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We have introduced a new type of operator called “Trijection Operator” on a linear space. It is a generalization 

of projection. We study trijection in case of a Hilbert space. Further we decompose range of a trijection into two 

disjoint sub-spaces called µ-range and λ- range and study their properties. 

Keywords: Operator, Projection, Trijection Operator, Hilbert space, µ-range and λ- range. 

--------------------------------------------------------------------------------------------------------------------------------------- 

Date of Submission: 30 July 2014                                                                   Date of Publication: 15 August 2014 

---------------------------------------------------------------------------------------------------------------------------------------  

 

I. INTRODUCTION 

Trijection Operator: We define an operator E to be a trijection if E
3
 = E. Clearly if E is a projection, then it 

is also a trijection for 

  E
2
 = E    E

3
 = E

2
.E = E.E = E

2
 = E. 

Thus it follows that a projection is necessarily a trijection. But a trijection is not necessarily a projection. This 

would be clear from the complex of trijections given below. 

Example of Trijections: 

Consider R
2
. Let z be an element in R

2
. Thus z = (x , y) where x , y   R. 

Let E(z) = (ax + by, cx + dy), where a, b, c, d are scalars. 

By calculation we find that –  

 E
3
(z) = (a1x + b1y, c1x + d1y) 

Where, 

 a1 = a
3
 + 2abc + bcd 

 b1 = a
2
b + abd + b

2
c + bd

2
 

 c1 = a
2
c + acd + bc

2
 + cd

2
 

and        d1 = abc + 2bcd + d
3
. 

Hence if E is a trijection, E
3
 = E, then we have 

 a = a
3
 + 2abc + bcd 

 b = a
2
b + abd + b

2
c + bd

2
 

 c = a
2
c + acd + bc

2
 + cd

2
 

and         d = abc + 2bcd + d
3
.  

Case(i) :- For some particular cases, let a = d = 0, then b = b
2
c, c = bc

2
. 

     Thus we can choose b = c =1 and get 

   E(z) = (y, x) 

   E(x,y) = (y, x)      ……………..(1) 

               So, E
2
(x , y) = E(E(x , y)) = E(x , y) = (x , y)  [from(1)] 

     Therefore E
2
(x , y) = (x , y)  (y , x) = E(x , y) 

     Hence E
2
  E 

     Thus E is not a projection. 

     But E
3
(x , y) = E(E

2
(x , y)) = E(x , y) 

     Therefore E
3
 = E 

     Hence E is a trijection. 

Case(ii):- If a = c =0, then b = bd
2
, d=d

3
. 

  Thus we can choose d = 1 and get E(z) = (by , y). 

                Therefore E(x , y) = (by , y) 
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     Hence E
2
(x , y) = E(E(x , y)) = E(by , y) = E(x , y). 

     Thus E
2
 = E. 

     Hence E is a projection, and so it is also a trijection. 

Case(iii):- If a = b = 0 then c = cd
2
, d = d

3
. 

     Thus choosing d = 1, we have E(z) = (0, cx + y) 

   E(x , y) = (0,cx + y). 

     Therefore E
2
(x  ,y) = E(E(x , y)) = E (0, cx + y) 

       =  (0, cx + y) = E(x , y). 

     Thus E
2
 = E. 

     Hence E is a projection and so it is a trijection. 

Case(iv):- If b = c = 0 then a = a
3
, d = d

3
. Now a = a

3
 gives a = 0,1 or -1. Similarly we get values  

     of d. We consider these values in a systematic way. 

a = d = 0        E = 0, it is the zero mapping. Hence it is a projection and trijection also. 

a = 0, d = 1    E(z) = (0 , y). It is also a projection. 

a = 0, d = -1   E(z) = (0, -y). It is also a projection. 

a = 1, d = 0    E(z) = (x , 0). It is also a projection. 

a = 1, d = 1    E= (I), the identity mapping which is also a projection and a trijection. 

a = 1, d = -1   E(z) = (x ,-y), which is not a projection. 

a = -1, d = 0   E(z) = (-x , 0), which is not a projection. 

a = -1, d = 1   E(z) = (-x , y), which is not a projection. 

a = -1, d = -1  E(z) = (-x , -y), which is not a projection.  

In this way, a projection is necessarily a trijection but a trijection is not a projection. 

Trijection in a Hilbert Space:- We first define a normed linear space: 

A normed linear space is a linear space N in which to each vector x there corresponds a real number, denoted by 

║ x ║ and called the norm of x, in such a manner that 

1.║ x ║ ≥ 0 and ║ x ║ = 0   x = 0. 

2.║ x + y ║ ≤ ║ x ║ + ║ y ║, for x ,y   N. 

3.║ α x ║= ║ α ║. ║ x ║, for scalar. 

N is also a metric space with respect to the metric d defined by d(x,y) = ║ x - y ║. A Banach space is a complete 

normed linear space.
1 

A trijection on a Banach space b is defined as an operator E on B such that E
3
 = E and E is continuous. 

µ-Range and λ-Range of a Trijection: If E is a trijection on linear space H, then we know that H = R   

N where R is the range of E and N is the null space of E. We can decompose R into two subspaces L and M 

such that L = {z : E(z) = z} and M = {z : E(z) = -z} and L   M = {0}. 

 Now as L , M are parts of the range R, let us call L as λ-Range and M as µ-Range of E. Thus the range  

R of E is the direct sum of its λ and µ-Ranges. In case E is a projection, we clearly see that its range coincides 

with its λ-Range while µ-Range is {0}. 

II. THEOREMS 
Theorem 1: If E is a trijection on a Banach space B and if R and N are its range and null space, then R and N 

are closed linear subspaces of B such that  

     B = R   N. 

Proof: Since the null space of any continuous linear transformation is closed, so N being null space of E is 

closed. 

 Since E
2 
- I is also continuous and  

          R = {z : E
2
 z = z} 

   = {z : (E
2 
- I) z = 0} 

 So R is also closed. Clearly,  

  B = R   N. 

A Hilbert space is a complex Banach space whose norm arises from an inner product, that is, in which there is 

defined a complex function (x , y) of vectors x and y with the following properties:-  

1.(α x + β y , z) = α(x , z) + β(y , z) 

2.( x  , y  ) = (y , x) 

3.(x , x) = ║ x ║
2
. 

Where x , y , z are elements of Banach space and α is a scalar.
2 
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 To each operator T on a Hilbert space H there corresponds a unique mapping T* of H into itself (called 

the adjoint of T*) which satisfies the relation 

  (T x, y) = (x, T*y) 

For all x , y in H. Following are the properties of adjoint operations:- 

1.(T1 + T2)
*
 = T1

*
 +T2

* 
 

2.(α T)
* 
 =    T*   

3.(T1  T2)
*
 = T2

*
 +T1

* 
 

4. T** = T 

5.║T*║ = ║T║ 

6.║T*T║ = ║T║
2
.
3 

Theorem2: If E is a trijection on a Hilbert space H then so is E*. 

 Proof: Since E is a trijection on a Hilbert space H, so E* = E and E
3
 = E. 

 If T , U , V are linear operators on H, then 

  (T U V)* = (T ( U V ))* = (U V)*T* = V* U* T* 

 Hence letting T = U = V= E, we have 

  (E
3
)* = E*.E*E* = (E*)

3
 

 Therefore E* = (E*)
3
. 

 Now (E*)* = E** = E = E*, so E* satisfies the conditions for trijection on a Hilbert   

              space. Hence E* is a trijection. 

Theorem3: If A is an operator on a Hilbert space H, then 

   (A
k
)* = (A*)

k
             …………. (1) 

      For K being 0 or any positive integer. Moreover, if A is self-adjoint then so is A
k
. 

Proof: The equation (1) is obviously true when k = 0 or 1. Now we prove the equation (1) by the  

 method of induction. 

 Let us assume that the equation (1) is true for K – 1. Therefore, 

   (A
k - 1 

)* = (A*)
k – 1 

 Therefore, (A
k
)* = (A

k – 1 
. A )* 

            = A* . (A
k - 1 

)* 

            = (A*) . (A*)
 k – 1 

    
        = (A*)

k
. 

 Hence the proof is complete by induction. 

Theorem4: If E is a trijection on a Hilbert space H, then I - E
2
 is also trijection on H such that 

                             RI - E
2
 = NE and NI – E

2
 = RE.   

Proof: Since (I - E
2
)

2
 = (I - E

2 
) (I - E

2 
) 

   = I – E
2
 – E

2
 + E

4
 

   = I – E
2
 – E

2
 + E

3
.E 

   = I – E
2
 – E

2
 + E

2 

   
= I – E

2
 , 

 Therefore (I – E
2 
)

3
 = (I - E

2 
)

2
 (I - E

2 
) 

      = (I - E
2 
) (I - E

2 
) 

      = (I - E
2 
)

2 

      =  I - E
2 
 

             Also      (I - E
2 
)

*  
= I* - (E

2
)* 

 
  

      = I  - (E*)
2
 

      = I – E
2
. 

             Hence I – E
2
 is a projection as well as a trijection on H. 

             Moreover, 

      R I - E
2 
 = {z : (I - E

2
)

2
 z = z} 

                  = {z : (I - E
2
) z = z} 

                  = {z : z  - E
2
 z = z} 

                  = {z : E
2
 z = 0} 

                  = NE, and 

      N I - E
2 
 = {z : (I - E

2
) z = 0 } 

    = {z : z  - E
2
 z = 0 } 

    =  {z : E
2
 z = z} 

    = RE. 
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Theorem5: Any trijection on a Hilbert space H can be expressed as the sum of two self-adjoint operators on H 

such that one of them is a projection and the square of the other is the identity operator. 

Proof:   Let E be a trijection on H. Then we can write 

  E = (I - E
2
 ) + E

2
 + E – I 

 By theorem ( 4 ), I - E
2 
is a projection on H, and I - E

2 
is a self-adjoint. 

 Also (E
2
 + E – I)* = E

2
 + E – I , so E

2
 + E – I is self-adjoint. Moreover we have 

         (E
2
 + E – I)

2
 = (E

2
 + E – I) (E

2
 + E – I) 

        = E
4
 + E

3
 – E

2
 + E

3
 + E

2
 – E – E

2
 – E + I 

        = E
2
 + E – E

2
 + E + E

2 
– E – E

2
 – E + I 

        = I, Identity operator. 

 This proves the theorem. 

Two vectors x and y in a Hilbert space H are said to be orthogonal (written x   y) if (x,y) = 0. A vector x is 

said to be orthogonal to a non-empty set S (written x   S) is x   y for every y in S, and the orthogonal 

complement of S, denoted by S  
, is the set of all vector orthogonal to S.

4
 

 An operator N and H is said to be normal if it commutes with its adjoint, that is, if 

    NN* = N*N.
5 
 

Theorem6: If E is a trijection on a Hilbert space H, then 

  x   RE    E
2
x = x   ║E

2
x║ = ║x║. 

        Also ║E║≤ 1. 

Proof:   From theorem(5), the first equivalence is clear. 

    Also E
2
x = x   ║ E

2
x ║ = ║x║. 

 So we now need to show that 

 ║ E
2
x ║ = ║x║   E

2
x = x. 

 Now ║x║
2
 = ║ E

2
x + (I – E

2
)x║

2 

  
     = ║y + z ║

2
 , say where y = E

2
x and z = (I –E

2
)x. Also, 

 ║y + z ║
2 
= (y + z, y + z) 

      = (y , y + z) + (z, y + z) 

      = ( y , y) + (y , z) + (z , y) + (z , z) 

      = ║y║
2
 + ║z║

2
 + (y , z) + (z , y). 

 Since y = E
2
x = E(Ex)   RE and 

         z = (I – E
2
)x NE

 
=  (RE )

  
 , hence ( y,z) = (z,y) = 0. 

 Therefore ║y + z ║
2
 = ║y║

2
 + ║z║

2
                  ………(1) 

 Now       ║ E
2
x ║ = ║x║ ║ E

2
x ║

2
 = ║x║

2
  

      ║ (I – E
2
)x║

2
 = 0 [from (1)] 

      ║ (I – E
2
)x║= 0

 

       (I – E
2
)x  =  0 

        x = E
2
x. 

 Also from(1), for any x in H, we have 

  ║ E
2
x ║

2
 ≤ ║x║

2
 ║ E

2
x ║

2
 ≤ ║x║  

        ║ E
2
 ║ ≤  1. 

               Since E is also normal operator, 

     ║ E
2
 ║ = ║ E ║

2
.
6 

Therefore ║ E
2
 ║ ≤  1. 

 Hence ║ E ║ ≤  1. 

Theorem7: If E is a trijection on a Hilbert space H then E
2
 is projection on H with the same range and null 

space as that of E. 

Proof: Since (E
2
)

2
 = E

4
 = E

3
.E = E.E = E

2
 and by theorem(3), E

2
 is self-adjoint, E

2
 is projection on H. 

            Also   RE
2

 = {z : E
2
z = z} = RE.

7
 

         NE
2
 = {z : E

2
z = 0} = {z :Ez = 0} = NE.

8 
 

“Let T be an operator on E. A closed linear subspace M of H is said to be invariant under T if T(M)   M. If 

both M and M  are invariant under T, we say that M reduces T or that T is reduced by M.”
9 
 

According to reference (9) the theorem(8) as follows: 
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Theorem8: If P and Q are the trijection on closed linear subspaces M and N of H, then PQ is a trijection PQ 

= QP. Also in this case PQ is the trijection on M ∩ N and NPQ = NP + NQ. 

Proof:  Let PQ = QP, then  

      (PQ)
2
 = (PQ) (QP) = P(QP)Q = P(PQ)Q = (P.P)(Q.Q) = P

2
Q

2 
 

 So (PQ)
3 
= (PQ)

2
  (PQ) = P

2
Q

2 
PQ = P

2
Q(QP)Q = P

2
Q(PQ)Q 

     = P
2
(QP)Q

2
 = P

2
(

 
PQ) Q

2 
= (P

2
P) (Q

2
Q) = P

3
Q

3
. 

     = PQ [ Since P and Q are trijection] 

 Also (PQ)* = Q*P* = QP = PQ 

 Hence PQ is trijection. 

 Conversely let PQ be a trijection, then 

 (PQ)* = PQ    Q*P* = PQ. 

            QP = PQ. 

 Now again is PQ is a trijection, then 

 RPQ = { x : (PQ)
2
x = x} = {x : (P

2
Q

2
)x = x} 

 Let x     M ∩ N , then x   M and x   N 

    P
2
x = x and Q

2
x = x. 

 Hence (PQ)
2
 x = (P

2
Q

2
)x = P

2 
(Q

2
)x = P

2 
x = x 

    x   RPQ. 

 Therefore M ∩ N   RPQ.             …….(1) 

 Again let x   RPQ , then (P
2
Q

2
)x = x. 

 Therefore x = P
2 
(Q

2
)x = P(P Q

2
 x)   M. 

 Since (QP)
2
 = Q

2
P

2
, (PQ)

2
 = P

2
Q

2
 and QP =PQ, we have 

            Q
2
P

2  
= P

2
Q

2 
. 

 Hence x = P
2
Q

2 
x = Q

2
P

2
 x = Q(QP

2
x) N. 

 Now x   M and x   N, so x   M ∩ N. 

 Therefore  RPQ 
   M ∩ N             …….(2) 

 From (1) and (2), we get  

  RPQ = M ∩ N = RP ∩ RQ. 

 Also NPQ = {z : (PQ)
2
z = 0 } = {z : (P

2
Q

2
)z = 0} 

 Let z   NPQ , then P
2 
(Q

2 
z ) = 0. 

 Therefore  Q
2
z   NP

2
 = NP as P is a trijection. 

 Since Q( z – Q
2
z) = Qz – Q

3
z = Qz – Qz = 0, so z - Q

2
z   NQ. 

 Therefore z = Q
2
z + ( z – Q

2
z)   NP + NQ. 

 Thus z   NPQ    z   NP + NQ. 

 Hence NPQ  
   NP + NQ                ……..(3) 

 Let z   NP + NQ , then we can write 

 z = z1 + z2 where z1   NP and z2   NQ . 

   Pz1 = 0 and Qz2 = 0. 

 Now (PQ)z = (PQ) (z1 + z2) = PQz1 + PQz2 = Qpz1 + PQz2 

        = Q(Pz1) + P(Qz2) = Q (0 ) + P(0) = 0. 

 Therefore z   NPQ . 

 Thus z   NP + NQ    z   NPQ .
 

               Hence NP + NQ   
  NPQ                  ..….(4) 

 From (3) and (4), we get 

  NPQ = NP + NQ . 

 

Theorem9: If P and Q are trijection on a Hilbert space H and PQ = 0, then P + Q is also trijection such that the 

null space pf P + Q is the intersection of the null spaces of P and Q, and the range of P + Q is the direct sum of 

the ranges of P and Q. 

Proof: We have 

 (P + Q)
2
 = (P + Q) (P + Q) = P

2
 + PQ + PQ + Q

2
 

 Now PQ = 0 (PQ)* = 0*   Q*P* = 0   QP = 0 

 Therefore PQ = QP = 0. 

 Hence (P + Q)
2
 = P

2
 + Q

2 
. 

 Now (P + Q)
3  

= ( P + Q) (P + Q)
2
 

            = (P + Q) (P
2
 + Q

2
) 
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            = P
3
 + PQ

2
 + QP

2 
+ Q

3
 

            = P
3
 + (PQ)Q + (QP)P + Q

3
 

            = P + Q. 

 And (P + Q)* = P* + Q* 

           = P + Q. 

 Hence P + Q is a trijection. 

 Now we are to prove that, 

  NP + Q = NP ∩ NQ 

 And     RP + Q = NP   NQ 

We have  

   NP + Q  = {z : (P + Q)z = 0} 

  = {z : Pz + Qz = 0} 

  = {z : Pz = -Qz}, 

Let  z   NP + Q , Since PQ = 0, 

            0 = (PQ)z = P(Qz) 

  = P(-Pz) 

  = -P
2
z. 

Therefore P
2
z = 0. Hnece z   NP 

Again since QP = 0, therefore, 

 0 = (QP)z = Q(Pz) 

       = Q (-Qz) 

      = - Q
2
z.  

Thus Q
2
z = 0. Hence z   NQ. 

Therefore z   NP ∩ NQ          ………………(i) 

Let z   NP ∩ NQ , then z   NP and   z   NQ    

    Pz = 0 = Qz 

    Pz = 0 = - Qz  

    (P + Q)z = 0 

    z   NP+Q. 

Thus z   NP ∩ NQ   z   NP+Q. 

Therefore NP ∩ NQ 
  NP+Q.             ………………..(ii) 

Hence from (i) and (ii), we get 

 NP+Q  = NP ∩ NQ. 

Let z be an element in RP+Q , then 

  (P + Q)
2
z = z 

       (P
2
 + Q

2
)z = z. 

Now as P and Q are trijections on H, so  

  P
2
z = P(Pz)   RP and    

  Q
2
z = Q(Qz) RQ. 

Hence P
2
z + Q

2
z   RP + RQ. 

   z   RP + RQ. 

Hence RP+Q 
  RP + RQ.                        ……………….(iii) 

Conversely, let z   RP + RQ then we can write 

z = z1 + z2 such that z1   RP and z2   RQ . 

Hence P
2
z1 = z1 and Q

2
z2  = z2. 

Therefore (P + Q)
2
z = (P

2
 + Q

2
)(z1+ z2) 

         = P
2
z1 + P

2
z2 + Q

2
z1 + Q

2
z2 

        = P
2
z1 + P

2
(Q

2
z2) + Q

2
(P

2
z1) + Q

2
z2 

         = z1 + (PQ)
2
z2 + (QP)

2
z1 + z2 

         = z1 + z2 = z   [as PQ = 0] 

Hence z RP+Q. 

Thus  z   RP + RQ   z   RP+Q. 

Therefore RP + RQ  
  RP+Q.                  ……….(iv) 

From(iii) and (iv) we get, 

  RP+Q  = RP + RQ . 
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Now let z   RP ∩ RQ , then P
2
z = z, Q

2
z = z. 

Therefore    z = P
2
z = P

2
(Q

2
z) 

       = (P
2
Q

2
)z 

       = (PQ)
2
z 

       = 0 

Hence RP ∩ RQ = {0}. 

Therefore RP+Q  = RP   RQ . 

Thus we see that with given conditions, PQ is also a trijection. 

Theorem10: If E is a trijection on a Hilbert space H, then  ½(E
2
 + E) and ½ (E

2
 – E) are also trijections whose 

null spaces are L6 and L5 respectively. 

Proof: We have, 

     [½(E
2
 + E)]

2
 =  ½(E

2
 + E) . ½(E

2
 + E) 

            = ¼ (E
4
 + E

2
 + 2E

3
)  

            = ¼ (E
3
.E + E

2
 + 2E

3
) 

            = ¼ (E.E + E
2
 +2E) 

            = ¼ (2E
2
 + 2E) 

            = ½(E
2
 + E), 

 and, 

     [½(E
2
 - E)]

2
 =  ½(E

2
 - E) . ½(E

2
 - E) 

            = ¼ (E
4
 + E

2
 - 2E

3
)  

            = ¼ (E
3
.E + E

2
 - 2E

3
) 

            = ¼ (E.E + E
2
 - 2E) 

            = ¼ (2E
2
 - 2E) 

            = ½(E
2
 - E), 

 also 

  [½(E
2
 ± E)]* = ½[(E

2
)* ± E*] 

            = ½(E
2
 ± E). 

 Thus ½(E
2
 + E) and ½ (E

2
 – E) are projections on H. 

 Hence they are also trijections on H. Moreover, 

     N½(E2 + E) = {z : ½(E
2
 + E) z = 0} 

       = {z : (E
2
 + E) z = 0 } 

       = { z : E
2
z = -Ez} 

       = L6. 

 and         N½ (E2 – E)  = { z : ½ (E
2
 – E)z = 0} 

       = { z : (E
2
 - E) z = 0 } 

       = { z : E
2
z = Ez = 0 } 

       = L5. 

Theorem11: If E1,E2 are commuting trijections on a linear space H, then the λ-range of E1 coincides with the µ-

range of E2, and vice-versa, if and only if 

   E1 = -E1
2
E2 and E2 = -E1E2

2
. 

Proof:   Let the λ-range of E1 be L1 and µ-range of M1 . Similarly we denote λ and µ - ranges of E2  

 by L2 and M3 respectively. 

 Let L1   M2 . 

 Let z be an element in H, then since E1z + E1
2z is in L1, it is also in M2. 

 Hence E2 (E1z + E1
2z) = -(E1z + E1

2z) 

    E2 E1z + E2 E1
2z + E1z + E1

2z = 0 

    E2 E1  + E2 E1
2 + E1 + E1

2 = 0 

 Now if E2 E1  + E2 E1
2 + E1 + E1

2 = 0 and z be in L1, then  

   E1z = z and E1
2z = z. 

 Since   E2 E1z + E2 E1
2z + E1z + E1

2z = 0, we have 

  E2 (E1z) + E2 (E1
2z) + E1z + E1

2z = 0 

   E2z + E2z + z + z = 0 

   2E2z + 2z = 0 

   E2z = -z 

   z   M2. 

 Thus z   L1   z   M2. 

 Hence L1   M2. 

 Therefore L1   M2   E2 E1  + E2 E1
2 + E1 + E1

2 = 0 
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 Let M2   L1, Now for any z in H, 

 

  E2z – E2
2z   M2. 

   E2z – E2
2z   L1 

   E1 (E2z - E2
2z) = E2z - E2

2z 

   E1 E2z - E1 E2
2z = E2z - E2

2z  

   E1 E2 - E1 E2
2  = E2  - E2

2. 

 Now if E1 E2 - E1 E2
2  = E2  - E2

2 and z   M2, then 

  E2z = -z and E2
2z  = z. 

 Since  E1E2z - E1E2
2z  = E2z - E2

2z 

E1 (E2z) - E1(E2
2z) = E2z - E2

2z  

   E1 (-z) - E1z = -z – z -2 E1z = -2z 

   z   L1. 

 Thus  z   M2   z   L1. 

 Hence  M2 
  L1. 

 Therefore M2 
  L1   E1 E2 - E1 E2

2 - E2  + E2
2 = 0. 

 Since    E1 , E2  commute and  L1 = M2, we have 

E1 E2 + E1
2 E2 + E1 + E1

2  = 0 

 and E1 E2 - E1 E2
2 - E2 + E2

2 = 0. 

 Therefore L1 = M2    - E1 E2  = E1 + E1
2 + E1

2 E2 

            = E2
2 - E2 - E1 E2

2                 ……… (i) 

 Let M1   L2 . For any z in H. 

    E1z – E1
2z   M1   E1z – E1

2z   L2 

        E2 (E1z - E1
2z) = E1z - E1

2z 

        E2 E1z - E2 E1
2z = E1z - E1

2z  

        E2 E1  - E2 E1
2 = E1 - E1

2 . 

 Now if E2 E1  -  E2 E1
2 = E1 - E1

2 and z is in M1, then 

  E1z = -z and E1
2z = z 

 Since      E2 E1z - E2 E1
2z = E1z - E1

2z , we have 

  E2( E1z) - E2 (E1
2z)  = E1z - E1

2z 

       E2 (-z) – E2z = -z –z 

       -2 E2z = -2z 

       E2z = z 

       z   L2. 

 Thus z   M1   z   L2. 

 Hence  M1 
  L2. 

 Therefore M1 
  L2   E2 E1  - E2 E1

2 = E1 - E1
2 . 

 Similarly L2 
  M1    E1 E2  +  E1 E2

2 + E2 + E2
2 = 0. 

Since E1, E2 commute and L2 = M1, we have 

 L2 = M1   - E1 E2  = E1
2 - E1 + E1

2 E2 

        = E2 + E2
2 + E1 E2

2         ……………. (ii) 

 Since L1 = M2 and L2 = M1, 

 From (i) and (ii), we get 

 E1
2 - E1 + E1

2 E2 = E1 + E1
2
 + E1

2 E2 and 

 E2 + E2
2 + E1 E2

2 = E2
2 - E2 - E1 E2

2. 

 Hence E1 + E1
2 E2 = 0 and E2 + E1 E2

2 = 0 

 Therefore E1 = - E1
2 E2 and E2 = - E1 E2

2. 

 Conversely suppose E1 = - E1
2 E2 and E2 = - E1 E2

2, then 

  E1
2  = (-E1

2 E2 )
2 = E1

4 E2
2  

         = E1 (E1 E2
2 )  = E1(-E2 ) = - E1E2. 

 Hence   E2
2  =  (-E1 

 E2 )
2  = E1

2 E2
4 = E1

2 E2
2 

        = - E1 E2. 

 Therefore  E1 + E1
2 + E1

2 E2 = (E1 + E1
2 E2) + E1

2 

       = E1
2  

       = - E1 E2. 

 and      E2
2 - E2 - E1 E2

2  = E2
2 – (E2 + E1 E2

2) 

       = E2
2 
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       = - E1 E2. 

 

 Hence  from (i), we have 

    L1 = M2. 

 Again as, 

  E1
2 - E1

 - E1
2 E2  = E1

2 – (E1 + E1
2 E2) 

               = E1
2  

               = - E1 E2, 

 and    E2 + E2
2 + E1

 E2
2

  = (E2
 + E1E2

2 ) +  E2
2 

            = E2
2  

            = - E1 E2. 

 

 Hence from (ii), we get, 

   L2 = M1. 

Thus we have proved, 

  L1 = M2  and L2 = M1. 

 Thus the λ – range of E1 coincides with µ-range of E2 and vice-versa has been proved. 

III. CONCLUSION 
In this way, I have introduced a new type operator, called “Trijection Operator” on a linear space. It is a 

generalization of projection operator. I have studied and examined trijection in case of Hilbert space. Further I 

have decomposed range of a trijection into two disjoint subspaces called µ-range, λ–range and studied their 

properties. 

 

 An operator E on a linear space L is called a trijection if E3 = E. It is a generalization of projection 

operator in the sense that every projection is a trijection but a trijection is not necessarily a projection. Then a 

trijection on a Hilbert space is an operator which is satisfying the condition and is also self-adjoint. Some 

theorems concerning trijection operator on a Hilbert space have been proved. 

 If P and Q are the trijection on a closed liner a subspaces M and N of H, then 

  PQ is a trijection   PQ = QP, 

Also in this case PQ is the trijection on M ∩ N and NPQ = NP + NQ. 

If E is a trijection on H, then ½(E2 + E) and ½(E2 – E) are also trijection whose all null spaces are: L6 = {z : E2z 

= - Ez} and L5 = {z : E2z = Ez} respectively. 

 

 Next I have presented range of a trijection into two disjoint sub-spaces called µ-range, λ–range. These 

ranges are defined as follows: If E is a trijection on a linear space H, then I can decompose range R into two 

sub-spaces L and M such that L = {z : E(z) = z} and M = { z:E(z) = -z} and L ∩ M = {0}. I say L as λ–range 

and M as µ-range of E. If E1, E2 are commuting trijection on a linear space H, then the λ–range of E1 coincides 

with the µ-range of E2 and vice-versa, if and only if, E1 = -E1
2E2 and E2 = -E1E2

2. 

 Thus a new operator, trijection operator on a linear space has been studied with Hilbert space and two 

disjoint subspaces µ-range and λ–range.  
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