

# Phytochemical and Antimicrobial Analysis of the Stems of Cola Gigantea (Sterculiacea)

<sup>1,</sup> C.T.Onyema, <sup>2,</sup> V.I.E Ajiwe

<sup>1, 2</sup>, Pure and Industrial Chemistry Department, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria P.O Box 5025

# -----ABSTRACT-----

Phytochemical and anti microbial analyses were carried out on the purified stems extract of Cola gigantea. The Harbone method was used in the extraction and the extract separated using a combination of column chromatography and preparative thin layer chromatography resulting in the isolation of four fractions with Rf values of 0.2667, 0.4133, 0.5667 and 0.7667 for stem fractions 1, 2, 3 and 4 respectively. The isolated fractions were subjected to structural elucidation using the combination of appropriate spectroscopic instruments; FTIR, UV, H<sup>1</sup>-NMR, C<sup>13</sup>-NMR and GC-MS which gave rise to the following suggested compounds: 4-((1E)-3-Hydroxyl-1-propenyl)-2-methoxyphenol-cyclopropanecarboxylicacid,2-pentyl-5,7-dodecadiyne-1,12diol;Phenol,4-(3-hydroxy-1-propenyl)-2-methoxy-2-(2-nitrophenoxy) benzaldehyde-4-isopropyl-3-methyl phenoxy acetylhydrazone; 3,4,5-trimethyl-1-H-pyrano [2,3-C]pyrazol-6-onecyclopropaneoctanoicacid,2-[[2-[(2ethylcyclopropyl)methyl] cyclopropyl]methyl]-methylester-5-methoxy-2-phenyl-7-chromanol and 1,2-benzene dicarboxylic acid,dioctyl-methyl-12-oxo-9-dodecenoate were contained in stem fractions 1-4 respectively. Results of the phytochemical analysis showed the presence of some secondary metabolites such as alkaloids, carbohydrates, cardiac glycosides, flavonoids, steroids, tannins, terpenoids in various concentrations with flavonoids, steroids and resins in very high concentration. The values of the mineral elements; As (0.51mg/g), Cd (0.40mg/g), Cr (0.57mg/g), Fe (1.01mg/g) etc in the stems were above the WHO recommendations thus showing the need for further purification before therapeutic usage. The antimicrobial analyses (the anti fungal and anti bacterial analyses) using the Punched agar diffusion method was carried out on the four isolated fractions comparatively with a standard drug Cipromax fort (a broad spectrum antibiotic). A total of fourteen test organisms were used consisting of eleven bacteria strains and three fungi with stem fractions being active on all the test organisms given their average diameter zones of inhibition which ranged between 10mm and 28mm. Comparatively, the standard drug cipromax fort was of better antimicrobial effect than the stem extracts. However, these fractions could serve as antimicrobial to diseases caused by these test organisms as acclaimed by ethno medical practitioners and as confirmed from their MIC, MBC and MFC results.

**KEYWORDS**: Cola gigantea, Phytochemical analysis, antimicrobial analysis, cipromax fort.

|                                   | <br>                               |
|-----------------------------------|------------------------------------|
| Date of Submission: 31 March 2014 | Date of Publication: 30 April 2014 |
|                                   |                                    |

# I. INTRODUCTION

There has been man's unending desire for good and healthy living from ancient days which has led to his curiosity to examine all aspects of his environment by trial and error (Daziel, 1961). This gave rise to traditional medicine practice which was the only way of saving life in the olden days before the advent of modern medicine as earliest humans used various plants to treat illness (Ajiwe *et al.*, 2008). Unfortunately, the misuse of these life saving medications coupled with bacteria's amazing ability to adapt has led to an increase in the number of drug resistant organisms (Nester *et al.*, 2004). Some people even speculate that we are in danger of seeing an end to the era of antimicrobial medications. In response, scientists are involved in much current research devoted to the phytochemical investigation of higher plants such as *Cola gigantea* which have ethno botanical information associated with them.

Cola gigantea a large forest tree found both in relatively dry and wet parts of the rain forest has been reported to have a high anti-microbial activity against *Staphylococcus albus, Bacillus subtilis, Aspergillus niger and Candida albicans* thus showing its potency as antibiotics. (Adeniyi *et al.*, 2004; Agyare *et al.*, 2012; Idu *et al.*, 2000; Reid *et al.*, 2005; Sonibare *et al.*, 2009).

So far from the literature available, the isolation and structural elucidation of the active phytochemicals in the stems of Cola gigantea has not been done hence this present study which aims at identifying the antimicrobials, isolating and structurally elucidating the active components.

# II. EXPERIMENTAL

### Plant Collection, Identification and Preparation

The stems of the plant *Cola gigantea* used in this study were collected from Okpuno in Awka North Local Government Area of Anambra State, Nigeria. It was identified by Mr Ugwuozor a taxonomist of the Department of Botany, Nnamdi Azikiwe University, Awka and authenticated by Prof J.C Okafor as *Cola gigantea* of the *Stercliacea* family. Fresh stems samples were dried under shade for two weeks, pulverised and stored in a glass jar for subsequent analyses

# **Extraction and Fractionation into Different Classes**

500g of the pulverized stem was macerated in 2500ml of methanol/water in a ratio of 4:1 for about 1hour 30minutes. The mixture was filtered and the filterate heated on a water bath to one-tenth of the volume at temperature of 40°C. The filterate was then acidified with 2ml of 2M  $H_2SO_4$  and then extracted with chloroform. The mixture was separated using a separatory funnel. The chloroform extract was heated to dryness and re-dissolved with chloroform which gave the chloroform extract (Harbone, 1998). This extract was thereafter fractionated into four different fractions using a combination of column and preparative thin layer chromatography.

# **Phytochemical Screening**

The crude stem extract was evaluated for the presence of acidic components, flavonoids, saponins, reducing sugar, carbohydrates, tannins, resins, steroids, terpenoids, alkaloids, proteins, cardiac glycosides and oil using standard procedures (Harbone, 1998).

# **Trace Metal Detemination**

Using Atomic Absorption Spectrophotometer model varian AA 280, trace metal level of the stem was determined. Determined trace metals included As, Cd, Cr, Co, Fe, Pb, Mn, Hg, Ni and Zn.

# **Anti-Bacterial Assay**

The sensitivity of the fractions and standard drug (cipromax fort) against the selected test organisms (Bacillus typhi, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Proteus vulgaris, Salmonella typhi, Staph albus, Staphylococcus aureus, Streptococcus muteus, Streptococcus pyogeus, Aspergillus flavis, Aspergillus niger and Candida albican) was carried out using the Punched agar diffusion method (Bryant, 1972).

The MIC and MBC were determined using the serial dilution method while the MFC was determined using the Punched agar diffusion method (Bryant, 1972).

# Structural Elucidation

Using a combination of these spectroscopic techniques such as FTIR, UV-visible, GCMS,  $H^1$ -NMR and  $C^{13}$ -NMR structures and molecular formulae were proposed for the four isolated fractions of the stem of *Cola gigantea*.

# **Results and Discussion**

The results of the organoleptic examination of the stems are as given in Table 1

#### Table 1: Organoleptic Examination of the stems of Cola gigantea

| Stem Cream Odourless Tasteless | Parameter | Colour | Odour     | Taste     |
|--------------------------------|-----------|--------|-----------|-----------|
|                                | Stem      | Cream  | Odourless | Tasteless |

The tasteless nature of this plant part gave an insight into the absence of the bitter pigment (tannin) as confirmed during the phytochemical screening.

| Sampl | e/        |             |                |            |             |            |                 |            |  |
|-------|-----------|-------------|----------------|------------|-------------|------------|-----------------|------------|--|
| Tests | Alkaloids | Cardiac     | Cyanogenic     | Flavonoids | Saponin     | Steroids   | Tannins         | Terpenoids |  |
|       |           | Glycosides  | Glycosides     |            | -           |            |                 | -          |  |
| Fresh | ++        | •           | +++            | ++         | -           | ++         | -               | -          |  |
| Stems |           |             |                |            |             |            |                 |            |  |
|       |           |             |                |            |             |            |                 |            |  |
| Note: | - Abse    | ent         |                | +          | Present in  | 1 low conc | entration       |            |  |
|       | ++ Pre    | esent in hi | oh concentra   | tion +++   | - Present i | n verv hio | h concentra     | ation      |  |
|       |           | bont in m   | Sil concentitu |            | 1 resent i  | in very mg | , in concentrat | uion       |  |

**Table 2**: Phytichemical Compositon of the Stems of C.gigantea

The results of the phytochemical analysis of *C.gigantea* showed the presence of alkaloids, flavonoids and steroids in high concentration while cardiac glycosides, saponin, tannins and terpenoids conspicuously absent. The very high presence if cyanogenic glycosides in this plant part is a cause for concern as it has the ability to release cyanohydric acid a very toxic substance (Harbone, 1998). The above phytochemicals are the main basis for the plant's medicinal properties and starting materials in the synthesis of new drugs today. Furthermore, the presence of alkaloids in high concentration in the stem signified possession of antimicrobial activity, cyto toxicity and sometimes neutralization of poisons within the herb. Flavonoids which are predominantly present help to reinforce capillary walls, improving exchange of nutrients and oxygen between the blood and tissues (Harbone. 1998).

Table 3: Result of Thin Layer Chromatography (TLC) of crude extract of the stems of Cola gigantea

| Parameter       | <b>R</b> <sub>f</sub> Value | Solvent Systems             |
|-----------------|-----------------------------|-----------------------------|
| Stem fraction 1 | 0.2667                      | Chloroform: Methanol (80:5) |
| Stem fraction 2 | 0.4133                      | Chloroform: Methanol (80:5) |
| Stem fraction 3 | 0.5667                      | Chloroform: Methanol (80:5) |
| Stem fraction 2 | 0.7667                      | Chloroform: Methanol (80:5) |

The thin layer chromatography of the stem extract showed four spots under iodine vapour with different Rf values as given in Table 3.

| Table 4: Results of the Mineral Elements in the Stems of Cola | gigantea |
|---------------------------------------------------------------|----------|
|---------------------------------------------------------------|----------|

| Element     | As     | Cd    | Cr    | Со   | Fe   | Pb   | Mn   | Hg    | Ni   | Zn   |
|-------------|--------|-------|-------|------|------|------|------|-------|------|------|
| Stems(mg/g) | 0.03 ( | 0.04  | 0.57  | 0.70 | 1.01 | 2.88 | 0.31 | 0.28  | 4.95 | 0.00 |
| WHO         | 0.01   | 0.003 | 0.005 |      |      | 0.01 | 0.50 | 0.001 | 0.02 | -    |
| Standard    |        |       |       |      |      |      |      |       |      |      |

The values of the elements found in the stems of *C.gigantea* were above the WHO recommendations hence there is the need for reduction of the trace metal levels to permissible levels before human consumption this would mitigate the adverse effects of these on human body as a result of their gradual accumulation. Other useful elements like Fe was equally present in substantial amount with Zn conspicuously absent (Table 4).

| Table 5: Results of Antimicrobial | activity of fractions | of the Stems of C.gigantea |
|-----------------------------------|-----------------------|----------------------------|
|-----------------------------------|-----------------------|----------------------------|

| Extracts  | Vol.Use  | d    | Averag | e Diam | eter (mm) | ) Zones o | f Inhibitic | on on Tes | st Orgar | isms  |       |       |
|-----------|----------|------|--------|--------|-----------|-----------|-------------|-----------|----------|-------|-------|-------|
|           | $(cm^3)$ |      |        |        |           |           |             |           |          |       |       |       |
|           | E.       | Coli | S.Au   | P.A    | K.P       | P.V       | S.M         | S.P       | B.T      | S.T   | E.A   | S.A   |
|           | ()       | VCTC | 10481) | L.C.I  | L.C.I     | L.C.I     | L.C.I       | L.C.I     | L.C.I    | L.C.I | L.C.I | L.C.I |
| Cipromax  | 0.05     | 18   | 22     | 14     | 18        | 30        | 14          | 16        | 14       | 24    | 35    | 24    |
| Stem      | 0.05     | 14   | 18     | 12     | 12        | 16        | 14          | 12        | NA       | 14    | 28    | 20    |
| Fraction1 |          |      |        |        |           |           |             |           |          |       |       |       |
| Stem      | 0.05     | 18   | 20     | 16     | 14        | 18        | 16          | 14        | 10       | 12    | 22    | 18    |
| Fraction2 |          |      |        |        |           |           |             |           |          |       |       |       |
| Stem      | 0.05     | 12   | 24     | 18     | 16        | 24        | 14          | 14        | 12       | 15    | 18    | 16    |
| Fraction3 |          |      |        |        |           |           |             |           |          |       |       |       |
| Stem      | 0.05     | 20   | 28     | 16     | 16        | 28        | 16          | 12        | 12       | 14    | 24    | 18    |
| Fraction4 |          |      |        |        |           |           |             |           |          |       |       |       |
|           |          |      |        |        |           |           |             |           |          |       |       |       |

S.Au= Staphylococcus Aureus, P.A=Pseudomonas aeroginosa, K.P = Klebsiella pneumonia, P.V=Proteus vulgaris, S.M= Strept muteus, B.T=Bacillus typhi, S.T=Salmonella typhi, E.A=Enterobacter aerogenes, S.A= Staph albus, S.P= Strept pyogenes

NCTC = National Collection of Type Cultures. L.C.I = Local Clinical Isolate. NA= No Action

**Table 6**: Results of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the stem extracts of *C.gigantea*

| Extracts            | I            | Average          | Diameter          | r (mm) 7        | Lones of        | Inhibitio         | on on T         | est Org        | ganism              | S                 |                    |                  |  |
|---------------------|--------------|------------------|-------------------|-----------------|-----------------|-------------------|-----------------|----------------|---------------------|-------------------|--------------------|------------------|--|
|                     | E.C<br>(NCTC | Coli<br>2 10481) | S.Au<br>L.C.I     | P.A<br>L.C.I    | K.P<br>L.C.I    | P.V<br>L.C.I      | S.M<br>L.C.I    | S.P<br>L.C.I   | B.T<br>L.C.I        | S.T<br>L.C.I      | E.A<br>L.C.I       | S.A<br>L.C.I     |  |
| Cipromax            | K MIC<br>MBC | 0.0625<br>0.125  | 0.0313<br>0.0625  | 0.125<br>0.250  | 0.0625<br>0.125 | 0.0156<br>0.0313  | 0.125<br>0.250  | 0.125<br>0.250 | 0.125<br>0.250      | 0.0313<br>0.0625  | 0.0156<br>0.0313   | 0.0313<br>0.0625 |  |
| Stem<br>Fraction1   | MIC<br>MBC   | 0.125<br>0.250   | 0.0625<br>0.125   | 0.250<br>0.50   | 0.250<br>0.50   | 0.125<br>0.250    | 0.250<br>0.500  | 0.250<br>0.500 | NA<br>NA            | 0.250<br>0.500    | 0.0156<br>0.0313   | 0.0313<br>0.625  |  |
| Stem<br>Fraction2   | MIC<br>MBC   | 0.0625<br>0.125  | 0.0625<br>0.125   | 0.0625<br>0.125 | 0.125<br>0.250  | 0.0625<br>0.125   | 0.6250<br>0.125 | 0.125          | 0.250<br>0.500      | 0.250<br>0 0.500  | 0.0625<br>0.125    | 0.6250<br>0.125  |  |
| Stem<br>Fraction3   | MIC<br>MBC   | 0.250<br>0.1250  | 0.03125<br>0.0313 | 0.0625<br>0.250 | 0.0625<br>0.250 | 0.03125<br>0.0313 | 0.250<br>0.250  | 0.250<br>0.500 | ) 0.125<br>) 0.50   | 0.0625<br>0 0.500 | 0.063 0.063 0.0625 | 0.0313<br>0.125  |  |
| Stem 1<br>Fraction4 | MIC<br>MBC   | 0.0625<br>0.125  | 0.0156<br>0.0313  | 0.125<br>0.250  | 0.125<br>0.250  | 0.0156<br>0.0313  | 0.125<br>0.250  | 0.250<br>0.500 | ) 0.250<br>)   0.50 | 0.250<br>0 0.500  | 0.0313<br>0.0625   | 0.063<br>0.125   |  |

S.Au= Staphylococcus Aureus, P.A=Pseudomonas aeroginosa, K.P = Klebsiella pneumonia, P.V=Proteus vulgaris, S.M= Strept muteus, B.T=Bacillus typhi, S.T=Salmonella typhi, E.A=Enterobacter aerogenes, S.A= Staph albus, S.P= Strept pyogenes

NCTC = National Collection of Type Cultures L.C.I = Local Clinical Isolate NA= No Action

The results of the antibacterial activity on eleven bacteria species both gram positive bacteria (*Staphylococcus albus*, *Bacillus typhi, Streptococcus pyogenes* etc) and gram negative bacteria (*Escherichia coli and Pseudomonas aeroginosa*) showed that the various fractions from this plant cell could serve as broad spectrum anti-microbial (Cunha, 2009). The high presence of flavonoids in the plant part as shown from the preliminary tests could account for this high antimicrobial effect as one of the undisputed functions of flavonoids and related polyphenols is their role in protection against microbial invasion. Several recent papers report the regular presence of antibacterial activity among flavonoids (Alinnor, 2007; Penecilla *et al.*, 2011). Specifically, the value of the fractions on *Staphylococcus aureus* and *Staphylococcus albus* confirmed the work done by Haraguchi on the effect of flavonoids on *Staphylococcus aureus* a causative organism for skin and wound infections, abscess and osteomyelitis which according to Greenwood *et al.*, (1992) could account for its use in the treatment of the aforementioned diseases. Comparatively, all stem fractions had similar antimicrobial activity with the standard drug Cipromax fort except stem fraction 1 which showed no activity on *Bacillus typhi*.

|            | Table 7 | : Results of Antifung        | gal activities of the S | Stem fractions of <i>C.gigantea</i>   |   |
|------------|---------|------------------------------|-------------------------|---------------------------------------|---|
| Extracts   | Vol.Use | d (cm <sup>3</sup> ) Average | e Diameter (mm) Z       | Cones of Inhibition on Test Organisms | 5 |
|            |         | Candida Albican              | Aspergillus flavis      | Aspergillus Niger                     |   |
|            |         | L.C.I                        | L.C.I                   | L.C.I                                 |   |
| Cipromax   | 0.05    | NA                           | NA                      | NA                                    |   |
| Stem       | 0.05    | 14                           | 10                      | 12                                    |   |
| fraction 1 |         |                              |                         |                                       |   |
| Stem       | 0.05    | 12                           | 12                      | 10                                    |   |
| Fraction 2 |         |                              |                         |                                       |   |
| Stem       | 0.05    | 10                           | 12                      | 10                                    |   |
| fraction 3 |         |                              |                         |                                       |   |
| Stem       | 0.05    | 8                            | 10                      | 13                                    |   |
| Fraction 4 |         |                              |                         |                                       |   |

L.C.I = Local Clinical Isolate NA= No Action

| Extracts      |     | Presence or Absence | of growth on Test Orga | nisms             |  |
|---------------|-----|---------------------|------------------------|-------------------|--|
|               |     | Candida Albican     | Aspergillus flavus     | Aspergillus Niger |  |
|               |     | L.C.I               | L.C.I                  | L.C.I             |  |
| Cipromax fort | MIC | -                   | -                      | -                 |  |
|               | MFC | -                   | -                      | -                 |  |
| Stem          | MIC | 0.25                | 0.25                   | 0.25              |  |
| Fraction 1    | MFC | 0.50                | 0.50                   | 0.50              |  |
| Stem          | MIC | 0.25                | 0.25                   | 0.25              |  |
| Fraction2     | MFC | 0.50                | 0.50                   | 0.50              |  |
| Stem          | MIC | 0.25                | 0.25                   | 0.25              |  |
| Fraction 3    | MFC | 0.50                | 0.50                   | 0.50              |  |
| Stem          | MIC | -                   | 0.25                   | 0.25              |  |
| Fraction 4    | MFC | -                   | 0.50                   | 0.50              |  |
|               |     |                     |                        |                   |  |

Table 8: Results of MIC and MFC of the stem fraction of C.gigantea

All the stem fractions showed similar activities on the test organisms with the stem fraction 4 totally inactive on *Candida albican* confirming the report by Ibeh *et al.*, 2003 that an inhibitory diameter of 10mm or less indicated that the organism was resistant. An inhibitory zone diameter of 11-15mm showed intermediate effect while a 16mm and above indicated that the organism was susceptible to the compound (Ibeh et al., 2003). Hence, the stem of Cola gigantea had an intermediate antimicrobial effect as most values fell between 11-14mm as shown in Table 7.

# Spectroscopic Analysis And Structural Elucidatiom

| Table 9: FTIR results of stem fraction 1 |  |  |  |  |  |  |  |  |
|------------------------------------------|--|--|--|--|--|--|--|--|
| otion                                    |  |  |  |  |  |  |  |  |
| etch of alcohols, Phenols and esters     |  |  |  |  |  |  |  |  |
| retch for alkanes and aromatics          |  |  |  |  |  |  |  |  |
| retch for esters                         |  |  |  |  |  |  |  |  |
| formation bonds of esters                |  |  |  |  |  |  |  |  |
| formation bonds of alkyl groups          |  |  |  |  |  |  |  |  |
| formation of methyl groups               |  |  |  |  |  |  |  |  |
|                                          |  |  |  |  |  |  |  |  |

| λ max (nm) | Chromophore description                         |
|------------|-------------------------------------------------|
| 741.00     | C-OH Stretch of Phenols                         |
| 651.50     | C=C of Aromatic ( $\pi \longrightarrow \pi^*$ ) |
| 604.00     |                                                 |
| 278.50     | C=O (n $\longrightarrow \pi^*$ )                |
|            |                                                 |

**Table 11**: Summary of the H<sup>1</sup> and C<sup>13</sup> NMR results of stem fraction 1

| H <sup>1</sup> δ (ppm) & | <b>Coupling Constant</b> | <b>Types of Proton</b> | С <sup>13</sup> б (ррт) | Types of Carbon |
|--------------------------|--------------------------|------------------------|-------------------------|-----------------|
| Multiplicity             | (MHz)                    |                        |                         |                 |
| 9.9 (d)                  | 0.0176                   | RCO <sub>2</sub> H     | 177.73                  | C=O             |
| 7.8 (t)                  |                          | PhOH                   | 153.48                  | ArC             |
| 7.2 (s)                  |                          | ARH                    | 153.24                  | ArC             |
| 6.6(multiplet)           | 1.1365                   | ARH                    | 118.83                  | ArC             |
| 5.2                      |                          | ROH                    | 114.41                  | ArC             |
| 4.25 (multiplet)         | 4.9389                   | RO-CH <sub>2</sub>     | 114.27                  | ArC             |
| 3.89                     |                          | CH <sub>2</sub>        | 103.09                  | ArC             |

www.theijes.com

| 2.06 | $CH_2$ | 86.97 | C-0              |  |
|------|--------|-------|------------------|--|
|      |        | 77.35 | C-O              |  |
|      |        | 77.03 | C-O              |  |
|      |        | 76.72 | C-O              |  |
|      |        | 72.58 | C-0              |  |
|      |        | 60.55 | C-0              |  |
|      |        | 56.27 | C-0              |  |
|      |        | 56.00 | C-0              |  |
|      |        | 34.12 | CH <sub>2</sub>  |  |
|      |        | 33.85 | $\tilde{CH_2}$   |  |
|      |        | 31.91 | $CH_2$           |  |
|      |        | 31.42 | $CH_2$           |  |
|      |        | 30.21 | $CH_2$           |  |
|      |        | 30.02 | $CH_2$           |  |
|      |        | 29.67 | $\tilde{CH_2}$   |  |
|      |        | 29.44 | $CH_2$           |  |
|      |        | 29.33 | $CH_2$           |  |
|      |        | 29.24 | $\tilde{CH_2}$   |  |
|      |        | 29.10 | CH <sub>2</sub>  |  |
|      |        | 24.90 | $CH_2$           |  |
|      |        | 24.77 | CH <sub>2</sub>  |  |
|      |        | 22.66 | $\tilde{CH_{2}}$ |  |
|      |        | 14.17 | $\tilde{CH_2}$   |  |
|      |        | 14.07 | CH2              |  |

The combination of the FTIR, UV-VS, H1-NMR, C13 NMR results with major fragments in GCMS gave rise to the proposed structure for the compound of fraction 1 (fig 1.0)



**Fig 1.0.** 4-((1E)-3-Hydroxyl-1-propenyl)-2-methoxy phenol-cyclopropane carboxylic acid, 2-pentyl-5,7-dodecadiyne-1,12-diol

A part of the above compound (4-((1E)-3-Hydroxyl-1-propenyl)-2-methoxy phenol) has been reported to have antimicrobial effect, anti-oxidant and anti-inflammatory (Ravikumor *et al*, 2012). This could account for the antimicrobial effect of this plant part as seen in the result (Tables 5 and 6)

| Table 12: FTIR Results of stem fraction 2 |                                                      |  |
|-------------------------------------------|------------------------------------------------------|--|
| Wave band $(cm^{-1})$                     | Chromophore description                              |  |
| 3338.89                                   | NH Stretch of amines and amides                      |  |
| 2964.69                                   | C-H Stretch of alkanes and aromatics                 |  |
| 1399.0                                    | C=O stretch of amides and imides                     |  |
| 1064.78                                   | C-O deformation bonds for alcohols and esters        |  |
| 880.53                                    | C-H deformation bonds for aromatics and alkyl groups |  |
| 441.71                                    | C-H deformation bond of methyl groups                |  |

| Table 13: UV-visible results of stem fraction 2 | of stem fraction 2 | e results | UV-visible | Table 13: |
|-------------------------------------------------|--------------------|-----------|------------|-----------|
|-------------------------------------------------|--------------------|-----------|------------|-----------|

| $\lambda \max(nm)$ | Description                                        |
|--------------------|----------------------------------------------------|
| 740.00             | $C-NO_2$ absorption bonds                          |
| 655.00             | -C=C- for aromatics (n $\rightarrow \pi^*$ )       |
| 605.00             | -C=C- for aromatic ( $\pi \longrightarrow \pi^*$ ) |
| 537.00             | $C=N(n \longrightarrow \pi^*)$                     |
| 502.00             | HN-C=O (n $\longrightarrow \pi^*$ )                |

|                      | able 14: Summary of | of the $H^1$ and $C^{13}$ NMR r | esults of stem fraction | 2          |
|----------------------|---------------------|---------------------------------|-------------------------|------------|
| $H^1 \delta$ (ppm) & | Coupling            | Types of                        | С <sup>13</sup> б (ррт) | Types of   |
| Multiplicity         | Constant<br>(MHz)   | Proton                          |                         | Carbon     |
| 9 65 (d)             | 1 5329              | ArCH                            | 178 / 376               | C-0        |
| 7.5                  | 1.5527              | ArCH                            | 153 4795                | C=0<br>C=N |
| 6.75 (multiplet)     | 172 611             | ArCH                            | 118 8586                | C-N        |
| 5 3080               | 172.011             | H-C-N                           | 114 4370                | Ç          |
| 4 25                 |                     | HN-C=0                          | 114 2895                | C-Ċ=C      |
| 3.9020               |                     | ArCH                            | 108.6722                | ,,         |
| 3.8945               |                     | ArCH                            | 103.1469                | "          |
| 3.8886               |                     | ArCH                            | 102.8906                | "          |
| 3.8837 (multiplet)   | 288.6066            | ArCH                            | 77.3760                 | C-0        |
| 3.8675               |                     | ArCH                            | 77.0583                 | C-0        |
| 2.3379               |                     | ArCH                            | 76.7464                 | C-0        |
| 1.6(d)               |                     | ArCH                            | 72.5560                 | C-0        |
| 1.3518               |                     | ArCH                            | 70.2710                 | C-0        |
| 1.3208               |                     | R-C-OH                          | 65.1115                 | C-0        |
| 1.3031               |                     | R-CH <sub>2</sub> OH            | 63.3675                 | C-0        |
| 1.2767               |                     | O=C-CH <sub>2</sub>             | 60.5403                 | C-0        |
| 0.9141               |                     | R-CH <sub>2</sub> O             | 56.2633                 | СН         |
| 0.9073               |                     | R-CH <sub>2</sub>               | 55.9952                 | СН         |
| 0.8976               |                     | $=C-CH_3$                       | 37.2578                 | CH         |
| 0.8800               |                     | -C-CH <sub>3</sub>              | 34.1495                 | CH         |
|                      |                     |                                 | 33.9627                 | CH         |
|                      |                     |                                 | 31.9002                 | CH         |
|                      |                     |                                 | 31.4185                 | СН         |
|                      |                     |                                 | 30.2048                 | СН         |
|                      |                     |                                 | 29.6641                 | СН         |
|                      |                     |                                 | 29.5837                 | СН         |
|                      |                     |                                 | 29.4312                 | СН         |
|                      |                     |                                 | 29.3253                 | CH         |
|                      |                     |                                 | 29.2366                 | СН         |
|                      |                     |                                 | 29.0890                 | CH         |
|                      |                     |                                 | 28.9472                 | $CH_2$     |
|                      |                     |                                 | 27.1991                 | $CH_2$     |
|                      |                     |                                 | 24.8883                 | $CH_2$     |
|                      |                     |                                 | 24.7542                 | $CH_2$     |
|                      |                     |                                 | 22.6562                 | $CH_3$     |
|                      |                     |                                 | 14.0662                 | $CH_3$     |

A combination of the FTIR, UV-Visible, <sup>1</sup>H-NMR and <sup>13</sup>C-NMR results and the fragments generated from GCMS spectrum gave rise to the proposed structure shown in fig 2



**Fig 2.0**: Phenol,4-(3-hydroxy-1-propenyl)-2-methoxy-2-(2-nitrophenoxy) benzaldehyde-4-isopropyl-3-methyl phenoxy acetylhydrazone

| Table 15: FTIR results of stem fraction 3           |  |  |
|-----------------------------------------------------|--|--|
| Description                                         |  |  |
| NH Stretch of amines, amides and imides             |  |  |
| C-H Stretch for alkanes and aromatics               |  |  |
| C=O stretch of esters                               |  |  |
| C-O deformation bonds of esters                     |  |  |
| C-H deformation bonds of aromatics and alkyl groups |  |  |
| C-H deformation of methyl groups                    |  |  |
|                                                     |  |  |

| Table 16:          | UV-Visible Results of Stem fraction 3           |
|--------------------|-------------------------------------------------|
| $\lambda \max(nm)$ | Chromophore description                         |
| 741.50             | $C=N (n \longrightarrow \pi^*)$                 |
| 651.00             | C=C of Aromatic ( $\pi \longrightarrow \pi^*$ ) |
| 605.50             |                                                 |
| 521.00             | $C=N(n \longrightarrow \pi^*)$                  |
| 305.00             | $C=O(n \longrightarrow \pi^*)$                  |

# Table 17: Summary of H<sup>1</sup> and C<sup>13</sup> NMR results of Stem fraction 3

| H <sup>1</sup> δ (ppm) & | Coupling | Types of           | С <sup>13</sup> <b>б</b> (ppm) | Types of |
|--------------------------|----------|--------------------|--------------------------------|----------|
| Multiplicity             | Constant | Proton             |                                | Carbon   |
|                          | (MHz)    |                    |                                |          |
| 9.7000 (d)               | 0.0119   | RCO <sub>2</sub> H | 179.0917                       | C=O      |
| 7.2921 (n)               | 1.061    | RCONH              | 130.1955                       | C=O      |
| 5.3769                   |          | PhOH               | 130.0046                       | ArC      |
| 5.3708                   |          | ArH                | 129.7186                       | ArC      |
| 5.3618                   |          | ArH                | 128.0714                       | ArC      |
| 5.3466                   |          | ArH                | 127.9112                       | ArC      |
| 3.9583                   |          | RCHO               | 102.8978                       | ArC      |
| 3.9316 (multiplet)       | 0.8532   | RCH <sub>2</sub> O | 77.3650                        | C-0      |
| 3.8987                   |          | RCH <sub>2</sub>   | 77.0472                        | C-0      |
| 2.7500                   |          | $RCH_2$            | 76.7295                        | C-0      |
| 2.2500 (multiplet)       | 5.9412   | $RCH_2$            | 70.2923                        | C-0      |
| 1.6453                   |          | $RCH_2$            | 65.1104                        | C-0      |
| 1.6285                   |          | $RCH_2$            | 63.3624                        | C-0      |
| 1.3299                   |          | $RCH_2$            | 60.5357                        | C-0      |
| 1.2780                   |          | $RCH_2$            | 56.2604                        | C=NH     |
| 1.2074                   |          | $RCH_2$            | 55.9973                        | O-C-NH   |
| 1.1821                   |          | $RCH_2$            | 37.2615                        | $CH_2$   |
| 1.0230                   |          | $RCH_2$            | 34.0054                        | $CH_2$   |
| 0.9506                   |          | $RCH_2$            | 31.8988                        | $CH_2$   |
| 0.9090                   |          | $RCH_2$            | 31.5088                        | $CH_2$   |
| 0.8989                   |          | $RCH_2$            | 30.1913                        | $CH_2$   |
| 0.8814                   |          | $RCH_2$            | 30.1058                        | $CH_2$   |
| 0.8481                   |          | $RCH_2$            | 29.7430                        | $CH_2$   |
| 0.8284                   |          | $CH_3$             | 29.6645                        | $CH_2$   |
|                          |          |                    | 29.5757                        | $CH_2$   |
|                          |          |                    | 29.4969                        | $CH_2$   |
|                          |          |                    | 29.4226                        | $CH_2$   |
|                          |          |                    | 29.3243                        | $CH_2$   |
|                          |          |                    | 29.2972                        | $CH_2$   |
|                          |          |                    | 29.2294                        | $CH_2$   |
|                          |          |                    | 29.1250                        | $CH_2$   |
|                          |          |                    | 29.0687                        | $CH_2$   |
|                          |          |                    | 28.7094                        | $CH_2$   |
|                          |          |                    | 28.4851                        | $CH_2$   |
|                          |          |                    | 27.1957                        | $CH_2$   |
|                          |          |                    | 25.6276                        | $CH_2$   |

| 24 8811 | CH |
|---------|----|
| 24.0011 |    |
| 22 6540 |    |
| 22.0340 |    |
| 14 0605 |    |

Based on the above results and the major fragments of the GCMS Spectra, a structure was suggested for the compound as given in fig 3.



# $C_{47}H_{59}N_{2}O_{7} \\$

Fig 3: 3,4,5-trimethyl-1-H-pyrano [2,3-C] pyrazol-6-one cyclopropane octanoic acid,2-[[2-[(2ethylcyclopropyl)methyl] cyclopropyl]methyl]-methylester-5-methoxy-2-phenyl-7-chromanol

|                               | Table 18: FTIR Results of stem fraction 4               |
|-------------------------------|---------------------------------------------------------|
| Wave band (cm <sup>-1</sup> ) | Description                                             |
| 3 <u>366.86</u>               | OH Stretch (H-bonded) for carboxylic acids and alcohols |
| 2905.86                       | C-H Stretch for aromatics and alkanes                   |
| 1701.27                       | C=O stretch for esters and acids                        |
| 1401.33                       | C=C stretch of alkanes and aromatics                    |
| 1061.85                       | C-H deformation bonds of aromatics and alkyl groups     |
| 879.57                        | C-H deformation of alkyl and methyl groups              |
| 454.25                        | C-H deformation of methyl groups                        |

Table 19: UV-Visible results of Stem fraction 4

| $\lambda \max (nm)$                                 | Chromophore description                                                                            |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 795.50<br>740.50                                    | -HC=O absorption bonds (n $\longrightarrow \pi^*$ )                                                |
| 661.50         604.50         532.00         504.50 | C=C of aromatics ( $\pi \longrightarrow \pi^*$ )<br>C=C of alkenes ( $\pi \longrightarrow \pi^*$ ) |
| 427.50<br>408.00                                    | $C=O(n \longrightarrow \pi^*)$                                                                     |

| $H^1 \delta$ (ppm) & Coupling               | Types of         | C <sup>13</sup> δ (ppm) | Types of |
|---------------------------------------------|------------------|-------------------------|----------|
| Multiplicity Constant                       | Proton           |                         | Carbon   |
| (MHZ)<br>0.75 (t) 0.1418                    | DCUO             | 120 0407                | C-0      |
| 9.75(l) 0.1418<br>7.2017 (multiplet) 2.1452 | KCHU<br>A        | 130.8487                | C=0      |
| 7.2917 (multiplet) 2.1455                   |                  | 130.0154                |          |
| 5.200 (multiplet) 6.6961                    | $K_2 C = CH$     | 129.7237                | RC=CR    |
| 3.0893                                      | RCH <sub>2</sub> | 77.0194                 | C-0      |
| 2.3038                                      | RCH <sub>2</sub> | 77.0184                 | C-0      |
| 2.1000                                      | RCH <sub>2</sub> | /0./011                 | C-U      |
| 1.3392                                      | RCH <sub>2</sub> | 38.1152                 | $CH_2$   |
| 1.5385<br>1.2206 (modtinhot)                | RCH <sub>2</sub> | 37.2734                 | $CH_2$   |
| 1.3500 (multiplet)                          | KCH <sub>2</sub> | 34.1142<br>22.0400      | $CH_2$   |
| 1.5111 > 45.2820                            | KCH <sub>2</sub> | 33.9400<br>23.1539      | $CH_2$   |
| 1.2044                                      | KCH <sub>2</sub> | 32.1328<br>21.0009      | $CH_2$   |
| 0.9227                                      | RCH <sub>2</sub> | 31.9098                 | $CH_2$   |
| 0.9166                                      | RCH <sub>2</sub> | 31.5958                 | $CH_2$   |
| 0.9068                                      | RCH <sub>2</sub> | 31.5155                 | $CH_2$   |
| 0.8891                                      | $CH_3$           | 30.3939                 | $CH_2$   |
|                                             |                  | 29.6733                 | $CH_2$   |
|                                             |                  | 29.5803                 | $CH_2$   |
|                                             | 1                | 29.5038                 | $CH_2$   |
|                                             | 1                | 29.4284                 | $CH_2$   |
|                                             |                  | 29.3322                 | $CH_2$   |
|                                             |                  | 29.2316                 | $CH_2$   |
|                                             |                  | 29.1272                 | $CH_2$   |
|                                             |                  | 29.0693                 | $CH_2$   |
|                                             |                  | 28.9362                 | $CH_2$   |
|                                             |                  | 28.9362                 | $CH_2$   |
|                                             |                  | 27.9780                 | $CH_2$   |
|                                             |                  | 27.3428                 | $CH_2$   |
|                                             |                  | 27.2052                 | $CH_2$   |
|                                             |                  | 25.6333                 | $CH_2$   |
|                                             |                  | 24.7053                 | $CH_2$   |
|                                             |                  | 23.7840                 | $CH_2$   |
|                                             |                  | 23.1092                 | $CH_2$   |
|                                             |                  | 22.6613                 | $CH_2$   |
|                                             |                  | 22.5479                 | $CH_2$   |
|                                             |                  | 21.0429                 | $CH_2$   |
|                                             |                  | 14.0667                 | $CH_3$   |

A combination of the FTIR, UV-Visible, H<sup>1</sup>-NMR and C<sup>13</sup>-NMR results with the major fragments of the GCMS spectra gave rise to the suggested structure for the compound as in fig 4.



C37H59O7 Fig 4: 1,2-benzene dicarboxylic acid,dioctyl-methyl-12-oxo-9-dodecenoate

# **III. CONCLUSION**

The stem of the plant *Cola gigantea* has shown to be potent medicinal plant for antimicrobial/pharmaceutical applications and that the effectiveness of the plant in the treatment of veneral diseases, abscess, oesteomytlitis, wound infection etc was due to the presence of some secondary metabolities. The active isolates from this plant parts: 4-((1E)-3-Hydroxyl-1-propenyl)-2-methoxy phenol-cyclopropane carboxylic acid,2-pentyl-5,7-dodecadiyne-1,12-diol; Phenol,4-(3-hydroxy-1-propenyl)-2-methoxy-2-(2-nitrophenoxy) benzaldehyde-4-isopropyl-3-methyl phenoxy acetylhydrazone; 3,4,5-trimethyl-1-H-pyrano [2,3-C] pyrazol-6-one cyclopropane octanoic acid,2-[[2-[(2-ethylcyclopropyl)methyl] cyclopropyl]methyl]-methylester-5-methoxy-2-phenyl-7-chromanol and 1,2-benzene dicarboxylic acid,dioctyl-methyl-12-oxo-9-dodecenoate could serve as precursors for drug production.

#### IV. Acknowledgements

All thanks to God of all creation from whom all grace, knowledge and enablement to accomplish proceeds for the success of this work.

I will also thank most especially my project supervisor and the Head of Department, Pure and Industrial Chemistry; Prof V.I.E Ajiwe for his fatherly guidance, support and understanding in the course of this work. Special thanks also to my parents Mr and Mrs S.N Onyema, my siblings and Amaka for their love, prayers and support both financially and otherwise throughout this programme.

I will not also forget to appreciate Miss Clementina for her unrelenting efforts to see to the successful completion of this work and also Mr Peter Roberts of the University of Cape Town, South Africa for assisting us with the NMR analyses.

I am also grateful to NARICT, Zaria for analyzing the samples for FTIR, UV and GCMS. Equally, I am grateful to Mrs Ifeoma Mbakwe for helping with the microbial assay.

Finally, to all those who contributed in one way or the other towards the success of this work, I pray the good Lord to reward you all richly

#### REFERENCES

- [1]. Adeniyi, B.A., Groves, M.J., and Gangadharam, P.R.J., (2004). Invitro antimycobacterial activities of three species of cola plant extracts, (sterculiaceae). Phytotherap Res., 18(5), 414-418.
- [2]. Adodo, A., (1998). Nature Power (Revised Edition), Don Bosco Publishers, Akure, Nigeria, p.41.
- [3]. Agyare, C., Koffuor, G.A., Boamah, V.E, Adu, F., Mensah, K.B, Adu-Amoah L., (2012). Evidence Based Complementary and Alternative Medicine, Hindawi Publishing Corporation, India, p.902394
- [4]. Ajiwe, V.I.E., Dimonyejiaku, N., Ajiwe, A.C., Chinweuba, A.J., and Chendo, N.M., (2008). Preliminary study on the pharmaceutical constituents of *emilia sonchifolia* leaf, Anachem Journal, 2(2), 302-309.
- [5]. Alinnor, I.J., (2007). Preliminary Phytochemical and antibacterial activity screening of seeds of *Garcinia Cola*, Journal Chemical Society Of Nigeria, 32(2), 41-47.
- [6]. Benjamin, L.T., (1991). Coca-Cola, Caffeine and Mental Deficiency- Harry Hollingworth and the Chattanooga trial of 1999, Journal Histol Behavioural Science, 27(1), 42-45.
- [7]. Blades, C., (2000). Functional foods or Neutraceutics, Nutrition and Food Sci., 30(2), 73-75.
- [8]. Cunha, B.A., (2009). Antibiotic Essentials, 8<sup>th</sup> edn., Jones and Barlett Learning Publishers, United States, p.180.
- [9]. Dalziel, J.M., (1961). The Useful Plants of West Tropical Africa, the Crown Agents, London, p.308.
- [10]. Harbone, J.B., (1998). Phytochemical Methods- A guide to Modern Techniques of plant Analysis, 3rd edn., Chapman and Hall, London, pp.36-89.
- [11]. Hoffman, K.L, Han, I.Y, and Dawson P.L., (2001). Antimicrobial effects of Corn Zein Films Impregnated with Nisin, Lauric acid and EDTA, Journal food protection, 64(6), 885-889.
- [12]. Ibeh, I.N and Uraih, N. (2003). Practical Microbiology, Vol.1, Ambik Press Ltd, pp82-93.
- [13]. Idu, M., (2010). Documentationon Medicinal Plants sold in markets in Abeokuta, Nigeria, Tropical Journal of Pharmaceutical Research, 9 (2), 110-118.
- [14]. Nestler, M.T and Hurley, D., (2004). Microbiology; A Perspective, 4<sup>th</sup> edn., Mc Graw-Hill, New York, pp 230-253.
- [15]. Ouattar, B, Simard R.E., Piett, G., Begin, A., and Holley, R.A., (2000). Anti-listerial activity of a polymeric film coated with hybrid coatings doped with Enterocin 416K1 for use as bioactive food packaging, International Journal of food microbial, 62 (1-2), 139-148.
- [16]. Penecilla, G.L., Magno, C.P.,(2011). Antibacterial activity of extracts of twelve common medicinal plants from phillipines. J.med.plants research, 5(16),3975-3981.
- [17]. Reid, K.A., Jager,A.K., Light,M.E., Mulholland, D.A., and Staden, J.V., (2005). Phytochemical and Pharmacological screening of Sterculiacea Species and Isolation of antibacterial compounds, J. Ethnopharmacol, 97(2), 285-291.
- [18]. Sonibare, M.A., Soladoye, M.O., Esan, O.O., and Sonibare, O.O., (2009). Phytochemical and Antimicrobial Studies of four Species of *cola schott and Endl. (sterculiaceae)*. Afr. J. Trad Complementary Alternative Medicine, 6 (4), 518-525.