

μ-RANGE, λ-RANGE OF OPERATORS ON A HILBERT SPACE

Dr. S. K. Singh¹, Dr. Gyan Mukherjee² and Dr.Mahendra Kumar Roy³

¹Department of Mathematics, College of Commerce, Patna (Magadh University) (INDIA) ²Department of Mathematics, S.P.S. College, Vaishali (B.R.A.B.University) (INDIA) ³Department of Mathematics, Patna Womens College, Patna (Patna University) (INDIA)

-----ABSTRACT-----

We have introduced a new type of operator called "Trijection Operator" on a linear space. It is a generalization of projection. We study trijection in case of a Hilbert space. Further we decompose range of a trijection into two disjoint sub-spaces called μ -range and λ - range and study their properties.

Keywords: Operator, Projection, Trijection Operator, Hilbert space, μ -range and λ - range.

Date of Submission: 30 July 2014	Date of Publication: 15 August 2014

I. INTRODUCTION

Trijection Operator: We define an operator E to be a trijection if $E^3 = E$. Clearly if E is a projection, then it is also a trijection for $E^2 = E \implies E^3 = E^2 \cdot E = E \cdot E = E^2 = E$. Thus it follows that a projection is necessarily a trijection. But a trijection is not necessarily a projection. This would be clear from the complex of trijections given below. Example of Trijections: Consider R². Let z be an element in R². Thus z = (x, y) where x, $y \in R$. Let E(z) = (ax + by, cx + dy), where a, b, c, d are scalars. By calculation we find that - $E^{3}(z) = (a_{1}x + b_{1}y, c_{1}x + d_{1}y)$ Where. $a_1 = a^3 + 2abc + bcd$ $\mathbf{b}_1 = \mathbf{a}^2\mathbf{b} + \mathbf{a}\mathbf{b}\mathbf{d} + \mathbf{b}^2\mathbf{c} + \mathbf{b}\mathbf{d}^2$ $c_1 = a^2c + acd + bc^2 + cd^2$ $d_1 = abc + 2bcd + d^3.$ and Hence if E is a trijection, $E^3 = E$, then we have $a = a^3 + 2abc + bcd$ $b = a^2b + abd + b^2c + bd^2$ $c = a^2c + acd + bc^2 + cd^2$ $d = abc + 2bcd + d^3.$ and Case(i) :- For some particular cases, let a = d = 0, then $b = b^2c$, $c = bc^2$. Thus we can choose b = c = 1 and get E(z) = (y, x)E(x,y) = (y, x).....(1) So, $E^{2}(x, y) = E(E(x, y)) = E(x, y) = (x, y)$ [from(1)] Therefore $E^2(x, y) = (x, y) \neq (y, x) = E(x, y)$ Hence $E^2 \neq E$ Thus E is not a projection. But $E^{3}(x, y) = E(E^{2}(x, y)) = E(x, y)$ Therefore $E^3 = E$ Hence E is a trijection. Case(ii):- If a = c = 0, then $b = bd^2$, $d=d^3$. Thus we can choose d = 1 and get E(z) = (by, y). Therefore E(x, y) = (by, y)www.theijes.com The IJES Page 26

Hence $E^{2}(x, y) = E(E(x, y)) = E(by, y) = E(x, y)$. Thus $E^2 = E$. Hence E is a projection, and so it is also a trijection. Case(iii):- If a = b = 0 then $c = cd^2$, $d = d^3$. Thus choosing d = 1, we have E(z) = (0, cx + y)E(x, y) = (0, cx + y).Therefore $E^{2}(x, y) = E(E(x, y)) = E(0, cx + y)$ = (0, cx + y) = E(x, y).Thus $E^2 = E$. Hence E is a projection and so it is a trijection. Case(iv):- If b = c = 0 then $a = a^3$, $d = d^3$. Now $a = a^3$ gives a = 0, 1 or -1. Similarly we get values of d. We consider these values in a systematic way. $a = d = 0 \implies E = 0$, it is the zero mapping. Hence it is a projection and trijection also. $a = 0, d = 1 \implies E(z) = (0, y)$. It is also a projection. $a = 0, d = -1 \implies E(z) = (0, -y)$. It is also a projection. $a = 1, d = 0 \implies E(z) = (x, 0)$. It is also a projection. $a = 1, d = 1 \implies E = (I)$, the identity mapping which is also a projection and a trijection. $a = 1, d = -1 \implies E(z) = (x, -y)$, which is not a projection. $a = -1, d = 0 \implies E(z) = (-x, 0)$, which is not a projection. a = -1, $d = 1 \implies E(z) = (-x, y)$, which is not a projection. a = -1, $d = -1 \implies E(z) = (-x, -y)$, which is not a projection. In this way, a projection is necessarily a trijection but a trijection is not a projection. **Trijection in a Hilbert Space:** - We first define a normed linear space:

A normed linear space is a linear space N in which to each vector x there corresponds a real number, denoted by $\| x \|$ and called the norm of x, in such a manner that

1.
$$\| \mathbf{x} \| \ge 0$$
 and $\| \mathbf{x} \| = 0 \iff \mathbf{x} = 0$.

- 2. $\| x + y \| \le \| x \| + \| y \|$, for $x, y \in N$.
- 3. $\|\alpha x\| = \|\alpha\| \|x\|$, for scalar.

N is also a metric space with respect to the metric d defined by $d(x,y) = \| x - y \|$. A Banach space is a complete normed linear space.¹

A trijection on a Banach space b is defined as an operator E on B such that $E^3 = E$ and E is continuous.

μ-Range and λ-**Range of a Trijection**: If E is a trijection on linear space H, then we know that $H = R \oplus$ N where R is the range of E and N is the null space of E. We can decompose R into two subspaces L and M such that $L = \{z : E(z) = z\}$ and $M = \{z : E(z) = -z\}$ and $L \cap M = \{0\}$.

Now as L , M are parts of the range R, let us call L as λ -Range and M as μ -Range of E. Thus the range R of E is the direct sum of its λ and μ -Ranges. In case E is a projection, we clearly see that its range coincides with its λ -Range while μ -Range is $\{0\}$.

II. THEOREMS

Theorem 1: If E is a trijection on a Banach space B and if R and N are its range and null space, then R and N are closed linear subspaces of B such that

$$\mathbf{B}=\mathbf{R} \oplus \mathbf{N}.$$

Proof: Since the null space of any continuous linear transformation is closed, so N being null space of E is closed.

Since E^2 - I is also continuous and $R = \{z : E^2 z = z\}$ $= \{z : (E^2 - I) z = 0\}$ So R is also closed. Clearly, $B = R \bigoplus N$.

A Hilbert space is a complex Banach space whose norm arises from an inner product, that is, in which there is defined a complex function (x, y) of vectors x and y with the following properties:-

1.(
$$\alpha x + \beta y, z$$
) = $\alpha(x, z) + \beta(y, z)$
2.($\overline{x}, \overline{y}$) = (y, x)
3.(x, x) = $\|x\|^2$.

Where x , y , z are elements of Banach space and α is a scalar.²

To each operator T on a Hilbert space H there corresponds a unique mapping T* of H into itself (called the adjoint of T*) which satisfies the relation

 $(T x, y) = (x, T^*y)$ For all x, y in H. Following are the properties of adjoint operations:- $1.(T_1 + T_2)^* = T_1^* + T_2^*$ $2.(\alpha T)^* = \overline{\alpha} T^*$ $3.(T_1 T_2)^* = T_2^* + T_1^*$ 4. $T^{**} = T$ 5. $||T^*|| = ||T||$ 6. $||T^*T|| = ||T||^{2.3}$ **Theorem2:** If E is a trijection on a Hilbert space H then so is E*. **Proof:** Since E is a trijection on a Hilbert space H, so $E^* = E$ and $E^3 = E$. If T, U, V are linear operators on H, then $(T U V)^* = (T (U V))^* = (U V)^*T^* = V^* U^* T^*$ Hence letting T = U = V = E, we have $(E^3)^* = E^* \cdot E^* = (E^*)^3$ Therefore $E^* = (E^*)^3$. Now $(E^*)^* = E^{**} = E = E^*$, so E^* satisfies the conditions for trijection on a Hilbert space. Hence E* is a trijection. Theorem3: If A is an operator on a Hilbert space H, then For K being 0 or any positive integer. Moreover, if A is self-adjoint then so is A^k . equation (1) is obviously true when k = 0 or 1 - N

Proof: The equation (1) is obviously true when k = 0 or 1. Now we prove the equation (1) by the method of induction.

Let us assume that the equation (1) is true for K - 1. Therefore, $-(\Lambda *)^{k-1}$

Therefore,

$$(A^{k-1})^{*} = (A^{*})^{k-1}$$

$$(A^{k})^{*} = (A^{k-1} \cdot A)^{*}$$

$$= A^{*} \cdot (A^{k-1})^{*}$$

$$= (A^{*}) \cdot (A^{*})^{k-1}$$

$$= (A^{*})^{k}.$$

Hence the proof is complete by induction.

Theorem4: If E is a trijection on a Hilbert space H, then I - E^2 is also trijection on H such that $R_{I-E}^{2} = N_{E}$ and $N_{I-E}^{2} = R_{E}$. Proof

Since
$$(I - E^2)^2 = (I - E^2)(I - E^2)$$

 $= I - E^2 - E^2 + E^4$
 $= I - E^2 - E^2 + E^3 \cdot E$
 $= I - E^2 - E^2 + E^2$
 $= I - E^2$,
Therefore $(I - E^2)^3 = (I - E^2)^2 (I - E^2)$
 $= (I - E^2)(I - E^2)$
 $= (I - E^2)^2$
 $= I - E^2$
Also $(I - E^2)^* = I^* - (E^2)^*$
 $= I - (E^*)^2$
 $= I - E^2$.

Hence $I - E^2$ is a projection as well as a trijection on H. Moreover,

$$\begin{array}{l} R_{I-E}{}^2 = \{z: (I-E^2)^2 \, z=z\} \\ = \{z: (I-E^2) \, z=z\} \\ = \{z: z - E^2 \, z=z\} \\ = \{z: E^2 \, z=0\} \\ = N_E, \, and \\ N_{I-E}{}^2 = \{z: (I-E^2) \, z=0\} \\ = \{z: z - E^2 \, z=0\} \\ = \{z: E^2 \, z=z\} \\ = R_E. \end{array}$$

Theorem5: Any trijection on a Hilbert space H can be expressed as the sum of two self-adjoint operators on H such that one of them is a projection and the square of the other is the identity operator. **Proof:** Let E be a trijection on H. Then we can write

Eet E be a ufgettion on H. Then we can write $E = (I - E^2) + E^2 + E - I$ By theorem (4), $I - E^2$ is a projection on H, and $I - E^2$ is a self-adjoint. Also $(E^2 + E - I)^* = E^2 + E - I$, so $E^2 + E - I$ is self-adjoint. Moreover we have $(E^2 + E - I)^2 = (E^2 + E - I) (E^2 + E - I)$ $= E^4 + E^3 - E^2 + E^3 + E^2 - E - E^2 - E + I$ $= E^2 + E - E^2 + E + E^2 - E - E^2 - E + I$ = I, Identity operator.

This proves the theorem.

Two vectors x and y in a Hilbert space H are said to be orthogonal (written $x \perp y$) if (x,y) = 0. A vector x is said to be orthogonal to a non-empty set S (written $x \perp S$) is $x \perp y$ for every y in S, and the orthogonal complement of S, denoted by S^{\perp} , is the set of all vector orthogonal to S.⁴

An operator N and H is said to be normal if it commutes with its adjoint, that is, if

 $NN^* = N^*N.^5$

Theorem6: If E is a trijection on a Hilbert space H, then

$$\mathbf{x} \in \mathbf{R}_{\mathbf{E}} \iff \mathbf{E}^2 \mathbf{x} = \mathbf{x} \iff \|\mathbf{E}^2 \mathbf{x}\| = \|\mathbf{x}\|.$$

Also $\|\mathbf{E}\| \le 1$.

Proof: From theorem(5), the first equivalence is clear. Also $E^2 x = x \implies || E^2 x || = || x ||$. So we now need to show that $\| E^2 x \| = \| x \| \Longrightarrow E^2 x = x.$ Now $\| \mathbf{x} \|^2 = \| \mathbf{E}^2 \mathbf{x} + (\mathbf{I} - \mathbf{E}^2) \mathbf{x} \|^2$ = $\| \mathbf{y} + \mathbf{z} \|^2$, say where $\mathbf{y} = \mathbf{E}^2 \mathbf{x}$ and $\mathbf{z} = (\mathbf{I} - \mathbf{E}^2) \mathbf{x}$. Also, $\|y + z\|^2 = (y + z, y + z)$ = (y, y + z) + (z, y + z) $\begin{array}{l} = (y, y) + (y, z) + (z, y) + (z, z) \\ = \|y\|^2 + \|z\|^2 + (y, z) + (z, y). \\ \end{array} \\ \text{Since } y = E^2 x = E(Ex) \in R_E \text{ and } \end{array}$ $z = (I - E^2)x \in N_E = (R_E)^{\perp}$, hence (y,z) = (z,y) = 0. Therefore $\|\mathbf{y} + \mathbf{z}\|^2 = \|\mathbf{y}\|^2 + \|\mathbf{z}\|^2$ Now $\|\mathbf{E}^2 \mathbf{x}\| = \|\mathbf{x}\| \Longrightarrow \|\mathbf{E}^2 \mathbf{x}\|^2 = \|\mathbf{x}\|^2$(1) $\Rightarrow \left\| \begin{array}{c} \mathbf{I} - \mathbf{E}^2 \mathbf{x} \\ \mathbf{I} - \mathbf{E}^2 \mathbf{x} \\ \end{array} \right\|_{=0}^{\mathbf{I} - \mathbf{E}^2} \mathbf{x} \\ = \mathbf{0}$ [from (1)] \Rightarrow $(I - E^2)x = 0$ \implies x = E²x. Also from(1), for any x in H, we have $\| E^2 x \|^2 \le \| x \|^2 \Longrightarrow \| E^2 x \|^2 \le \| x \|$ $\implies \| E^2 \| \le 1.$ Since E is also normal operator, Therefore $\| E^2 \| = \| E \|^{2.6}$ Hence $\| \mathbf{E} \| \leq 1$. **Theorem7:** If E is a trijection on a Hilbert space H then E^2 is projection on H with the same range and null

space as that of E. **Proof:** Since $(E^2)^2 = E^4 = E^3 \cdot E = E = E^2$ and by theorem(3), E^2 is self-adjoint, E^2 is projection on H. Also $R_E^2 = \{z : E^2 z = z\} = R_E^{-7}$

$$N_E = \{z : E z = z\} = N_E.$$

 $N_E^2 = \{z : E^2 z = 0\} = \{z : Ez = 0\} = N_E.^8$

"Let T be an operator on E. A closed linear subspace M of H is said to be invariant under T if $T(M) \subseteq M$. If both M and M^{\perp} are invariant under T, we say that M reduces T or that T is reduced by M."⁹ According to reference (9) the theorem(8) as follows:

Theorem8: If P and Q are the trijection on closed linear subspaces M and N of H, then PQ is a trijection $\Leftrightarrow PQ = QP$. Also in this case PQ is the trijection on $M \cap N$ and $N_{PQ} = N_P + N_Q$.

Proof: Let
$$PQ = QP$$
, then

$$(PQ)^{2} = (PQ) (QP) = P(QP)Q = P(PQ)Q = (P.P)(Q.Q) = P^{2}Q^{2}$$
So $(PQ)^{3} = (PQ)^{2} (PQ) = P^{2}Q^{2} PQ) (Q^{2}Q) = P^{3}Q^{3}$

$$= P(Q) Since P and Q are trijection]$$
Also $(PQ)^{*} = QP^{*}P^{*} = QP = PQ$
Hence PQ is trijection.
Conversely let PQ be a trijection, then
 $(PQ)^{*} = PQ \Rightarrow Pe^{*}P = Q.$

$$\Rightarrow QP = PQ.$$
Now again is PQ is a trijection, then
 $R_{PQ} = \{x : (PQ)^{2}x = x\} = \{x : (P^{2}Q^{2})x = x\}$
Let $x \in M \cap N$, then $x \in M$ and $x \in N$

$$\Rightarrow P^{2}x = x and Q^{2}x = x.$$
Hence $(PQ)^{2}x = (PQ^{2})x = P^{2}(Q^{2})x = P^{2}x = x$

$$\Rightarrow x \in R_{PQ}.$$
Therefore $M \cap N \subseteq R_{PQ}$.
 $Mow x \in R_{PQ}.$
Therefore $x = P^{2}Q^{2}$, $x = Q(QP^{2}x) \in M.$
Since $(QP)^{2} = Q^{2}P^{2}$.
Hence $(PQ)^{2}x = Q^{2}P^{2}x = Q(QP^{2}x) \in N.$
Now $x \in M$ and $x \in N$, so $x \in M \cap N.$
Therefore $x = P^{2}Q^{2}$.
 $Q^{2}P^{2} = PQ^{2}$.
Hence $(PQ)^{2} = Q^{2}P^{2}$.
 $Q^{2}P^{2} = PQ^{2}$.
 $Q^{2}P^{2} = Q^{2}P^{2} = Q(QP^{2}x) \in N.$
Now $x \in M$ and $x \in N$, so $x \in M \cap N.$
Therefore $R_{PQ} \subseteq M \cap N = R_{P} \cap R_{Q}.$
Also $N_{PQ} = [z: (PQ)^{2}z = 0] = [z: (P^{2}Q^{2})z = 0]$
Let $z \in N_{PQ}$, then $P^{2}(Q^{2}z) = 0.$
Therefore $Q^{2} = Q^{2} - Q^{2} = Q^{2} - Q^{2} = Q^{2} - Q^{2} = Q^{2} - Q^{2} = R_{Q}.$
 $R_{PQ} = M \cap N = R_{P} \cap R_{Q}.$
Also $N_{PQ} = [z: (PQ)^{2}z = 0] = [z: (P^{2}Q^{2})z = 0]$
Let $z \in N_{PQ}$, then $P^{2}(Q^{2}z) = 0.$
Therefore $Z = Q^{2} - Q^{2} - Q^{2} - Q^{2} - Q^{2} - Q^{2} - Q^{2} = Q^{2} = Q^{2} = Q^{2} = Q^{2} - Q^{2} = Q^{2} = Q^{2} = Q^{2} = Q^{2} - Q^{2} = Q^{2} =$

Theorem9: If P and Q are trijection on a Hilbert space H and PQ = 0, then P + Q is also trijection such that the null space pf P + Q is the intersection of the null spaces of P and Q, and the range of P + Q is the direct sum of the ranges of P and Q.

Proof: We have

 $(P + Q)^{2} = (P + Q) (P + Q) = P^{2} + PQ + PQ + Q^{2}$ Now PQ = 0 \Rightarrow (PQ)* = 0* \Rightarrow Q*P* = 0 \Rightarrow QP = 0 Therefore PQ = QP = 0. Hence $(P + Q)^{2} = P^{2} + Q^{2}$. Now $(P + Q)^{3} = (P + Q) (P + Q)^{2}$ = $(P + Q) (P^{2} + Q^{2})$

 $= P^{3} + PO^{2} + OP^{2} + O^{3}$ $= P^{3} + (PQ)Q + (QP)P + Q^{3}$ $= \mathbf{P} + \mathbf{O}.$ And $(P + Q)^* = P^* + Q^*$ $= \mathbf{P} + \mathbf{Q}.$ Hence P + Q is a trijection. Now we are to prove that, $N_{P+O} = N_P \cap N_O$ And $R_{P+Q} = N_P \bigoplus N_Q$ We have $N_{P+Q} = \{z : (P+Q)z = 0\}$ $= \{z : Pz + Qz = 0\}$ $= \{z : Pz = -Qz\},\$ Let $z \, \in \, N_{P \, + \, Q}$, Since PQ = 0,0 = (PQ)z = P(Qz)= P(-Pz) $= -\mathbf{P}^2\mathbf{z}.$ Therefore $P^2z = 0$. Hnece $z \in N_P$ Again since QP = 0, therefore, 0 = (QP)z = Q(Pz)= Q (-Qz) $= - Q^2 z.$ Thus $Q^2 z = 0$. Hence $z \in N_0$. Therefore $z \in N_P \cap N_Q$(i) Let $z \in N_P \cap N_Q$, then $z \in N_P$ and $z \in N_O$ \Rightarrow Pz = 0 = Oz \Rightarrow Pz = 0 = - Oz $\Rightarrow (P+Q)z = 0$ $\Rightarrow_{z \in N_{P+O}}$. Thus $z \in N_P \cap N_Q \Longrightarrow z \in N_{P+Q}$. Therefore $N_P \cap N_O \subseteq N_{P+O}$(ii) Hence from (i) and (ii), we get $N_{P+O} = N_P \cap N_O$. Let z be an element in R_{P+O} , then $(\mathbf{P} + \mathbf{Q})^2 \mathbf{z} = \mathbf{z}$ \Rightarrow (P² + Q²)z = z. Now as P and Q are trijections on H, so $P^2z = P(Pz) \in R_P$ and $Q^2 z = Q(Qz) \in \mathbf{R}_0$. Hence $P^2z + Q^2z \in R_P + R_Q$. \Rightarrow z \subseteq R_P + R_Q. Hence $R_{P+Q} \subseteq R_P + R_Q$(iii) Conversely, let $z \in R_P + R_Q$ then we can write $z = z_1 + z_2$ such that $z_1 \in R_P$ and $z_2 \in R_Q$. Hence $P^2z_1 = z_1$ and $Q^2z_2 = z_2$. Therefore $(P + Q)^2 z = (P^2 + Q^2)(z_1 + z_2)$ $= P^{2}z_{1} + P^{2}z_{2} + Q^{2}z_{1} + Q^{2}z_{2}$ $= P^{2}z_{1} + P^{2}(Q^{2}z_{2}) + Q^{2}(P^{2}z_{1}) + Q^{2}z_{2}$ $= z_1 + (PQ)^2 z_2 + (QP)^2 z_1 + z_2$ $= z_1 + z_2 = z$ [as PQ = 0] Hence $z \in R_{P+Q}$. Thus $z \in R_P + R_Q \Longrightarrow z \in R_{P+Q}$. Therefore $R_P + R_Q \subseteq R_{P+Q}$(iv) From(iii) and (iv) we get, $R_{P+Q} = R_P + R_Q.$

Now let $z \in R_P \cap R_Q$, then $P^2z = z$, $Q^2z = z$. Therefore $z = P^2 z = P^2 (Q^2 z)$ $= (P^2Q^2)z$ $= (PQ)^2 z$ = 0Hence $\mathbf{R}_{\mathbf{P}} \cap \mathbf{R}_{\mathbf{O}} = \{0\}$. Therefore $R_{P+O} = R_P \bigoplus R_O$. Thus we see that with given conditions, PQ is also a trijection. **Theorem10**: If E is a trijection on a Hilbert space H, then $\frac{1}{2}(E^2 + E)$ and $\frac{1}{2}(E^2 - E)$ are also trijections whose null spaces are L_6 and L_5 respectively. **Proof:** We have, $[\frac{1}{2}(E^{2} + E)]^{2} = \frac{1}{2}(E^{2} + E) \cdot \frac{1}{2}(E^{2} + E)$ $= \frac{1}{4} (E^{4} + E^{2} + 2E^{3})$ = $\frac{1}{4} (E^{3} \cdot E + E^{2} + 2E^{3})$ $= \frac{1}{4}(E.E + E^2 + 2E)$ $= \frac{1}{4} (2E^{2} + 2E)$ $= \frac{1}{2}(E^{2} + E),$ and, $[\frac{1}{2}(E^2 - E)]^2 = \frac{1}{2}(E^2 - E) \cdot \frac{1}{2}(E^2 - E)$ $= \frac{1}{4} (E^4 + E^2 - 2E^3)$ $= \frac{1}{4} (E^3 \cdot E + E^2 - 2E^3)$ $= \frac{1}{4} (E.E + E^2 - 2E)$ $= \frac{1}{4} (2E^2 - 2E)$ $= \frac{1}{2}(E^2 - E),$ also $[\frac{1}{2}(E^2 \pm E)]^* = \frac{1}{2}[(E^2)^* \pm E^*]$ $= \frac{1}{2}(E^2 \pm E).$ Thus $\frac{1}{2}(E^2 + E)$ and $\frac{1}{2}(E^2 - E)$ are projections on H. Hence they are also trijections on H. Moreover, $N_{\frac{1}{2}(E^2 + E)} = \{z : \frac{1}{2}(E^2 + E) | z = 0\}$ $= \{z : (E^{2} + E) z = 0 \}$ = { z : E²z = -Ez } $= L_6.$ $N_{\frac{1}{2}(E^2-E)} = \{ z : \frac{1}{2} (E^2-E)z = 0 \}$ and $= \{ z : (E^2 - E) z = 0 \}$ $= \{ z : E^2 z = E z = 0 \}$ $= L_5.$ **Theorem11:** If E_1, E_2 are commuting trijections on a linear space H, then the λ -range of E_1 coincides with the μ range of E₂, and vice-versa, if and only if $E_1 = -E_1^2 E_2$ and $E_2 = -E_1 E_2^2$. **Proof:** Let the λ -range of E_1 be L_1 and μ -range of M_1 . Similarly we denote λ and μ - ranges of E_2 by L₂ and M₃ respectively. Let $L_1 \subseteq M_2$. Let z be an element in H, then since $E_1z + E_1^2z$ is in L_1 , it is also in M_2 . Hence $E_2 (E_1 z + E_1^2 z) = -(E_1 z + E_1^2 z)$ $\implies E_2 E_1 z + E_2 E_1^2 z + E_1 z + E_1^2 z = 0$ $\implies E_2 E_1 + E_2 E_1^2 + E_1 + E_1^2 = 0$ Now if $E_2 E_1 + E_2 E_1^2 + E_1 + E_1^2 = 0$ and z be in L₁, then $E_1 z = z$ and $E_1^2 z = z$. Since $E_2 E_1 z + E_2 E_1^2 z + E_1 z + E_1^2 z = 0$, we have $E_2(E_1z) + E_2(E_1^2z) + E_1z + E_1^2z = 0$ \Rightarrow $E_2z + E_2z + z + z = 0$ \Rightarrow $2E_2z + 2z = 0$ \Rightarrow $E_2 z = -z$ \Rightarrow $z \in M_2$. Thus $z \in L_1 \Longrightarrow z \in M_2$. Hence $L_1 \subseteq M_2$. Therefore $L_1 \subseteq M_2 \iff E_2 E_1 + E_2 E_1^2 + E_1 + E_1^2 = 0$

Let $M_2 \subseteq L_1$, Now for any z in H,

 $\mathbf{E}_2 \mathbf{z} - \mathbf{E}_2^2 \mathbf{z} \in \mathbf{M}_2.$ $E_2z - E_2^{\ 2}z \in L_1$ \Rightarrow \Rightarrow $E_1 (E_2 z - E_2^2 z) = E_2 z - E_2^2 z$ \Rightarrow $E_1 E_2 z - E_1 E_2^2 z = E_2 z - E_2^2 z$ $\Rightarrow E_1 E_2 - E_1 E_2^2 = E_2 - E_2^2.$ Now if $E_1 E_2 - E_1 E_2^2 = E_2 - E_2^2$ and $z \in M_2$, then $E_2 z = -z$ and $E_2^2 z = z$. $E_1E_2z - E_1E_2^2z = E_2z - E_2^2z$ Since $E_1(E_2z) - E_1(E_2^2z) = E_2z - E_2^2z$ E_1 (-z) - $E_1z = -z - z \implies -2 E_1z = -2z$ \Rightarrow \Rightarrow $z \in L_1$. Thus $z \in M_2 \Longrightarrow z \in L_1$. Hence $M_2 \subseteq L_1$. Therefore $M_2 \subseteq L_1 \iff E_1 E_2 - E_1 E_2^2 - E_2 + E_2^2 = 0$. E_1 , E_2 commute and $L_1 = M_2$, we have Since and Therefore $L_1 = M_2 \iff -E_1 E_2 = E_1 + E_1^2 + E_1^2 E_2$ $= E_2^2 - E_2 - E_1 E_2^2$ (i) Let $M_1 \subseteq L_2$. For any z in H. $E_1z - E_1^2z \in M_1 \Longrightarrow E_1z - E_1^2z \in L_2$ \Rightarrow E₂ (E₁z - E₁²z) = E₁z - E₁²z $\Rightarrow E_2 \stackrel{?}{E_1} \stackrel{?}{z} - E_2 \stackrel{?}{E_1} \stackrel{?}{z} = E_1 z - E_1^2 z$ $\Rightarrow E_2 E_1 - E_2 E_1^2 = E_1 - E_1^2.$ Now if $E_2 E_1 - E_2 E_1^2 = E_1 - E_1^2$ and z is in M_1 , then $E_1z = -z$ and $E_1^2z = z$ $E_2 E_1 z - E_2 E_1^2 z = E_1 z - E_1^2 z$, we have Since $E_2(E_1z) - E_2(E_1^2z) = E_1z - E_1^2z$ \Rightarrow E₂(-z) - E₂z = -z -z \Rightarrow -2 E₂z = -2z \Rightarrow E₂z = z $\Rightarrow z \in L_2$. Thus $z \in M_1 \Longrightarrow z \in L_2$. Hence $M_1 \subseteq L_2$. Therefore $M_1 \subseteq L_2 \iff E_2 E_1 - E_2 E_1^2 = E_1 - E_1^2$. Similarly $L_2 \subseteq M_1 \iff E_1 E_2 + E_1 E_2^2 + E_2 + E_2^2 = 0$. Since E_1 , E_2 commute and $L_2 = M_1$, we have $L_2 = M_1 \iff -E_1 E_2 = E_1^2 - E_1 + E_1^2 E_2$ $= E_2 + E_2^2 + E_1 E_2^2$ (ii) Since $L_1 = M_2$ and $L_2 = M_1$, From (i) and (ii), we get $E_1^2 - E_1 + E_1^2 E_2 = E_1 + E_1^2 + E_1^2 E_2$ and $E_2 + E_2^2 + E_1 E_2^2 = E_2^2 - E_2 - E_1 E_2^2$. Hence $E_1 + E_1^2 E_2 = 0$ and $E_2 + E_1 E_2^2 = 0$ Therefore $E_1 = -E_1^2 E_2$ and $E_2 = -E_1 E_2^2$. Conversely suppose $E_1 = -E_1^2 E_2$ and $E_2 = -E_1 E_2^2$, then $E_1^2 = (-E_1^2 E_2)^2 = E_1^4 E_2^2$ $= E_1(E_1E_2^2) = E_1(-E_2) = -E_1E_2.$ Hence $E_2^2 = (-E_1 E_2)^2 = E_1^2 E_2^4 = E_1^2 E_2^2$ $= - E_1 E_2.$ Therefore $E_1 + E_1^{2} + E_1^{2} E_2 = (E_1 + E_1^{2} E_2) + E_1^{2}$ = E_1^{2} $= - E_1 E_2.$ $E_2^2 - E_2 - E_1 E_2^2 = E_2^2 - (E_2 + E_1 E_2^2)$ = E_2^2 and

www.theijes.com

 $= - E_1 E_2.$

Hence from (i), we have $L_1 = M_2$.

Again as,

$$E_1^2 - E_1 - E_1^2 E_2 = E_1^2 - (E_1 + E_1^2 E_2)$$

 $= E_1^2$
 $= -E_1 E_2$,
and $E_2 + E_2^2 + E_1 E_2^2 = (E_2 + E_1 E_2^2) + E_2^2$
 $= E_2^2$
 $= -E_1 E_2$.

Hence from (ii), we get,

 $\begin{array}{l} L_2=M_1.\\ Thus we have proved,\\ L_1=M_2 \mbox{ and } L_2=M_1.\\ Thus the \lambda-range of E_1 \mbox{ coincides with }\mu\mbox{-range of } E_2 \mbox{ and vice-versa has been proved.} \end{array}$

III. CONCLUSION

In this way, I have introduced a new type operator, called "Trijection Operator" on a linear space. It is a generalization of projection operator. I have studied and examined trijection in case of Hilbert space. Further I have decomposed range of a trijection into two disjoint subspaces called μ -range, λ -range and studied their properties.

An operator E on a linear space L is called a trijection if $E^3 = E$. It is a generalization of projection operator in the sense that every projection is a trijection but a trijection is not necessarily a projection. Then a trijection on a Hilbert space is an operator which is satisfying the condition and is also self-adjoint. Some theorems concerning trijection operator on a Hilbert space have been proved.

If P and Q are the trijection on a closed liner a subspaces M and N of H, then

PQ is a trijection
$$\Leftrightarrow$$
 PQ = QP,

Also in this case PQ is the trijection on $M \cap N$ and $N_{PQ} = N_P + N_Q$.

If E is a trijection on H, then $\frac{1}{2}(E^2 + E)$ and $\frac{1}{2}(E^2 - E)$ are also trijection whose all null spaces are: $L_6 = \{z : E^2 z = -Ez\}$ and $L_5 = \{z : E^2 z = Ez\}$ respectively.

Next I have presented range of a trijection into two disjoint sub-spaces called μ -range, λ -range. These ranges are defined as follows: If E is a trijection on a linear space H, then I can decompose range R into two sub-spaces L and M such that $L = \{z : E(z) = z\}$ and $M = \{z: E(z) = -z\}$ and $L \cap M = \{0\}$. I say L as λ -range and M as μ -range of E. If E_1 , E_2 are commuting trijection on a linear space H, then the λ -range of E_1 coincides with the μ -range of E_2 and vice-versa, if and only if, $E_1 = -E_1^2 E_2$ and $E_2 = -E_1 E_2^2$.

Thus a new operator, trijection operator on a linear space has been studied with Hilbert space and two disjoint subspaces μ -range and λ -range.

REFERENCES

- [1]. Simmons. G.F. : Introduction to topology and Modern Analysis (1973,2008), P.212.
- [2]. Ibid, P.245.
- [3]. Ibid, P.265.
- [4]. Ibid, P.249.
- [5]. Ibid, P.269.
- [6]. Ibid, P.271.
- [7]. Theorem (4), of this paper.
- [8]. Ibid (Theorem 4), of this paper.
- [9]. Simmons. G.F. : Introduction to topology and Modern Analysis (1973,2008), P.275.
- [10]. Dunford, Nelson and Schwartz Jacob, T.: Linear Operators Part I: General theory, [John Wiley and Sons, New York], 1988.

[11]. Rudin, W.: Functional Analysis, [McGraw-Hill Book company, Inc., NewYork],1973, 2004.

[12]. Kreyszig, Erwin.: Introductory Functional Analysis with Application, [John Wiley and Sons, New York], 1989, Pp.469-471.

[13]. Jha, K.K. : Functional Analysis, [Students' friends, patna], 1986.

- [14]. Taylor, A.E. : Introduction To Functional Analysis, [Wiley, New York], 1958.2004.
- [15]. Yoshida, K. : Functional Analysis [Springer-Verlag, New York Inc., New York], 1968,2000.