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------------------------------------------------- ABSTRACT
Let X ={z;:t=1,2,...,N} be a finite collection and let
K={xy:i=12....k}and M ={x;: j=1,2...., m} be sub-collections of

X. Furthermore, we considered the problem of selecting r(r < n) elements from
X with the & and m non-inclusion elements, such that the & non-inclusion
elements are not always together in each selection. We constructed suitable

mathematical formula in the combinatorial sense for enumerative purpose on
certain kind of restriction called k-separable non-inclusion and m-non-inclusion on
the sub-collections of elements of the set X = {z;: ¢t =1,2,....] N}
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. INTRODUCTION AND PRELIMINARIES
Let X ={z;:¢=1,2,....N} be a finite collection and let
K={z;;:7=12,..., k} be a sub-collection of X.Consider the problem of
selecting 7(r < n) elements from X in such a way that each selection;
(i) Contains the entire k-elements of the sub-collection K (r > k) ; we call this the
inclusion case.
(ii) Contains only some part of K and not the entire k-elements; we call this the
non-inclusion case.
(iii) Contains the entire k-elements but in such a way that the k-elements are not
together (separate); we call this the k-separable inclusion.
(iv) Contains the entire k-elements but in such a way that the k-clements are

always together; we call this the k-inseparable inclusion.
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(v) Contains only some part of K and not the entire k-elements but in such a way
that the k-elements are always not together (separate); we call this the
k-separable non-inclusion.

(vi) Contains only some part of K and not the entire k-elements but in such a way
that the k-elements are always together; we call this the k-inseparable
non-inclusion.

We consider various arrangements of the elements in X, such that, a fixed group £
of elements is given different restrictions. If N is small (say 2, 3 or 4) it is easy to
exhaustively list and count all the possible outcomes in this arrangements for
either the inclusion case or non-inclusion case.

Furthermore, for any given collections of r-arrangements, observe that for
sufficiently large value of N there are various sub-collections of arrangements
which are of interest but without any well-known mathematical formula in
literature. Some of these sub-classes of r-arrangements are as described in i, to vi
above, however an efficient mathematical formula have been provided for the
problems in i, to vi above (see[42.43. 44,45 46, 47,48, 49]).In fact, it is quit
obvious that as N increases we can define many more of these sub-collections of
r-arrangements.

So far, to the best of my knowledge most of the standard Text in combinatorics
has failed to address this concept.even when it is intfroduced it is left with a
acuum that relegate this concept to the background of no important
(see[l,2,3,4,6,12,13]). For this reason, In this research work we shall consider
more than one sub-collections of X with a prescribe restrictions on the elements
of these sub-collections of X with the aim of providing enumerative formulas
associated with the sub-collections of r-arrangements,|
Let X ={z; :i=1,2,..., N} be a finite collection and let

K={z;:5=12,....k}and M ={x;: 1 =1,2,...,m} be a distinct
sub-collections of X. Consider the problem of selecting »(r < n) elements from X
in such a way that each selection contains some part of k-elements with each of
this element next to each other and also contains only some part of m-elements
(not the entire m-elements) ; we call this the k-Separable-non-inclusion and

nm-non-inclusion

Lemma 1.1(principle of inclusion and exclusion) (see e.g [2,3.5])

If (A1, As, --- ., Ap) is any sequence of finite sets, then

ke
T U Ay = E (—1)y™Ur—1,4 ﬁ 141')

a=1 I [#] =T
=t
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RResults
T heorexn 2.1

Let X = {z; :t =1.2,..., N}.then the r-permutation of N distinct elements
(r < N) with the k-separable noninclusion and m-noninclusion all at a time is

( I TR, i K,
Br(Nrkim)  Ba(lrkm) . o [N —-k—m k m
Y S ape—i—a (T )
) r—1i—j i J

i=aq (N,r,k,m) j=as(N.r.k,;m

r—i\ (r—i+1
. i, g #F0
N —-—k—m o
7! . i, 7=0
r

Where the values of ay(N,r, k. m) and Fj(N,r,k,m) {¢ =1, 2} depend on which

of the condition(s) 1 to 10 given below are satisfied.

() k<rm<r m+k<randr+k+m<N
2) k<rm<r,m+k<randr+k+m>N
B)k<rrm<Zr,m+k>randr+k+m>N
4 k<rrm<r,m+k>randr+k+m<N
B) E<r.m>randr+k+m>N
6) k<r,m>randr+k+m<N
(7) k>r,m<randr+k+m>N
8) k>rm<randr+k+m<N
9) E>r.m>randr+k+m>N

(10) k>r,m>randr +k+m<N

Proof
To prove this theorem we shall suppose that

(1)K #£ 0 and M # ), now we partition the set X such that
X = (X\(KUM)) UK UM
Let n(M)=m, n(K)=k, so that n(X\(KUM)) =N —k—m

Now we shall begin by considering the followings:

2)k<r m<randm-+k <r.
In this case certainly, there is an r-permutation that will include the entire fixed

k-elements of the set K and are next to each other, that is these elements are
always together (inseparable). However, we ensure that this r-permutation does

not include the entire m-elements of the set M as well. . To ensure this, we
consider the following arrangements:
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(a): Suppose N —k —m > r.
Observe that the first and last elements of the set K can be arrange in & and
k — 2+ 1 ways while the first and last elements of the set M could be arranged in
m and m — j + 1 ways, which gives P ;y, Pm, ;) respectively. Consequently the
first and last elements of the set (X\ (K U M)) will be arrange in (N — k& —m) and
(N —r—m—k+i+j+ 1) ways, which gives Pin_g_sm r—i—j)
Observe that all the arrangements we have done are yet to be in r-ordering, which
is the desired ordering or length. However, we required that this r-ordered
elements will satisfy the prescribed conditions on the sets K and M. To achieve
this, we consider further the following arrangements which will bring together the
previous arrangements we have done.

Thus for any jth-ordered arrangement in P, ;) to fit (rearranged) with any fixed
(r —i — j)th-ordered arrangement in P(N_ gy, »—;—j We shall have their first and
last fitting ways to be (r —i — 74+ 1) and r — i ways, which gives % Finally,

we fit in the ith-ordered arrangements in P ;) in the resultant (r — 2)th-ordered
rearrangement of P, jy and P(N_g—m r—i—j) With their first and last fitting ways
to be (r—i+1)and (r —2(i — 1)) ways, which gives % which is the desired
r-ordering of elements of X satisfying the prescribed conditions. At this juncture,

we shall apply First Counting Principle (FCP) to the various arrangements we

have done, so that we shall have altogether

(r—1)! (r—i+1)!
Pk,iy Pem, i) P(N—k—m.r—i—7) =i ) =20 = 1)) (1.1)

To ensure that there is no repetition of arrangement, we shall have (1.1) to be

(r—1)! (r—i+1)! 11
Plie.sy Pin Y PN —k—m.r—i—j) =i ) ==

By simplifying above expression we obtained

N—-—EkE—m k m r—1 r—i+1

_ ‘ _ ‘ Vi<k, j<m (12)
r—k—i i J i i

i1l (r—i—7)!
Now we specify the range of values for 7, j so that the prescribed conditions
(k-inseparable noninclusion and m-noninclusion) are satisfied.

Observe that & < r, m <r and m + k < r, then clearly
r—k—m>0 = r—i—j7 >0V i<k j<m
To ensure that the noninclusion conditions holds, we must have the range of 7, j
assuch 1 <7< k-1, 0<j <m—1. Now by applying the Second Counting
Principle (SCP) over the range of 7, 7 in (1.2) we shall have
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Z_l nzl_l N :— T : T T — 1 T — %
i=1 F=0 r—i—j z Vi Wi 2

provided condition (1) holds otherwise we shall consider
(b): Suppose N —k —m < r.
In this case, we must choose 72, 7 such that

N —k—m=r—i—m;,=t=r+k—N

N—k—m=r—k—j:=3i=>r+m—N

Thus by mere repetition of above arguments we shall have

e (U OG0 )

provided condition (2) holds.
(3 k <rand m > r.
By this inequalities it is easy to see that +n + & = »r and to ensure that the
prescribed condition also holds in this situation, we shall consider

(c): Suppose N —k —m > r.
Observe that #ne > r — &k = 0 by above hypothesis. Hence it is easy to see that we
need at most r — k elements from the set A, so that the range of the values for

i, 7 is such that 0 <7 < &k — 1 and O < 7 < r — k& hence (1.3) becomes

E—1lr—k : T r— i r— i
SS oo (N )OS0

provided condition (6) holds.
(d): Suppose W — k —m < r.
In a similar manner. we need at least » + 2 — IV elements from the set AL and

r + k& — N elements from the set A, hence we have

E—1 r—Fk AT . ) L L
SO e o (N Y (Y (YN
i=r+k—N j=r—+m—N Tt —J 2 Vi W) (3

provided condition (5) holds.
Now, we shall simply write below the range of values 7, 7 will take for various
specifications of inequalities involving m. k., r, N as follows;
() E<r.m<r,m+hk<randr+Lr+m <N :
(0, 0) < (4, 7)< (k—1,m —1)
2 E<r,.m<r.m+hk<raendr+Lk+m>N:
(r+k—N,v+m—N)< (i, 7)< (k—1,m —1)
B)E<r m<r,m+k>randr+kLk+m>N_:
(r+k—N,r+m—N)< (i, j)<(r—m,r—k)
(4) E<r.m<r,m+hk>randr+kLk+m <N :
(0,0) < (¢, J) < (r—m, r— k)
5) k<r ., m>=randr+k+m>DN:
(r+k—N,vr+m—N)< (i, 7)< (k—1,r—k)
6) k<r. . m>randr+LEk+m <N :
(0,0)< (i, )< (k—1, r— k)
(7)) E=r,m<randr+Lk+m >N
(r+k—N,vr+m—N)< (i, 7)< (r—m, m—1)
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7, randr+k+m <N
(0,0)< (i, j) < (r—m, r—Fk)
9) k>r,m>randr+k+m>N
r+k—N,r+m—N)<(i, 7)) <(k—1,m—1)
(10) k>r, m>randr+k+m <N
(0,0)< (i, j)<(k—1,m—1)
Hence we can denote the range of values for (7, 7) in a general form as
(ar (N, k,m), as(N,r.k.m)) < (i, 7) < (B1(N.r.k.m), B2(N.r, k.m))
This complete the proof.

<
<

Theorem 2.2
Let X = {x; :72=1,2,..., N}.then the r-permutation of NV distinct elements

(r < N ) with the k-separable noninclusion and m-noninclusion all at a time is

Frlllrkm)  Ba(IN,rke.m) N —Fk—m k m
5 5 ( , )()() i 50
e

(?(ﬂ-,r,k',m) — i::rl(.-'\r,;,k,?n)rj:ag(.-'V._r._k_.?n)
A DA ()
P
Proof

If order of arrangement is not important, we shall basically have the (r — i — j)!
factor to be equivalent to one form of arrangement, since it constituents are of the
same form, hence it has a numerical value of 1. Similarly we have the same result

for the ¢! j! factors.Hence the result follows immediately.

Theorem 2.3
Let Y =UF_ A, Z=U",Band Y UZ C X such that
AjNAjr =0, BNByy =0V j, landY NZ =0, then the r-permutation of N
distinet elements of X with n(Y)-separable noninclusion and n(Z)-noninclusion
all at a time is P, ;e

( k m k

Bi(N.r.k.m)  Ba(N,r.k,m) .
' : N = n(A) = n(B) )| [ (A

3 ST ilr—i—) po I=1 =t
i=ay (N,rk,m) j=as(N,rk,m) r—1 —J 1
(N : '
(B - e
;n( 1) (, ‘ f-) (’ f+1) i.j#0
. A
\ g
(v % 3
N — Z n(Ag) — Z n(By)
=1

s=1

L\ ”

L ij=0
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Proof
There is no loss of generality if we suppose that the A, s and B;’'s are singletons
Vi, L.
Thus As = {ys} and By = {z} V j. L.
This implies

k} e
Y = (J{we} and Z = | J{=}
s=1 =1

So that the cardinality

k m

n(Y) = Z n({ys}) =k and n(Z) = Z n({z}) =m

s=1 =1
which reduces to the case of theorem 2.1. Otherwise if we suppose that
Ad's and By's are not singletons for every s, [, then there exist a unique numbers
E*. m* € N such that

k m
n(Y) = Zﬂ- (Ag) = k™ and n(Z) = Z n(Bj)=m"
s=1 =1
Hence by theorem 2.1 the result follows immediately.
Theorem 2.4
Let Y =UF_ | A;, Z=U" Byand Y UZ C X such that
A;NAj =0, BN By =0V 4, Land Y N Z =, then the r-combination of N
distinet elements of X with n(Y)-separable noninclusion and n(Z)-noninclusion
all at a time is C, ;= m=)

k m k 1
Bi(N.rkm)  B2(N,rkm) N ZH(A‘S) - Z n(By) Z n(Ay) n(Bi) ] i
i=a1 (N.rkm) j=aa(N,rk,m) r—i—j i J
j\; _ Z 'i"l-(fﬁl-s) — Z ??(BE} 1 . U
=1 =1 I
.

The proof of this result follows from theorem 5.1 and theorem 5.3
Suppose we relax (weaken) the condition imposed on A}-'S and By's sets,that is if
A's and B;'s are not necessarily (pairwise) disjoint sets then we shall
consequently have the following theorems to take care of the situations.
Theorem 2.5
Let Y = US_ A;, Z=U"BiandY UZ C X such that Y N Z = (), then the
r-permutation of N distinct elements of X with n(Y )-inseparable noninclusion

and n(Z)-noninclusion all at a time is Py, r g+ m=)
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¥o g erema(a) - 2 e ()
3 S il —i—j)! iy sel Lim el
i=a1(N,rk,m) j=aa(N,r.k,m) . .
r—i—1]
n 1 1 n(l)—1
> oot (Na)) (X o (08)) ooy iy L
= 9 I k] sel LC[m leL . . ) 7é 0
I#@ L#Q ] 1
i J
sy (na) - ¥ cren(na)|
1k sel LC[m] leL ,15,5=0
TED TLFEF
T

To prove this theorem, first it is easy to establish that equality hold in lemma 5.0
by the use of Pascal’s identity. Hence we obtain the specific values for k* and m*.
Similarly the result follows immediately.

In the sequel we shall be stating results which are based on the modification(s) of
condition(s) in the previous theories. Consequently, it is possible to derive several
corollaries, we leave this as a simple exercise to the reader
Theorem 2.6
Let Y = U§=1Aj: Z=UlByandY UZ C X such that Y N Z = 0, then the

r-combination of N distinct elements of X with n(Y )-inseparable inclusion and

n(Z)-noninclusion all at a time is ¢(y &+ m+)

Bi(N.rkm)  B2(Nokm) [ N _ Z (_Un(f)—ln (m As) _ Z (_1)?1(1)—1?1 (m BI)
Z Z %l sel LJC;[ETH] el
i=ay (N.rk,m) j=ag(N.rk.m) r—i—j J
Z (71)71(1)—1?1 (ﬂ As) Z (71)71(1)—1?1 (m BI)
= A f;t[fc] sel L;C;Lm] 1eL si,5#0
; .
N — Z (_1}71(1)—1?1 (ﬂ As) Z ( 1)‘-’1(1) 1 (m Bl)
%1 sl 1Cm el ,i,j:()

\ r

To prove this theorem, first it is easy to establish that equality hold in lemma 5.0
by the use of Pascal’s identity. Hence we obtain the specific values for k* and m*.
Similarly the result follows immediately from theorem 5.2 and theorem 5.4.
For illustrative purpose we consider the following example.

Example
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In a trade-fair, a Toy company with Toys of types ¢; {i = 1, 2, -- -8} wish to

display in row five of her products so that each display is ordered uniquely.

However, they required that type t1, t2, t3 Toys must not be next to each other

and will not include all at once in any display, finally 4, {5, te Toys will not be

mmcluded all at once. For effective cost projection, the firmm require to know the

number of possible display at her disposal since each display attracts a cost.
Solution
To solve this problem, it is possible to use the manual listing method of all
possible display, that is the permutation of eight toyvs taken five at a time

satistyving the prescribed conditions on #1, #2, t3 and #4, #5, fg. From the

computation we did using the manual list approach we got 3024 displays. We do

not intend generating a pictorial display of the 3024 permutations of the tovs
satistying the prescribed conditions, however we leave 1t as an exercise for the

reader to generate.

Now by the formula method if we take M = {t4, t5, te} and K = {t1, t2, 3} so

)

GEENE

Ut

that k=3 ,m =3 ,r =5 & N = 8, hence we have

G 2 3\ [(3\ (5—i\ (6—i) _
ex e (o 5,) (7)) (5 (0 o
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