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-----------------------------------------------------------ABSTRACT---------------------------------------------------------- 

In this paper, we present the anti-synchronization of two chaos-exhibiting systems-Bullard and Rikitake 

dynamos using nonlinear active control techniques in a master-slave topology. Nonlinear active control laws 

were derived and added to the algebraic structure of the Bullard slave system and the Lyapunov stability 

criteria was applied to verify the negative definiteness of the error dynamics as a condition for 

antisynchronization of the two systems. Simulation results confirmed the effectiveness of the approach in 

coupling the dynamics of the systems.  
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I. INTRODUCTION 
     During the past half of a century since the discovery of chaos in weather by the physicist, Edward 

Lorenz [1] and the experimental control of chaos by other physicists such as Ott et al [2] and Pyragas [3], 

intense research has continued to spurn out literature on the ubiquity of chaos in various natural and man-

made systems such as economics [4], psychology [5], ecology [6], food [7], . Applications of chaos real life 

designs have continued to grow even as new chaotic systems have continued to be evolved through research 

over the years. Chaos is a phenomenon of nonlinear systems which are extremely sensitive to perturbation in 

their parametric structures leading to unpredictability in their future evolution. Chaos synchronization or anti-

synchronization occurs when two dissipative chaotic systems are coupled such that, in spite of the exponential 

divergence of their nearby trajectories, synchrony or anti-synchrony is achieved in their chaotic behaviours 

as t   . Different methods have been developed to synchronize or anti-synchronize chaotic systems. These 

include Fourier series expansion [8], adaptive control [9], active control [10], fuzzy control [11], impulsive 

control [12], and sliding mode control [13] among others. A simplified architecture for anti-synchronization of 

two chaotic systems is depicted in Fig. 1. The nonlinear control laws synchronize or anti-synchronize the time 

series trajectories of the two coupled systems according to some laws governing the choice synchronization 

scheme where
1 2 3 1 2 3

(0 ) (0 ), (0 ), (0 ) (0 ) (0 ), (0 ), (0 )x x x x y y y y   . Synchronization has found 

application in secure communication and other systems while studies on anti-synchronization of chaos have 

been found to be useful in mitigating electrical power outage and system management [14]-[15].   

 
Figure 1: Simplified architecture for antisynchronization of two chaotic systems 
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II. DESCRIPTION OF THE RIKITAKE AND BULLARD DYNAMO SYSTEMS 

The Rikitake system is is a simplified dynamic model which attempts to explain the irregular polarity 

switching of the earth's geomagnetic field. The physics of the Rikitake system has been studies by various 

authors [16]-[17], while other authors have studies synchronization of the system using various methods [18] - 

[19]. Mathematically, the system is represented by three coupled-differential equations given as follows: 
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Where 
1 2 3
, ,x x x  are state variables, , 0   are positive constants. For values of 2 , 3 .4 6 4 1  

, 
the system evolves the 2-D phase portraits  and  state trajectories shown in Fig.2 and Fig. 3.. 
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Figure 2. 2D Phase portraits of the Rikitake dynamo system 

0 50 100
-6

-4

-2

0

2

4

6

8

t(s)

x1

0 50 100
-4

-3

-2

-1

0

1

2

3

4

5

t(s)

x2

0 50 100
0

1

2

3

4

5

6

7

8

9

t(s)

x3

 
Figure 3. State trajectories of the Rikitake dynamo system 

 

     The Bullard dynamo system is also related to the dynamic problems associated with the earth's 

core and was first studied in detail by E.C. Bullard [20]. The physics of the system may be found in [21]-[22]. 

The algebraic structure of the system is represented by three coupled differential equations given as:  
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Where 
1 2 3
, ,y y y  are state variables, , , , 0    are positive constants. For values of 

2 , 2 0 , 2 , 4       ,  the system evolves the 2-D phase portraits  and  state trajectories shown in 

Fig.4 and Fig.5. 
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Figure 4: 2D Phase portraits of the Bullard dynamo system 
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Figure 5: State trajectories of the Bullard dynamo system 

 

III. ANTISYNCHRONIZATION OF THE RIKITAKE AND BULLARD SYSTEMS 
     In this section, the anti-synchronization problem is presented. While the design of nonlinear 

controllers for antisynchronization of chaotic system is not a new challenge, it is however interesting as it has 

continued to elicit interest from researchers due to its potential applications in engineering and non-

engineering systems. It can therefore be safely said that every (anti)synchronizable chaotic system is a potential 

candidate for multi-dimensional applications in such fields as biomedical engineering, astronomy, economics 

and finance, automotive engineering, radar engineering amongst numerous other fields. Let eq. (1) be the 

master system and eq. (2) be the slave system. The controlled slave system can be represented as 
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Where 1 2 3
, ,u u u

 are nonlinear controllers to be designed. Let the antisynchronization error be represented as  
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Where 
1 2 1 2

( , , ... ) , ( , , ... )
T T

n n
x x x x y y y y  and              

 
1 1 1 2 2 2 3 3 3

; ; ;
n n n

e y x e y x e y x e y x         . The objective of the study is to design the 

nonlinear active controllers , 1, 2 , 3
i

u i    such that the trajectories  
1 2 3
, ,y y y  of the slave system can come 

into anti-synchrony with   trajectories 
1 2 3
, ,x x x  of the master system, subject to different initial conditions    

(0 ) (0 )x y such that  

 

                                                0 0
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t t
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(5)  

By adding (3) to (1) using the relation in (4), the error dynamics becomes 
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By simplifying (6) and using (4), the error dynamics becomes 
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From (7), the nonlinear active control laws are given as  
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Where , 1, 2 , 3
i

i  is given as  
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And  is a diagonal matrix whose diagonals elements 
1 1 2 2 3 3

[ , , ]d ia g     constitutes the feedback 

coefficients of the controllers, such that  
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By inserting the elements of (10) in (8) and using (9), the error dynamics reduced to 
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The Lyapunov stability criteria is used to verify the asymptotic convergence of the error dynamics as t   .  

We choose the Lyapunov function candidate ( .)V  such that
'

(.) 0; (.) 0V V  . We choose the following 

candidate 
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By using (11) in the partial derivative of (12), we have 

 

                                                  

.
2 2 2

1 2 3 1 1 1 2 2 2 3 3 3
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(13) 

Which is Hurwitz for all 0
i j

  . Consequently, the error dynamics will converge asymptotically to the origin 

as t   . 

IV. SIMULATION RESULTS 
     The Rikitake dynamo (1), Bullard dynamo (2) and the nonlinear control law (8) were simulated in 

MATLAB environment for the following parameters  2 , 2 0 , 2 , 4        and 

2 , 3 .4 6 4 1   for initial conditions 
1 2 3

[ (0 ), (0 ), (0 )] [ 1 0 , 7 , 4 ]x x x     and 

1 2 3
[ (0 ), (0 ), (0 )] [ 1 6 , 5, 1]y y y     . The initial conditions of the antisynchronization error dynamics 

becomes
1 2 3

[ (0 ), (0 ), (0 )] [ 2 6 , 1 2 , 5]e e e     .
 
The resultant plots are given in the following figures. 
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Figure 6: Simulated results of the antisynchronized systems - (a) plot of the asymptotically converged error 

dynamics; (b) Plot of the converged control laws; (c) Antisynchronized trajectories x1-y1; (d) 

Antisynchronized trajectories x2-y2 and (e) Antisynchronized trajectories x3-y3. 

 

V. CONCLUSION 
     In this paper, the exponential divergent trajectories of the chaotic Bullard and Rikitake dynamos 

were antisynchronized using nonlinear active control laws. Lyapunov stability criterion was applied to the 

error dynamics inorder to test for asymptotic convergence. The partial derivative of the Lyapunov function 

candidate was Hurwitz, and as a result, the error dynamics and active control laws asymptotically converged in 

transient time. In power system engineering, antisynchronization has found usefulness in mitigation of power 

outage.   
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