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-------------------------------------------------------ABSTRACT---------------------------------------------------
Mardia et al (1989) considered the problem of estimating the parameters of nonsingular multivariate  normal
distribution with certain constraints. Nagmur (2003) considered the problem of estimating the mean sub-vector
of non-sigular multivariate normal distribution with certain constraints. In this paper we try to estimate mean
sub-vector under some different constraints and submatrix of ∑ with certain constraints for a nonsingular
multivariate normal distribution.
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I. INTRODUCTION
Mardia et al (1989) considered the estimation of parameters of non-singular multivariate normal

distribution with and without constraints. Nagnur (2003) tried to obtain the Mle of sub mean vector of the
distribution which can be useful in some practical problems. Mardia et al (1989) considered two type of

constraints on the mean vector .

i. = k i.e.  is known to be proportional to a known vector  . For example, the elements of x could
represent a sample of repeated measurements, in which case  = k1

ii. Another type of constraint is R = r , where R and r are pre-specified
The first type of constraint was considered by Nagnur (2003) for sub mean vector of the distribution. In this
paper, we consider type of constraint for sub mean vector and give the explicit expression for the estimators.
Mardia et al (1989) also considered constraint on variance-covariance matrix , viz =k0 where 0 is known.
We consider constraint on sub matrix of  and obtain its estimator with constraints.

2. ML Estimator of µ :

Let 1x , 2x ,…, nx be n iid observation from Np ,  population, where  is positive definite matrix.

Suppose that x ,  and are partitioned as follows :
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where
11

S : r x r ,
22

S : s x s ,with r + s = p.

Our problem is to estimate : r  1 under the constraint R = r , where  R and r are pre-specified.

Maximizing the log likelihood subject to this constraint may be achieved by augmenting the log likelihood with
a Lagrangian expression, i.e. we maximize

L+ = L - n ' (Rµ - r) (2.1)

where  is a vector of  Lagrangian  multipliers and L is given by

   1 11
22 22 log 2 logn nnpL tr S x x           

'
(2.2)

Case-1 ( Known )

With  assumed to be known,  to find  m.l.e.'s of
1

 we are required to find  for which the solution to

1

0L


  satisfies the constraint R
1

 = r.

Observe that L can be expressed as

   1 111
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log 2 log
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}{np n n
L tr S x x
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(2.3)

Now
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21 21
1

' 0L n x n x nR 

        


l (2.4)

and

   22 21

2 1
2

2 1
0L n x n x 


       


(2.5)

From (2.5) we get

     1 12 2

1 21

22
x x 


      (2.6)

Substituting for  2 2
x  in (2.4), we get
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   111 12 22 21

1111
' 0n x n x nR  

          
 

Since

  111 12 22 21 1

11
. .

      
.,

we get  1

111 1
' ..n x nR    (2.7)

Thus  1 1
x  =

11
'R  ,

Pre-multiplying  by R gives    
111

'Rx r R R    if the constraint
1

R  =  r is to be satisfied. Thus,

we take,

   1

11 1
'R R Rx r


   ,so

1 111
'x R 



   (2.8)

From (6), the ML estimator of
2

 is

   122 21
2 1 12

x x 
 
     (2.9)

Case 2 ( ∑ unknown) :
When  the covariance matrix ∑ is not known, we have to estimate

1 2
,  and ∑ using the likelihood

function (2.3) The ML estimator of ∑ is


*S

n
  , where

*S =


n

i 1

'i ix x 
               
  (2.10)

and 

 is  the ML estimator of  under the restriction R

1
 = r.

To estimate (
1 2
,  ) the likelihood equations are given by (2.4) and (2.5). Now we have

 *S S
n n

   +  'x x     (2.11)

From  (2.11), we have

    1 1
'SI x xn  

 
      (2.12)

where   
1 2

 ,     
 

is the solution of (2.4) and (2.5) after replacing ij by  ij .
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Since
1

 and
2

 have  to satisfy these equations, from (2.12) we get the equations

 11 12

11 1 211
' ' / '  /S n S n      (2.13)

 21 22

11 21
/ /O S n S n  (2.14)

From  above equations it follows that
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=  1

11
1

'

 (2.15)

Hence, from (2.7), we have

  111 1
'x S R  n (2.16)

Pre multiplying (2.16) by R  we get

 1
Rx r =  11

'RS R n (2.17)

provided the constraints R = r is to be satisfied.
Thus we have

   11 1

1
'n RS R Rx r


  (2.18)

   11

1

1 111 1
' 'x S R RS R Rx r 

   (2.19)

The ML estimator of  is

   122 21
2 12 1

x S S x 


    

3. ML Estimators of ∑ :
According to Mardia et al (1989), the likelihood function of p-variate normal distribution with constraints

0
k   , where

0
 is known, is

 1 1

0
2 , , log log 2n l x k p k k        (3.1)

where    1 1
0 0

0 0
'tr S x x         is independent of k.

Our problem is to obtain estimate of k for the constraint 11011  k , where 110 is known and
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11 : r x r is a submatrix of  . If we let 
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Further, by considering 1
0
 as
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      ; we get

   1 1 1 1 1 1 1 1 1 2
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1
tr S tr S tr S S S S O k

k
                          

(3.3)

Since,  1 1 2
110.2 110

1
O k

k
      (3.4)

and

 1 1 1 1 2
22.10 22 22 21 110

1
O k

k
            , (3.5)

We have

   1
0'x x    

                1 1 1 1 21
22 11 22 21 110 1 22 2 1 1 2 1 21 22 2 1

' ' ' 2kx x x x x x x O k          
             

(3.6)
Using results (3.2), (3.3) and (3.6) in (3.1) we get

l =      1 212 , , . log *n l x k Const p r k O k
k

       (3.7)

where
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(3.8)

Thus, if  is known, then the mle of k is
*

k̂
p r





(3.9)
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If  is unknown and unconstrained, then the mle's of  is x and that of k is rp * , together these gives
1

1 22 22ˆ sb tr S
k

p r


  


(3.10)

Note that for the constraint 22022  k , where 220 is known, the mle's of k̂ for known  is  sp 

and that of for unknown  is  sp * where

   1 1
1 11 1111 1 11 1

'rd tr S x x   
       ,

* 1

1 11 11r
d tr S 


   with

 11121
1

22121
1

1121
1

22121





   rr trd

4. Illustrative Example :

1. Estimation of sub mean vector with constraint
1

R r  .

For 47 female cats the body weights (kgs), heart weights (gms), lungs weights (gms) and Kidney weights (gms)
were recorded. The sample mean vector and covariance matrix are
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0.3072 0.1057 0.1525 2.0136
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Note that here x and S are unconstrained mle's of  and . However, from other information we know

that
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0.07810 0.15620 0.21745 0.31033

0.15620 1.56200 0.17767 0.07322

0.21745 0.17767 2.15436 0.17338

0.31033 0.07322 0.17338 2.04885

 
               
 

With above given information we estimate sub-mean vector
1

 = 21 under the constraint 1R r  where

R : 2 x 2 and r : 2 x 1 are pre-specified as follows :
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andR 









91875.012500.0
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For unknown , we have
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For known , we have

1 2

2.0804 2.4999 3.9219
, ,

0.1706 10.0006 3.1205
  

  
 
 
  
 

   
        

2. Estimation of sub-matrix 11 of  with constraint 11 = k110.

For 110 =
0.1 0.2

0.2 2.0

 
 
 

, we have for known  k


= 0.49426 and for unknown , we have k




= 0.4886

REFERENCES
[1]. Anderson , T.W. (2003) “An introduction to multivariate Statistical Analysis”. (3rd edition), Wiley Series in probability and

Statistics.
[2]. Mardia, K.V., Kent, J.T. and Bibby, J.M. (1989). “Multivariate Analysis”. Academic Press, London.
[3]. Nagnur, B.N. (2003) : A short note on estimating the mean vector of a multivariate non-singular normal distribution. ISPS Vol-7

83-86.


