.52 75.46 

The experimental results demonstrate the AGQISFLA long run time, high capacity optimization 

features, we give the following analysis. 

First, as previously described, the more subgroups, the more number of frogs need to update for each iteration, 

and so the Longer the time of single iteration. Secondly, the individual coding method based on multi-bit 

probability amplitude, if the number of qubits encoded set is n, each iteration subgroup evolutionary times for 

LS, then each iteration, each subgroup of the worst frog are updated LS × n times, which in the extended run 

time, but also greatly improve the number updates of worst frog; at the same time, this by individually adjusting 

the phase of qubits to cycle update individual approach, making individuals more elaborate update, which also 

enhances the solution space of ergodic. Third, in the update strategy based on multi-bit revolving door, and 

draws on the thinking of particle swarm optimization, taking the leading role of subgroups optimal frogs and 

global optimum frog, To some extent, to avoid the tendency to fall into premature convergence; at the same 

time, the use of multi-bit quantum revolving door, one operation can be achieved for all the updates on the 

individual probability amplitude, the characteristics of quantum rotation gates guaranteed probability amplitude 

of the "length" unchanged, effectively avoiding iterative sequence divergence, and thus improve the 

convergence capability. In summary, the adaptive grouping and multi-bit encoding probability amplitude of 

these two mechanisms, at the expense of time in exchange for the ability to optimize, which is consistent with 

the theorem no free lunch. 

IX. CONCLUSION 
In this paper, a quantum inspired shuffled frog leaping algorithm algorithms is presented which 

encoded by adaptive grouping and multi-bit probability amplitude. Frog group individual coding approach is to 

use multi-qubits system in the ground state of the probability amplitude, frog group of individuals update 

method is a multi-bit quantum revolving door. Function extreme optimization results show that under the same 

running time, the optimization ability of proposed algorithm has greatly superior to the conventional leapfrog 

algorithm. thus revealing, adaptive grouping and multi-bit encoding probability amplitude of these two 

mechanisms is indeed an effective way to greatly improve traditional leapfrog algorithm optimization 

capabilities. 
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