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 ------------------------------------------------------------ABSTRACT--------------------------------------------------------- 
This paper investigates moonshine connections between the McKay –Thompson series of some conjugacy 

classes for the monster group and number theory. We explore certain natural consequences of the Mckay-

Thompson series of class 1A, 2A and 3A for the monster group in Ramanujan-type Pi formulas. Numerical 

results show that, the quadratic prime-generating polynomials are connected to integer values of exactly 43 Mc 

Kay- Thompson series of the conjugacy classes for the monster group. Furthermore, the transcendental number 

pi is approximated from monster group.  
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I. INTRODUCTION 
The Fischer-Griess monster group  is the largest and the most popular among the twenty six sporadic finite 

simple groups of order 
46 20 9 6 7 2 3

53
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In late 1973 Bernd Fischer and Robert Griess independently produced evidence for its existence. Conway and 

Norton [6] proposed to call this group the Monster and conjectured that it had a representation of 

dimension196,883 47 59 71   . 

In a remarkable work, Fischer et. al [8] computed the entire character table of in 1974 under this assumption. 

It has 194 conjugacy classes and irreducible characters.  The Monster has not yet been proved to exist, but 

Thompson [14] has proved its uniqueness on similar assumptions. In 1982 Griess [9] constructed  as the 

automorphism group of his 196884-dimensional algebra thus proving existence. The monster contains all but six 

of the other sporadic groups as subquotients though their discoveries were largely independent of it.Although 

the monster group was discovered within the context of finite simple groups, but hints later began to emerge that 

it might be strongly related to other branches of mathematics. One of these is the theory of modular functions 

and modular forms. 

The elliptic modular function has Fourier series expansion as:  

2 3 4 5

6 2

1
( ) 744 196884 21493760 864299970 20245856256 333202640600

4252023300096 ; where , .i
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In 1978, Mc Kay [17] noticed that the coefficient of q (196884 ) in the j-function is196883 1  and  
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Thompson [15] found that the later coefficients are linear combinations of the representations of  as given in 

[1, 2] as follows: 

1 1 (1.1 )

196884 196883 1 (1.1 )

21493760 21296876 196883 1 (1.1 )

864299970 842609326 21296876 2.196883 2.1 (1.1 )

a

b

c

d



 

  

   

 

The numbers on the left sides of (1.1) are the first few coefficients of the j-function; where as the numbers on 

the right are the dimensions of the smallest irreducible representations of the Fischer-Griess monster group. 

Based on these observations, Mc Kay and Thompson [17] found further numerology suggesting that, the 

explanation for (1.1 ) should lie in the existence  of a natural infinite dimensional graded -module Vn  (later 

called head representation of ) for the monster 
0

V Vn
n

  . The dimension of Vn  is equal to the coefficient 

nc  of the elliptic modular function.  

II. THE MONSTROUS MOONSHINE 
It is vital to mention the work of Conway and Norton [6], which marked as the starting point in the theory of 

moonshine, proposing a completely unexpected relationship between finite simple groups and modular 

functions, which relates the monster to the theory of modular forms. Conway and Norton conjectured in this 

paper that there is a close connection between conjugacy classes of  and action of certain subgroups of 

2SL ( )  on the upper half plane . This conjecture implies that extensive information on the representations of 

the monster is contained in the classical picture describing the action of 2SL ( )  on . Monstrous moonshine 

is the collection of questions (and few answers) that these observations had directly inspired. 

With the emergence of [6], many researchers had presented more results on connections between modular forms 

and monster group, and most of the other finite simple sporadic groups have been discovered; they are 

collectively referred to as Moonshine. Significant progress was made in the 1990’s, and Borcherds won a Field’s 

medal in 1998 for his work in proving Conway and Norton’s original conjectures. The proof opened up 

connections between number theory and representation theory with mathematical physics. For survey see [1, 2, 

7]. 

III. THE MC KAY-THOMPSON SERIES 

The central structure in the attempt to understand (1.1)  is an infinite-dimensional -graded  module for the 

monster . 

0 1 2 3V V V V V ...      

 Let dρ  denote the d-dimensional irreducible representation of  ordered by dimension.  The First subspaces 

will be:  

0 1 1 2 1 196883 3 21296876 196883 1V ρ , V ={0}, V ρ ρ , V ρ ρ ρ       and so on 

The J-function is essentially its graded dimension  

1

0

1

J(τ) ( ) 744 dim(V ) d im(V ) n

n

n

j q q






     

From representation theory for finite groups, a dimension can be replaced with a character. This gives the 

graded traces 

gT ( ) tr (g|V ) n

n

n

q





 

Generally, Thompson [16] further suggested that, we consider the series (known as the Mc Kay-Thompson 

series for this module V) 

-1

V

1

T (τ) ch ( ) n

g n
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q g q
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
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for each element gM , where Vch
n

are characters. 

For example, the smallest non-trivial representation of  is given by almost 10
54

 Complex matrices, each of size 

196883 x 196883, while the corresponding character is completely specified by 194 integers (194 being the 

number of conjugacy classes in ). Taking g 1 , we have 1T ( ) J( )   

We write  nc   to be the coefficient of 
nq  in Mc Kay-Thompson series Tg , that is  

1 2

1

T ( ) ,n i

g n

n

q c q q e  






   . 

Moreover, there are 
538 10  elements in the monster, so we expect about 

538 10  different Mc Kay-

Thompson series Tg . However, a character evaluated at g  and any of its conjugate elements 
-1hgh  have 

identical character values and hence have identical McKay-Thompson series -1T Tg hgh
 . This implies that 

T Tg h  whenever the cyclic subgroups andg h  are equal. Hence there can be at most 194 Tg , one for 

each conjugacy class. In fact there are 172 distinct McKay-Thompson series Tg and the first eleven coefficients 

of each are given in [6, Table 4]. 

 

Influenced by Ogg’s observation, Thompson, Conway and Norton conjectured that for each element g  of  , 

the McKay-Thompson series Tg  is the hauptmodul J ( )
gG   for a genus zero group gG    of moonshine 

type. So for each n  the coefficient ng c  defines a character Vch ( )
n

g  of .  They explicitly identify each 

of the groups gG ; these groups each contain subgroup 0(N)  as a normal subgroup, for some N dividing 

( ) (24, ( ))g g  . gG corresponding to a McKay-Thompson series T ( )g  is specified by giving the positive 

integer N and a subset of Hall divisors of /n h , n  arises as the order of g. Then n  divides N and the quotient 

N/h n  divides 24. In fact 
2h  divides N. 

 The full correspondence can be found in [6, Table 2]. The first 50 coefficients nc  of each Tg  are given in [10]. 

 

IV. PRIME GENERATING POLYNOMIALS AND MONSTER GROUP 
In this section, we investigate monster’s relationship to quadratic prime-generating polynomials through its 

conjugacy classes. Piezas [12] showed that for any τ in the quadratic field ([ ( )])d n . ( )j   is an 

algebraic integer . He also showed how prime generating polynomials are connected to integer values of some 

moonshine functions for small order p. Without the constant terms these moonshine functions are Mckay–

Thompson series for . 

Here we consider the McKay-Thompson series of class 1A and some conjugacy classes for monster group and 

establish relationship to quadratic prime-generating polynomials; by showing that the value pT (τ)  for an 

appropriate τ is an algebraic number.    

I.
  1AT (τ)   

The Mckay-Thompson series for the monster class 1A is defined by 

2 3 2

1A

1
T (τ) 196884 21493760 864299970 ...where iq q q q e

q

        

This series detects class number h(-d)=1 of negative fundamental discriminants. 

Two forms of τ  are given as: 

Case 1: τ (1 ) / 2 (Associated with odd discriminant ).

Case 2: τ (Associated with even discriminant 4 ).

d d

m d m

  

  
 

For case 1, 
1Aand T ( )dq e     is negative. 
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For case 2, 
2

1Aand T ( )mq e   is positive. 

Table 1 shows their associated quadratic prime-generating polynomial 
2( )p k ak bk c   , its discriminant 

d , and 1AT (τ)  using a root  of ( ) 0p k  , which is given by  the quadratic formula 

2 4

2

b b ac
k

a


  
  . 

Table 1. Prime-generating Polynomial for Discriminants with h(-d) = 1  and 1AT (τ)  

 

 

 

 

 

 

 

 

 

 

 

 

 

II. PT (τ)   

The Mckay-Thompson series for the monster is of the form: 

2 3 2

P 1 2 3

1
T (τ) ... where ic q c q c q q e

q

       . 

Two forms of τ : 

4
Case 1: τ (1 ) / 2; 1.

Case 2: τ ; .

c
r r

a

c
s s

a

    
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For case 1, 
pand T ( )rq e     is negative. 

For case 2, 
2

Pand T ( )sq e    is positive. 

A. p as prime divisor of M  

p {2,3,5,7,9,11,13,17,19,23,29,31,41,47,59,71}  

There is Mckay-Thompson series PT ( )  for each of the 15 prime divisors of M . 

Table 2 shows their associated quadratic prime-generating polynomials 
2( )p k ak bk c   , and value 

pT (τ)  using the root   of ( ) 0p k   

 

 

 

 

 

 

 

 

2
p(k) = ak + bk + c  

2
d = b - 4ac   1AT (τ)  

2 1k   4  32 3 41   

2 2k   8  32 907  

2 1k k   3  751  

2 2k k   7  3 1373   

2 3k k   11  32 59 71    

2 5k k   19  32 3 5 47 157      

2 11k k   43  32 3 36864031    

2 17k k   67  3 12 3 6133248031    

2 41k k   163  18 3 3 3 32 3 5 23 29      
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Table 2. Prime-generating Polynomial for Discriminants with h(-d)=2n and TpA (τ)  

p  2
p(k) = ak + bk + c  

2
d = b - 4ac  h(-d)  

pAT (τ)  

2  22 2 3k k   20 2 10     2  32 3 47    

2  22 2 7k k   52 2 26     2  32 7 1483    

2  22 2 19k k   148 2 74     2  32 56   

2  22 3k   24 2 12    2  3 22 5 11   

2  22 5k   40 2 20     2  32 2579  

2  22 11k   88 2 44     2  32 313619  

2  22 29k   232 2 116     2  32 3073907219   

3  23 3 2k k   15 3 5     2  3 23   

3  23 3 5k k   51 3 17     2  2 3 5 59     

3  23 3 11k k   123 3 41     2  2 3 18439    

3  23 3 23k k   267 3 89     2  32 5 233 2897     

3  23 2k   24 3 8     2  2 3 29   

5  25 5 2k k   15 5 3     2  22 5   

5  25 5 3k k   35 5 7     2  5 11   

5  25 5 7k k   115 5 23     2  23 5 19    

5  25 5 13k k   235 5 47     2  5 7 1493    

5  25 2k   40 5 8     2  5 11  

7  27 7 3k k   35 7 5     2  3 5   

7  27 7 5k k   91 7 13     2  73  

7  27 7 17k k   427 7 61    2  5 22 3 37    

11 211 11 7k k   187 11 17     2  22 5   

13  213 13 5k k   91 13 7     2  11  

13  213 13 11k k   403 13 31     2  72  

17  217 17 5k k   51 17 3     2  5  

19  219 19 29k k   1843 19 97     6  3 1771561000  

23  223 23 7k k   115 23 5     2  5  

29  229 2k   232 29 8     2  5  

31 231 31 11k k   403 31 13     2  23  

41  241 41 11k k   123 41 3     2  3  

47  247 47 13k k   235 47 5     2  5  

59  259 59 19k k   1003 59 17    4  (3 2 2)   

71  271 2k   568 71 8     4  17  

B. p as product of two distinct prime divisors of M   

2 {3,5,7,11,13,17,19,23,31,47} {6,10,14,22,26,34,38,46,62,94}  , 

3 {5,7,11,13,17,19,23,29,31} {15,21,33,39,51,69,87,93}  , 

5 {7,11,19} {35,55,95}, 7 17 119     

Therefore p {6,10,14,15,21,22,26,33,34,35,38,39,46,51,55,57,62,69,87,93,94,95,119}  



Some Moonshine connections between… 

www.theijes.com                                                 The IJES                                        Page 30  

There are 23 such orders, though p 57 and 93  are to be excluded. For the relevant McKay 

Thompson series in this family, these two are the only ones where the powers of q  are not 

consecutive but are in the progression 3 2m . So what remains are 21 series.  

In addition, there is Mckay-Thompson series pT (τ)  for each p. Hence, we present them and 

their  associated pA( ) and T ( )p k   in the following table: 

 

Table 3. Prime-generating Polynomials for Discriminants with h(-d) = 4, 8. 12 and 

TpA (τ)   

p  2( )p k ak bk c    
2 4d b ac   h(d)  

pT ( )  

6  26 6 5k k   84 6 14     4  2 61   

6  26 6 7k k   132 6 22    4  2 5 41    

6  26 6 11k k   228 6 38    4  2 23 59    

6  26 6 17k k   372 6 62     4  2 12157   

6  26 6 31k k   708 6 118     4  2 3 401 467     

6  26 5k   120 6 20       4  2 5 31   

6  26 7k   168 6 28     4  2 443  

6  26 13k   312 6 52     4  2 5 1039   

6  26 17k   408 6 68     4  2 5 3919   

10  210 10 11k k   340 10 34     4  32 41   

10  210 3k   120 10 12     4  52  

10  210 7k   280 10 28     4  62 3  

10  210 13k   520 10 52     4  22 17 19   

10  210 19k   760 10 76     4  22 3 13 37    

14  214 14 5k k   84 14 6     4  3 59   

14  214 14 13k k   532 14 38     4  5 7   

14  214 3k   168 28 6     4  19  

14  214 5k   280 14 20     4  43  

15  215 15 7k k   195 15 13    4  19  

15  215 2k   120 15 8     4  11 

21  221 21 11k k   483 21 23     4  33  

22  222 22 7k k   132 22 6     4  11  

22  222 22 17k k   1012 22 46     4  211 3   

26  226 3k   312 26 12     4  23  

26  226 5k   520 26 20     4  24  

33  233 33 17k k   1155 33 35    8  (20 2 5)   

34  234 7k   952 34 28     8  21 10  

35  235 2k   280 35 8     4  5  

38  238 38 13k k   532 38 14     4  7  

39  239 2k   312 39 8     8  3 11 5  
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C. p as product of three distinct prime divisors of M .  

2 3 {5,7,11,13} {30,42,66,78}, 2 5 {7,11} {70,110},3 5 7 105.          

Therefore p {30, 42, 66, 70, 78, 105, 110}  

Table 4 gives their associated quadratic prime-generating polynomial pA( ) and T ( )p k  .  

Table 4. Prime-generating Polynomials for Discriminants with h(-d) = 8 and pT (τ)  

p  2( )p k ak bk c    
2 4d b ac   pT ( )  

30  
230 7k   840 30 28      3 7  

42  242 11k   1848 42 44     
25  

66  
266 7k   1848 66 28     32  

70  
270 70 23k k   1540 70 22     2 3   

78  
278 78 23k k   1092 78 14      22   

105  
2105 105 31k k   1995 105 19     22  

110  
2110 3k   1320 110 12     3  

 

Discussion/Remarks 
 Based on the above presentations, we have the following observations: 

1. For p a prime divisor of M , pT ( )  is an algebraic number of degree one-half the  

h(-d). There are 15 such series. 

2. For p a product of two distinct prime divisors of M  (except p=57 and p=93), the pT ( )  of the appropriate 

conjugscy class is an algebraic number of degree one-fourth the h(-d). There are 21 such series. 

3. For p a product of three distinct prime divisors of M , the pT ( )  of the appropriate conjugacy class is an 

algebraic number of degree one-eighth the h(-d). There are 7 such series. 

Thus, there is a total of 15 +21 + 7 = 43 such series, which is equivalent to the least number of conjugacy 

classes of the maximal subgroups of the monster group. 

Note: All the series are from pAT except 30B 33B 46CT , T , T . 

 
1. The  Monster group in Ramanujan-type pi formulas 

The first series representations for 
1

π
 were found by an Indian mathematical genius Srinivasa Ramanujan [13], 

he discusses certain methods to derive exact and approximate evaluations but first proved by the Borweins [4]. 

The work of the Borweins [3], [4], and the Chudnovskys [5] extends Ramanujan’s work. Complete list of 36 

such pi formulas is given in [12]. 
 

46  246 46 17k k   1012 46 22     4  22 7   

51 251 2k   408 51 8     4  22  

55  255 55 17k k   715 55 13    4  5  

62  262 5k   1240 62 20     8  1 2 6  

69  269 69 19k k   483 69 7     4  3  

87  287 2k   696 87 8     12  3 18  

94  294 7k   2632 94 28     8  5 5  

95  295 2k   760 95 8     4  3  

119  2119 119 43k k   6307 119 53     8  (4 17)   



Some Moonshine connections between… 

www.theijes.com                                                 The IJES                                        Page 32  

In this section we explore certain natural consequences of the Mckay-Thompson series of class 1A, 2A and 3A 

for the monster group in 3 kinds of  Ramanujan-type pi formulas; by considering an example of each kind. 
 

Piezas[12] in his approach considered the polynomials 
2( ) 41p k k k   , 

2( ) 2 2 19p k k k   , 

2( ) 3 3 23p k k k   , 
2( ) 4 4 5p k k k    and related moonshine functions, 

pA( ), γ , for 2,3, 4j p  . He pointed out that the values of pA( ), γ , for 2,3, 4j p   appeared to be in 4 

different kinds of  Ramanujan-type pi formula.   In  [14] , he remarked that, the Variable C in the general form 

of these pi formulas is either the value of pA( ) or γ , 2,3, 4j p   for an appropriate   and conveniently 

expressed A interms of  C. 

 

In our own contribution we consider the following prime-generating polynomials of  form 
2( )p k ak ak c   , 

2( ) 11p k k k    

2( ) 2 2 7p k k k    

2( ) 3 3 11p k k k    

 And the following related series of the monster group, 

2 3

1A

2 3

2A 2A

2 3

3A 3A

2

1
T ( ) 196884 21493760 864299970 ... ( ) 744

1
T ( ) 4372 96256 1240002 ... 104

1
T ( ) 783 8672 65367 ... 42

.i

q q q j
q

q q q
q

q q q
q

where q e  

 

 

 

      

      

      



 

Solving the polynomials at the point p( ) 0k  , then, 

(1 43) / 2

(2 52) / 4 (1 13) / 2

(3 123) / 6 (1 41/ 3) / 2

k

k

k







   

      

      

 

Where, consistent with the requirements for modular forms, we have chosen the root   that is on the upper half 

complex plane. 

 Plugging into q , we got the very small real numbers, 

exp( 43)

exp( / 2 52) exp( 13)

exp( / 3 123) exp( 41/ 3)

q

q

q



 

 

  

     

     

 

Which when substituted into the appropriate series, yields the integers, 

1A

2A

3A

T ((1 43) / 2) 884736744 744

T ((1 13) / 2) 83048 104

T ((1 41/ 3) / 2) 1106324 42

     

     

     

3

2

3

-960

-288

-48

 

These integers written in bold appeared in three of four different kinds of pi formulas. 

The first integer 
3

-960 appears in the Chudnovsky brothers’ Pi formula, 
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3 3 1/2
0

1 ( 1) (6 )! 16254 789
12

( !) (3 )! (960 )

k

k
k

k k

k k






  
  

 
 . 

This can be written as: 

3 3 1/2
0

1 ( 1) (6 )! 43(378) 789
12

( !) (3 )! (960 )

k

k
k

k k

k k






  
  

 
  

Where one can see 43d  ,  

The second integer, 
2

-288 ,
 
appears in a Pi formula found by Ramanujan [9] in 1912 (sixty years before the 

monster group was even discovered) 

4 2 1/2
0

1 ( 1) (4 )! 260 23
4

( !) (288 )

k

k
k

k k

k






  
  

 
  

This can be written as: 
 

4 2 1/2
0

1 ( 1) (4 )! 52(5) 23
4

( !) (288 )

k

k
k

k k

k






  
  

 
  

where 52d   also appears,  

The third, 
3

-48 , appears in another kind of Pi formula found by Chudnovsky brothers [5].  

5 3 1/2
0

1 ( 1) (2 )!(3 )! 615 53
2

( !) (48 )

k

k
k

k k k

k






  
  

 
  

This can be written as: 

5 3 1/2
0

1 ( 1) (2 )!(3 )! 123(5) 53
2

( !) (48 )

k

k
k

k k k

k






  
  

 
  

 

where one can see 123d    

The general form of these Pi formulas is:  

1

1
(A B) / C for p 1,2,3k

p

k

h k






   . 

where A, B and C are algebraic numbers and ph is the factorial quotients defined as: 

3 4 5

1 2 3(6 )!/ ((3 )! ! ), (4 )!/ ( ! ), (2 )!(3 )!/ ( ! ),h k k k h k k h k k k    

Or equivalently the ph  can be defined as Pochhammer symbol products, 

3 3 3

1 2 31728 (1/ 2) (1/ 6) (5 / 6) / ( ! ), 256 (1/ 2) (1/ 4) (3 / 4) / ( ! ), 108 (1/ 2) (1/ 3) (2 / 3) / ( ! ).k k k

k k k k k k k k kh k h k h k  

 

Where ( ) ( )( 1)( 2) ( 1)ka a a a a k     , with limiting ratio 1 2 31728, 256, 108L L L    

between successive terms as k  . 

Piezas [13] pointed out that the variable C is the value of the moonshine function pAγ (τ)
 
for an appropriate  , 

where p 1, 2, 3  in the three kinds of pi formulas and try to expressed A in terms of  C. 

To this end, we conveniently expressed A in terms of  d  as follows: 

 For 1h , and 1AT (τ) : 
1A d ; 

 For 2h  and 2AT (τ) :
2A (1/ 2) d  

 For 3h  and 3AT (τ)  
3A (1/ 3) d  
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Hence for  ph  and pAT (τ)  A (1/ )p p d  , for p 1,2,3.
. 

The discriminant d  depends on the form of ( ) / 2 for 1, 2,3a d a a      

 

2. An Approximation of pi from Monster group 

Monster group gives more impressive approximation to ( )de d  .  

The famous Ramanujan’s pi approximation made use of the near-integer result of 
163e . 

163 being the largest discriminant with class number one.   

It is vital to mention that, many researchers have presented numerous approximations of pi from monster Group. 

In the work of  Plouffe, Borwein, and Barley (2003), the pi approximation is given as; 

ln(5280) 9 / 67 3.14159265 (9d)   
 
 while  Warda (2004)  presented a new approach as 

3 2ln(640320 744) 2 196884
3.14159265335897932384626433832795028841971693993 (46d)

2 163


  



 

Moreover,  Jim (2009) introduces another way using the  Ramanujan constant as:  
3ln(640320 744)

3.1415926533589793238462643383279 (30d)
2 163




 


 

In his work, the pi approximation has been improved to 75 decimal digits. In addition,  from pi approximation 

contest centre it has been presented that pi approximation can be obtain via: 

(i)  

3ln(960 744)
3.1415926535898 (13d)

43



   

(ii) 
3ln(640320)

3.141592653589793 (16d)
163

  

 Based on the above contributions by many researchers we extent this approach and produced a good and stable 

approximation to pi. To this end, we will here make use of the relation
67e , 67 being the second largest 

discriminant with class number one. 

67

3

147197952743.99999866245424450683

((1 67) / 2) 147197952744 5280 744

e

j

 

    


 

We will here denote the near-integer by A and its estimate 
1

Ae   

That is, 
67 3A A 147197952744 5280 744ee      

Then 
67 35280 744e     

Taking the natural logarithm of both sides of the resulting equation and then dividing both sides by 67  we 

have,  
3ln(5280 744)

3.14159265358979323 (18d)
67




  957 . 

The accuracy of the approximation is remarkable, 18 places of decimal are accurately reproduced (the last three 

digits that are incorrect are typed in bold). 

What if we could make a better estimate of  A: 

 Our estimate 
1

Ae is slightly larger than A by an amount: 

1

6

eA -A 1.3375457755 10   

When we multiply this slight difference by 
35280  

1

3

e5280 (A A) 196883.998859851776    

Remember that 196883  is the dimension of the smallest irreducible representation of the monster group. 
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The above result is almost exactly this number plus one. we can now write our second estimate 
2eA of  A as: 

2

3

e 3

196884
A 5280 744

5280
    

and we construct a new   approximation as: 

2
ln(A )

3.1415926535897932384626433 ... (26d)
67

e
   768  

What if we continue this kind of analysis one step further? In the last step, we correct eA  by subtracting  

3

196884

5280
 and called this improved estimate 

2eA . 

We can assume that we are still in error by some small amount and we will find that our estimate is just a pinch 

too low: 

2

15

eA A 7.745679939894815927873779... 10     

One way to handle this is multiply the difference by 
65280  to obtain the following result: 

2

6

e5280 (A A) 167827483.549237248...    

Since we have another near–integer, we can round this number off and use it to construct our third estimate 
3eA  

3

3

e 3 6

196884 167827484
A 5280 744

5280 5280
     

Again we construct a new   approximation formula as:  

3
ln(A )

3.14159265358979323846264338327 ... (30d)
67

e
   380  

Continue on the fourth step; 

3

18

eA A 6.8299999999999999167... 10     

3

9

e5280 (A A) 21783417061653302.26565873664    

 the next approximation would be 
4eA and would be equal to: 

4

3

e 3 6 9

196884 167827484 21783417061653302
A 5280 744

5280 5280 5280
      

4
ln(A )

3.1415926535897932384626433832795...
67

e
    

We cannot continue with further corrections to see what the results may be,  

as the estimate 
3eA  is equal to the value of A.  

We hope that our approach in finding the approximate value of pi from monster group is better and accurate 

compared to some other related work. 

 

V. CONCLUSION 

1. There are many amazing aspects on the McKay-Thompson series of some conjugacy classes for monster 

group in the theory of moonshine. 

2. Remarkable relationship exists between two seemingly different mathematical objects  

π and e  on one hand, and monster group on the other. 

Finally, we can say that, the most exciting prospects for the future of moonshine are in the direction of number 

theory  
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