

Integral Solutions of Binary Quadratic Diophantine

equation
$$x^2 + pxy + y^2 = N$$

¹,M.A.GOPALAN, ²,R.ANBUSELVI

Department Of Mathematics, Srimathi Indira Gandhi College, Trichy, Tamil Nadu, India. AND

Department Of Mathematics, A.D.M.College For Women(Autonomous), Nagapattinam, Tamil Nadu, India.

------ABSTRACT------

Non – trivial integral solutions for the binary quadratic diophantine equation $x^2 + pxy + y^2 = N$, p > 2, $N \neq 0 \pmod{4}$ are obtained. The recurrence relations satisfied by the solutions along with a few examples are given.

KEY WORDS: Binary quadratic, integral solutions MSC 2000 Subject classification number: 11D09

Date of Submission: 29 April 2014 Date of Publication: 05 July 2014

I. INTRODUCTION

It is well known that binomial quadratic (homogeneous or non-homogeneous) Diophantine equations are rich in variety[1,2]. The authors have considered the equation $x^2 + xy + y^2 = N$, and analysed for its integer solutions[3]. In [4], non-trivial integral solutions for the binary quadratic diophantine equation $x^2 + pxy + y^2 = 4N$ are obtained. In this communication, the non-trivial integral solutions for the binary quadratic diophantine equation $x^2 + pxy + y^2 = N$, where p > 2 and $N \neq 0 \pmod{4}$ have been obtained. Also the recurrence relations among the solutions are given.

II. METHOD OF ANALYSIS

The equation to be solved is

$$x^{2} + pxy + y^{2} = N, p > 2, N \not\equiv 0 \pmod{4}$$
 (1)

2X = P, 2T = O

The substitution of the linear transformations

$$u = X + (2 - p)T$$

$$v = X - (2 + p)T$$

inequation (1) leads to

Equation (2) becomes

$$4X^{2} = (p^{2} - 4)4T^{2} + N \tag{2}$$

Again, setting

$$P^{2} = (p^{2} - 4)Q^{2} + N (3)$$

where $p^2 - 4$ is a square free non zero integer.

www.theijes.com The IJES Page 25

Assume that the initial solution of equation (2) be $\left(Q_{0}, P_{0}\right)$.

Consider the Pellian

$$P^{2} = (p^{2} - 4)Q^{2} + 1 \tag{4}$$

whose general solution $(\tilde{Q}_s, \tilde{P}_s)$ is given by

$$\tilde{P}_s + \sqrt{p^2 - 4} \ \tilde{Q}_s = \left(\tilde{P}_0 + \sqrt{p^2 - 4} \ \tilde{Q}_0\right)^{s+1}, \ s = 0, 1, 2, \dots$$
 (5)

in which $\left(\tilde{Q}_{0},\tilde{P}_{0}\right)$ is the least positive integral solution of (4).

Applying Brahmagupta's lemma, the sequence of solutions of equation (3) are given by

$$Q_{s+1} = P_0 \tilde{Q}_s + Q_0 \tilde{P}_s P_{s+1} = P_0 \tilde{P}_s + (p^2 - 4) Q_0 \tilde{Q}_s$$
(6)

where s = 0, 1, 2,

: the sequence of solutions of equation (1) are given by

$$x_{s+1} = \frac{1}{2} \left[P_0 G + \sqrt{p^2 - 4} \ Q_0 F \right] - \frac{p}{2\sqrt{p^2 - 4}} \left[P_0 F + \sqrt{p^2 - 4} \ Q_0 G \right]$$

$$y_{s+1} = \frac{1}{\sqrt{p^2 - 4}} \left[P_0 F + \sqrt{p^2 - 4} \ Q_0 G \right]$$
(7)

where
$$F = \left(\tilde{P}_0 + \sqrt{p^2 - 4} \ \tilde{Q}_0\right)^{s+1} + \left(\tilde{P}_0 - \sqrt{p^2 - 4} \ \tilde{Q}_0\right)^{s+1}$$

$$G = \left(\tilde{P}_0 + \sqrt{p^2 - 4} \ \tilde{Q}_0\right)^{s+1} + \left(\tilde{P}_0 - \sqrt{p^2 - 4} \ \tilde{Q}_0\right)^{s+1}, \ s = -1, 0, 1, 2, \dots$$

Also the recurrence relations among the solutions are given by

(1)
$$x_{s+3} - 2\tilde{P}_0 x_{s+2} + x_{s+1} \equiv 0$$

(2)
$$y_{s+3} - 2\tilde{P}_0 y_{s+2} + y_{s+1} \equiv 0$$

To analyze the nature of solutions, one has to go in for particular values of p and N. For the sake of simplicity and clear understanding, a few numerical examples are given below:

Illustration:1.1

p and N are both odd.

Table 1.1(a)

$$p = 3 N = 5$$

i	x_{i}	y
0	-1	4
1	-29	76
2	-521	1364
3	-9349	24476
4	-167761	439204
5	-3010349	7881196
6	-54018521	141422324
7	-969323029	2537720636
8	-17393796001	45537549124
9	-312119004989	817138163596

Observations:

- $(1) \quad y_i \equiv x_i (\bmod 5)$
- (2) Each of the expressions $y_{2i} + x_{2i} 2$ and $y_{2i+1} + x_{2i+1} + 2$ is a perfect square.
- (3) $x_i y_{i+1} y_i x_{i+1} \equiv 0 \pmod{40}$

Illustration:1.2

p is even and N is odd

Table 1.2 (b)

$$p = 4 N = 13$$

i	x_i	y_i
0	1	2
1	-9	34
2	-127	474
3	-1769	6602
4	-24639	91954
5	-343177	1280754
6	-4779839	17838602
7	-66574569	248459674
8	-927264127	3460596834
9	-12915123209	48199896002
	12713123207	40177070002

Observations:

$$(1) \quad y_{i+1} \equiv y_i \pmod{8}$$

(2)
$$y_{3i-1} - y_{3i-2} \equiv 0 \pmod{10}$$

(3)
$$x_i + y_i \equiv x_i - y_i \pmod{4}$$

$$(4) \quad x_{i-1} \equiv x_i \pmod{2}$$

(5)
$$x_{i+1}y_i - y_{i+1}x_i + 52 \equiv 0$$

Illustration:1.3

p and N are both even.

Table 1.3(c)

$$p = 4 N = 4$$

i	\boldsymbol{x}_{i}	y ,
0	0	2
1	-8	30
2	-112	418
3	-1560	5822
4	-21728	81090
5	-302612	1129438
6	-4214840	15731042
7	-58705148	219105150
8	-817657232	3051741058
9	-11388496100	42505269662

Observations:

(1)
$$x_{i+1}y_i - y_{i+1}x_i \equiv 0 \pmod{16}$$

$$(2) \quad x_i + y_i \equiv x_i - y_i (\bmod 4)$$

$$(3) \quad y_{i+1} \equiv y_i (\bmod 4)$$

(4)
$$y_{3i-1} \equiv y_{3i-2} \pmod{4}$$

Illustration: 1.4

p is odd and N is even.

Table 1.4(d) p = 3 N = 4

i	x_{i}	<i>y</i> _i
0	-2	6
1	-54	110
2	-970	1974
3	-17406	35422
4	-312338	635622
5	-5604678	11405774
6	-100571866	204668310
7	-1804688910	3672623806
8	-32383828514	65902560198
9	-581104224342	1182573459758

Observations:

(1)
$$x_{i+1}y_i - y_{i+1} = -104$$

(2)
$$y_i - x_i \equiv y_i + x_i \pmod{4}$$

In conclusion, one may search for other patterns of solutions and their corresponding properties.

REFERENCES:

- [1] Dickson, L.E. (1952) History of the theory of numbers, Vol II, Chelsea Publishing Company, New York.
- [2] Batta B. and Singh A.N. History of Hindu Mathematics, Asia Publishing House, Bombay (1938).
- [3] Gopalan M.A., Devibala S. and Anbuselvi R. A Remarkable observation on $x^2 + xy + y^2 = N$, ActaCienciaIndica, Vol.XXXI M, No.4, 997 (2005).
- [4] Gopalan M.A., and Anbuselvi R. Integral Solutions of $x^2 + Pxy + y^2 = 4N$, Proc. Nat. Acad. Sci. India, 77(A), III, 2007.