
The International Journal Of Engineering And Science (IJES)

|| Volume || 3 || Issue || 8 || Pages || 67-76 || 2014 ||
ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805

www.theijes.com The IJES Page 67

Design of a Digital Baseband Processor for UWB Transceiver on

RFID Tag

1,
G.Sri Naga Chaitanya.B.Tech,

2,
R.S.Harishraghav.B.Tech

1, 2, Sree Vidyanikethan Engg. College

---ABSTRACT--

This paper shows a novel digital baseband processor designed for UWB Transceiver on RFID tag which

reduces the complexity, area and power consumption of the baseband processor. Furthermore, several
strategies of reducing the power has explored during the design, so the final power consumption of the

baseband processor basically fulfils the ultra low power requirements of the UWB Transceiver.

Key words: - UWB Transceiver, RFID tag, digital baseband processor.

Date of Submission: 30 July 2014 Date of Publication: 15 August 2014

I. INTRODUCTION
RFID (Radio-Frequency Identification) technology has drawn a swirl of attention in the past few years

as it helps identify objects and people in a fast, accurate and inexpensive way, Today, RFID is used in enterprise

supply chain management to improve the efficiency of inventory tracking and management. However, growth

and adoption in the enterprise supply chain market is limited because current commercial technology does not
link the indoor tracking to the overall end-to-end supply chain visibility. Coupled with fair cost-sharing

mechanisms, rational motives and justified returns from RFID technology investments are the key ingredients to

achieve long-term and sustainable RFID technology adoption.

Figure 1.1: Overview of the most important auto-ID procedures

Optical character recognition (OCR) was first used in the 1960s. Special fonts were developed for this

application that stylized characters so that they could be read both in the normal way by people and

automatically by machines. The most important advantage of OCR systems is the high density of information

and the possibility of reading data visually in an emergency.

Biometrics is defined as the science of counting and (body) measurement procedures involving living beings. In

the context of identification systems, biometry is the general term for all procedures that identify people by

comparing unmistakable and individual physical characteristics. In practice, these are fingerprinting and hand

printing procedures, voice identification and, less commonly, retina (or iris) identification.

A smart card is an electronic data storage system, possibly with additional computing capacity

(microprocessor card), which is perfect for convenience..

Design of a Digital Baseband Processor for UWB Transceiver on RFID Tag

www.theijes.com The IJES Page 68

Table 1.1: Comparison of different auto-ID systems.

1.1 APPLICATIONS

RFID is a versatile technology, capable of being used by businesses and the government. Mandates for

supply chains, while raising the profile of RFID in business, have overshadowed how extensively and

successfully RFID is used in other contexts. In the early part of the 21st century, RFID is growing. The list of

RFID users is a long one’s

• Supply Chains, Including Wholesale and Retail Inventory and Materials Management

 Item-level Tagging of Consumer Goods on Retail Shelves

 Toll Payment Systems

 Smart Cards.

 Contactless Payment Systems at the Retail Point of Sale (POS)

 Logistics

 Asset Tracking

 Automobile Keyless Start Systems

 Sports

Pharmaceutical Anti-drug Counterfeiting

II. RFID SYSTEM AND ITS COMPONENTS
RFID systems are composed of three key components.

• The RFID tag, or transponder, carries object identifying data.

• The RFID tag reader, or transceiver, reads and writes tag data.

• The back-end database stores records associated with tag contents.

Figure 2.1: RFID system components

A key classification of RFID tags is the source of power. Tags come in three general varieties: active,

semi-passive and passive. Active tags contain an on-board power source, such as a battery, as well as the ability

to initiate their own communications; possibly with other tags. Semi-passive tags have a battery, but may only

respond to incoming transmissions. Passive tags have no internal power source and receive all power from the
reader. Table 2.1 given below gives a brief idea of the different types of tags, its power source, transmitter and

its maximum operating range. Figure 2.2 is the appearance or the display of the available passive, semi passive

and active tags

Table 2.1: Active, Semi-Passive and Passive tags

R

F

c

ir

c

u

it

&

a

n

a

l

o

g

c

ir

c

u

it

B

a

s

e

b

a

n

d

pr

o

c

e

s

s

or

E

E

P

R

O

M

R

E

A

D

E

R

Design of a Digital Baseband Processor for UWB Transceiver on RFID Tag

www.theijes.com The IJES Page 69

Figure 2.2: Passive tag, Semi passive tag, Active tag

2.1 OPERATING PRINCIPLE OF RFID SYSTEM

An Interrogator receives information from a Tag by transmitting an un-modulated RF carrier and

listening for a backscattered reply. Tags communicate information by backscatter-modulating the amplitude

and/or phase of the RF carrier. The encoding format, selected in response to Interrogator commands, is either

FM0 or Miller modulated sub-carrier. The communications link between Interrogators and Tags is half-duplex,

meaning that Tags shall not be required to demodulate Interrogator commands while backscattering. A Tag shall

not respond using full-duplex communications to a mandatory or optional command. RFID tag chip consists of a

power reception system, an RF analog module, an EEPROM and a baseband-processor, shown in figure.2.3.

The figure 2.4 shown above is the block diagram of a UHF RFID tag system. The baseband-processor is one of
the major and most important parts of the tag chip, since it not only implements the “slotted aloha” random anti-

collision algorithm and authorization scheme, but also executes read/write operation of EEPROM.

Figure 2.3: Architecture of the RFID tag

Figure 2.4: Block diagram of an RFID tag system

2.2 HARDWARE MODELLING & IMPLEMENTATIONOFDIGITAL BASEBAND PROCESSOR

Figure 2.5: Proposed block diagram of a baseband processor

Figure 2.5 is the proposed block diagram of the Baseband processor. The baseband processor is the

back-end part of the RFID system. The front-end part of the system comprises of a reader and the data

communication between the processor and the reader takes place in half-duplex mode. The data flow between

the sub modules is in parallel form synchronized with respect to clock. This can improve the efficiency of the

Baseband processor significantly.

Design of a Digital Baseband Processor for UWB Transceiver on RFID Tag

www.theijes.com The IJES Page 70

III. INTRODUCTIONS TO VERILOG HDL

3.1 INTRODUCTION TO VERILOG LANGUAGE

There is no attempt in this handout to describe the complete Verilog language. It describes only the

portions of the language needed to allow students to explore the architectural aspects of computers. In fact, this

handout covers only a small fraction of the language. For the complete description of the Verilog HDL, consult

the references at the end of the handout.

3.2 A FIRST VERILOG PROGRAM

module simple;
// Simple Register Transfer Level (RTL) example to demo Verilog.

// Register A is incremented by one. Then first four bits of B is

// set to "not" of the last four bits of A. C is the "and"

// reduction of the last two bits of A.

//declare registers and flip-flops

reg [0:7] A, B;

reg C;

// The two "initial"s and "always" will run concurrently

initial begin: stop at

// Will stop the execution after 20 simulation units.

#20; $stop;
end

// These statements done at simulation time 0 (since no #k)

initial begin: Init

 // Initialize register A. Other registers have values of "x"

 A = 0;

 // Display a header

 $display ("Time A B C");

 // Prints the values anytime a value of A, B or C changes

 $monitor (“%0d %b %b %b", $time, A, B, C);

end

//main process will loop until simulation is over

always begin: main process

 // #1 means do after one unit of simulation time

 #1 A = A + 1;

 #1 B[0:3] = ~A[4:7]; // ~ is bitwise "not" operator

 #1 C = &A[6:7]; // bitwise "and" reduction of last 2 bits of A

end

end module

In module simple, we declared A and B as 8-bit registers and C a 1-bit register or flip-flop. Inside of
the module, the one "always" and two "initial" constructs describe three threads of control, i.e., they run at the

same time or concurrently. Within the initial construct, statements are executed sequentially much like in C or

other traditional imperative programming languages. The always construct is the same as the initial construct

except that it loops forever as long as the simulation runs.

Below is the output of the VeriWell Simulator: (See Section 3 on how to use the VeriWell simulator.)

Time A B C

 0 00000000 xxxxxxxx x

 1 00000001 xxxxxxxx x

 2 00000001 1110xxxx x

 3 00000001 1110xxxx 0

 4 00000010 1110xxxx 0

 5 00000010 1101xxxx 0
 7 00000011 1101xxxx 0

 8 00000011 1100xxxx 0

 9 00000011 1100xxxx 1

Design of a Digital Baseband Processor for UWB Transceiver on RFID Tag

www.theijes.com The IJES Page 71

 10 00000100 1100xxxx 1

 11 00000100 1011xxxx 1

 12 00000100 1011xxxx 0

 13 00000101 1011xxxx 0

 14 00000101 1010xxxx 0

 16 00000110 1010xxxx 0

 17 00000110 1001xxxx 0
 19 00000111 1001xxxx 0

Stop at simulation time 20

3.3 LEXICAL CONVENTIONS
The lexical conventions are close to the programming language C++. Comments are designated by // to

the end of a line or by /* to */ across several lines. Keywords, e. g., module, are reserved and in all lower case

letters. The language is case sensitive, meaning upper and lower case letters are different. Spaces are important

in that they delimit tokens in the language.

Numbers are specified in the traditional form of a series of digits with or without a sign but also in the

following form:

 <size><base format><number>
Where <size> contains decimal digits that specify the size of the constant in the number of bits. The <size> is

optional. The <base format> is the single character ' followed by one of the following characters b, d, o and h,

which stand for binary, decimal, octal and hex, respectively. The <number> part contains digits which are legal

for the <base format>. Some examples:

 549 // decimal number

 'h 8FF // hex number

 'o765 // octal number

 4'b11 // 4-bit binary number 0011

 3'b10x // 3-bit binary number with least

 // significant bit unknown

 5'd3 // 5-bit decimal number

 -4'b11 // 4-bit two's complement of 0011 or 1101

The <number> part may not contain a sign. Any sign must go on the front.

A string is a sequence of characters enclosed in double quotes.

 "this is a string"

Operators are one, two or three characters and are used in expressions.

An identifier is specified by a letter or underscore followed by zero or more letters, digits, dollar signs

and underscores. Identifiers can be up to 1024 characters.

3.4 CONTROL CONSTRUCTS

Verilog HDL has a rich collection of control statements which can used in the procedural sections of

code, i. e., within an initial or always block. Most of them will be familiar to the programmer of traditional
programming languages like C. The main difference is instead of C's { } brackets, Verilog HDL uses begin and

end. In Verilog, the { } brackets are used for concatenation of bit strings. Since most users are familiar with C,

the following subsections typically show only an example of each construct.

3.4.1 Selection - if and case Statements
The if statement is easy to use.

if (A == 4)

begin

 B = 2;

end

else

begin
 B = 4;

 End

Unlike the case statement in C, the first <value> that matches the value of the <expression> is selected and the

associated statement is executed then control is transferred to after the endcase, i. e., no break statements are

needed as in C.

Design of a Digital Baseband Processor for UWB Transceiver on RFID Tag

www.theijes.com The IJES Page 72

case (<expression>)

<value1>: <statement>

<value2>: <statement>

default: <statement>

endcase

The following example checks a 1-bit signal for its value.

case (sig)
 1'bz: $display("Signal is floating");

 1'bx: $display("Signal is unknown");

default: $display("Signal is %b", sig);

endcase

3.4.2 Repetition - for, while and repeat Statements
The for statement is very close to C's for statement except that the ++ and -- operators do not exist in

Verilog. Therefore, we need to use i = i + 1.

for(i = 0; i< 10; i = i + 1)

begin

 $display("i= %0d", i);
end

The while statement acts in the normal fashion.

i = 0;

while(i< 10)

begin

 $display("i= %0d", i);

i = i + 1;

end

The repeat statement repeats the following block a fixed number of times, in this example, five times.

repeat (5)

begin

 $display("i= %0d", i);
i = i + 1;

end

3.5 OTHER STATEMENTS

3.5.1 Parameter Statement
The parameter statement allows the designer to give a constant a name. Typical uses are to specify

width of registers and delays. For example, the following allows the designer to parameterized the declarations

of a model
 parameterbyte_size = 8;

 reg [byte_size - 1:0] A, B;

3.5.2 Continuous Assignment
Continuous assignments drive wire variables and are evaluated and updated whenever an input operand

changes value. The following ands the values on the wires in1 and in2 and drives the wire out. The keyword

assign is used to distinguish the continuous assignment from the procedural assignment. See Section 2.1 for

more discussion on continuous assignment.

 Assignout = ~(in1 & in2);

3.5.3 Blocking and Non-blocking Procedural Assignments
The Verilog language has two forms of the procedural assignment statement: blocking and non-

blocking. The two are distinguished by the = and <= assignment operators. The blocking assignment statement
(= operator) acts much like in traditional programming languages. The whole statement is done before control

passes on to the next statement. The non-blocking (<= operator) evaluates all the right-hand sides for the current

time unit and assigns the left-hand sides at the end of the time unit. For example, the following Verilog program

// testing blocking and non-blocking assignment

module blocking;

Design of a Digital Baseband Processor for UWB Transceiver on RFID Tag

www.theijes.com The IJES Page 73

reg [0:7] A, B;

initial begin: init1

 A = 3;

 #1 A = A + 1; // blocking procedural assignment

 B = A + 1;

 $display("Blocking:A= %b B= %b", A, B);

 A = 3;

 #1 A <= A + 1; // non-blocking procedural assignment

 B <= A + 1;

 #1 $display("Non-blocking: A= %b B= %b", A, B);

end

end module

produces the following output:

Blocking: A= 00000100 B= 00000101

Non-blocking: A= 00000100 B= 00000100
The effect is for all the non-blocking assignments to use the old values of the variables at the beginning

of the current time unit and to assign the registers new values at the end of the current time unit. This reflects

how register transfers occur in some hardware systems.

3.6 TASKS AND FUNCTION:
Tasks are like procedures in other programming languages, e. g., tasks may have zero or more

arguments and do not return a value. Functions act like function subprograms in other languages. Except:

1. A Verilog function must execute during one simulation time unit. That is, no time controlling statements, i. e.,

no delay control (#), no event control (@) or wait statements, allowed. A task may contain time controlled

statements.

2. A Verilog function can not invoke (call, enable) a task; whereas a task may call other tasks and functions.

The definition of a task is the following:
task<task name>; // Notice: no parameter list or ()s

<argument ports>

<declarations>

<statements>

 End task

An invocation of a task is of the following form:

 <name of task> (<port list>);

where<port list> is a list of expressions which correspond by position to the <argument ports> of the

definition. Port arguments in the definition may be input, inout or output. Since the <argument ports> in the

task definition look like declarations, the programmer must be careful in adding declares at the beginning of a

task.
// Testing tasks and functions

// Dan Hyde, Aug 28, 1995

module tasks;

task add; // task definition

input a, b; // two input argument ports

output c; // one output argument port

reg R; // register declaration

begin

 R = 1;

if (a == b)
 c = 1 & R;

else

 c = 0;

end

end task

Design of a Digital Baseband Processor for UWB Transceiver on RFID Tag

www.theijes.com The IJES Page 74

initial begin: init1

reg p;

add(1, 0, p); // invocation of task with 3 arguments

 $display("p= %b", p);

end

end module

input and inout parameters are passed by value to the task and output and inoutparameters are passed
back to invocation by value on return. Call by reference is not available.

3.7 TIMING CONTROL
The Verilog language provides two types of explicit timing control over when simulation time

procedural statements are to occur. The first type is a delay control in which an expression specifies the time

duration between initially encountering the statement and when the statement actually executes. The second type

of timing control is the event expression, which allows statement execution. The third subsection describes the

wait statement which waits for a specific variable to change.

Verilog is a discrete event time simulator, i. e., events are scheduled for discrete times and placed on

an ordered-by-time wait queue.

If there is no timing control, simulation time does not advance. Simulated time can only progress by one of the
following:

 1. gate or wire delay, if specified.

 2. a delay control, introduced by the # symbol.

 3. an event control, introduced by the @ symbol.

 4. thewait statement.

The order of execution of events in the same clock time may not be predictable.

3.7.1 DELAY CONTROL
A delay control expression specifies the time duration between initially encountering the statement and when

the statement actually executes. For example:

 #10 A = A + 1;

specifies to delay 10 time units before executing the procedural assignment statement. The # may be followed
by an expression with variables.

3.7.2 EVENTS
The execution of a procedural statement can be triggered with a value change on a wire or register, or the

occurrence of a named event. Some examples:

@r begin // controlled by any value change in

 A = B&C; // the register r

end

@(posedge clock2) A = B&C; // controlled by positive edge of clock2

@(negedge clock3) A = B&C; // controlled by negative edge of clock3

forever @(negedge clock) // controlled by negative edge
begin

 A = B&C;

end

In the forms using posedge and negedge, they must be followed by a 1-bit expression, typically clock. A

negedge is detected on the transition from 1 to 0 (or unknown). A posedge is detected on the transition from 0

to 1 (or unknown).

Verilog also provides features to name an event and then to trigger the occurrence of that event. We must first

declare the event:

 event event6;

To trigger the event, we use the ->symbol :

 -> event6;
To control a block of code, we use the @ symbol as shown:

 @(event6) begin

<some procedural code>

 end

We assume that the event occurs in one thread of control, i. e., concurrently, and the controlled code is in

another thread. Several events may to or-ed inside the parentheses.

Design of a Digital Baseband Processor for UWB Transceiver on RFID Tag

www.theijes.com The IJES Page 75

3.7.3 WAIT STATEMENT
The wait statement allows a procedural statement or a block to be delayed until a condition

 wait (A == 3)

 begin

 A = B&C;

 end

The difference between the behavior of a wait statement and an event is that the wait statement is level

sensitive whereas @(posedge clock); is triggered by a signal transition or is edge sensitive.

3.7.4 FORK AND JOIN STATEMENTS\

By using the fork and join construct, Verilog allows more than one thread of control inside an initial or

always construct. For example, to have three threads of control, you fork the thread into three and merge the

three into one with a join as shown:

 fork: three //split thread into three; one for each begin-end

 begin

 // code for thread 1

 end

 begin
 // code for thread 2

 end

 begin

 // code for thread 3

 end

 join // merge the three threads to one

Each statement between the fork and join, in this case, the three begin-end blocks, is executed concurrently.

After all the threads complete, the next statement after the join is executed.

You must be careful that there is no interference between the different threads. For example, you can't change a

register in two different threads during the same clock period.

IV. 4. RESULT ANALYSIS\
The Verilog HDL code is written for both reference design

• According to [1] given in figure 4.3, the controller in the architecture of the Baseband processor controls the data
flow to the other sub modules. It sends control signals to control the status of all the sub modules.

• But the modified design given in fig 4.7 incorporates a controller which controls not only the data flow to the sub
modules but also controls the clock of each sub module. This reduces the power significantly.

Figure4.1: Simulation result of the reference design obtained in xilinx tool

Figure4.2: Simulation result of the modified design obtained in xilinx tool

Design of a Digital Baseband Processor for UWB Transceiver on RFID Tag

www.theijes.com The IJES Page 76

Figure 4.1 and figure 4.2 shown above are the simulation result of the reference design and the

simulation result of the modified design obtained in Xilinx tool respectively. The design was simulated and

synthesized using Xilinx tool. The selected device was Spartan 3E. The Clock of100 MHz was provided. Reset

signal is active high. The input bits are 88 bits serial and the output obtained is 88 bits serial which is amplitude

modulated. The internal operation is carried on parallel. One of the given test cases is

11001111000000010000000100000001000000010000000100000001000000010000000

1111111111111111
Expected output is:

011001111000000010000000100000001000000010000000100000001000000010000000101111100010110

The power analysis for both the reference design and modified design were carried out. The dynamic power

obtained for both the designs are given in the Table 4.3 below.

Table 5.1: Dynamic power obtained from xilinx tool

CONCLUSION
In this paper, a novel digital baseband processor designed for UWB Transceiver on RFID tag is

presented. Due to the security feature and other advantages of UWB, no complicated coding and cryptography is

needed. This also reduces the complexity, area and power consumption of the baseband processor. Furthermore,

several strategies of reducing the power has explored during the design, so the final power consumption of the

baseband processor basically fulfills the ultra low power requirements of the UWB Transceiver. Future works

include integrating the baseband processor into the UWB Transceiver to test the whole system and researching

for more strategies to reduce the power consumption of the baseband processor if possible.

REFERENCES
[1]. YuechaoNiu, Majid BaghaeiNejad, HannuTenhunen and Li-Rong Zheng, “Design of a Digital Baseband Processor for UWB

Tranceiver on RFID Tag”, IEEE Conference on Advanced Information Networking and Applications Workshop proceedings,

vol. 2, pp. 358-361, May 2007

[2]. Adam S.W. Man, Edward S. Zhang, H.T. Chan, Vincent K.N. Lau, C.Y. Tsui and Howard C. Luong,“Design and

Implementation of a Low-power Baseband-system for RFID Tag”IEEE International Solid-State Circuits Conference, pp. 1585-

1588, May 2007

[3]. Usami M, Tanabe H, Sato A, Sakama I, Maki Y, Iwamatsu T, Ipposhi T and Inoue Y, “A 0.05×0.05mm2 RFID Chip with Easily

Scaled-Down ID-Memory”, IEEE International Solid-State Circuits Conference, pp. 482-483, February 2007

[4]. He Yan, Hu Jianyun,LiQiang and Min Hao, “Design of Low-power Baseband processor for RFID Tag”, Proceedings of the IEEE

International Symposium on Applications and the Internet Workshops, vol. 1, pp. 1-4, January 2006

[5]. He Yan, Hu Jianyun,LiQiang and Min Hao, “Design of Low-power Baseband processor for UHF RFID Tag”, 6th International
Conference On ASIC, ASICON 2005, vol. 1, pp. 143-146, October 2005

