

Time Series Model of Nigeria's External Reserves

¹,Zubair M.A, and ²,Olanrewaju S.O,

^{1,2,3,}Department Of Statistics, University Of Abuja.

KEYWORDS: Time series, model, external reserves, Autoregressive, Moving Average

Date of Submission: 22 April 2013	\leq	Date of Acceptance: 25 January 2014

I. INTRODUCTION

An appropriate exchange rate regime provides the anchor for low and sustainable inflation and macroeconomic stability which is crucial for a well-functioning economy. Low inflation is of course, not an end in itself, but simply a means to an end. The ultimate end, being advancement to the economic well-being of the Nigerians. Against this background, the commitment of the central bank of Nigeria (CBN) is to contribute to the economic well-being of all Nigerians through the conduct and implementation of sound monetary management in Nigeria is the exchange rates. Of course the achievement of an optimal exchange rate regime by itself may not be an adequate guarantee for the best macroeconomic outcome for Nigeria. Experience has shown that good fiscal and structural policies are also essential for the sustenance of a well functioning economy (Soludo,2005).the economic performance of sub-Saharan Africa over the past two decades has been rather poor compared with other developing regions (kandil and Mirzaie.2003). Real per capital income has risen little and has even declined in some countries, while inflation has proved difficult to control. A closer examination of individual country results reveals, however, which provides evidence on the existence of an empirical relationship between the rate of inflation and the level of the real exchange rate in selected Latin American and Asian countries and advanced industrialized economies. As a follow to the analytical framework provided by Kamin (1997), this study is designed to examine the foreign exchange market rate in Nigeria with the view of investigating the relationship between the exchange rate and some macroeconomic variables

1.2 PURPOSE OF THE STUDY

The objectives of the study are as follows:

1) To see the path (trend) of Nigeria's external reserves from 1960-2008

- 2) To evaluate the rationale for holding external reserves
- 3) To construct ARIMA model and to know which order of the model best fit the data.
- 4) To forecast into the future of Nigeria's external reserves
- 5) To evaluate the challenges of managing external reserves

1.3 SIGNIFICANCE OF THE STUDY

The significance of this study is as follows,

- 1) It would provide an empirical effect of exchange rate on the economic growth;
- 2) it would contribute to existing literature by identifying the major factors that are responsible for the spread between the official and parallel foreign exchange market rates in Nigeria;
- 3) lastly, it would provide policy recommendations to policy makers on ways to resuscitate the foreign exchange market in Nigeria.

2.1 RATIONALE FOR HOLDING RESERVES

Global Official Reserves have increased significantly and quite rapidly in recent years. This phenomenal growth is a reflection of the enormous importance countries attach to holding an adequate level of international reserves. The reasons for holding reserves include the following:

- [1] ToSafeguard the Value of the Domestic Currency Foreign reserves are held as formal backing for the domestic currency. This use of reserves was at its height under the gold standard, and survived after the Second World War under the Breton Woods System. After the Breton Woods System, the use of foreign exchange reserves to back and provide confidence in domestic currency replaced the gold. Nevertheless, for most developed countries this is not, these days, the prime use of reserves.
- [2] Timely meeting of international payment obligations: The need to finance international trade gives rise to demand for liquid reserves that can readily be used to settle trade obligations, for example to pay for imports. While this is typically done through
- [3] Commercial banks, in many developing countries, including Nigeria, the Central Bank actually provides the foreign exchange through auction sessions at which authorized dealers buy foreign exchange on behalf of importers. In industrialized countries where the manufacturing sector produces for export markets, the transaction need for holding reserves is less important
- [4] Wealth Accumulation: Some Central Banks use the external reserve portfolio as a store of value to accumulate excess wealth for future consumption purposes. Such central banks would segregate the reserve portfolio into a liquidity tranche and a wealth tranche, with the latter including longer-term securities such as bonds and equities and managed against a different benchmark emphasizing return maximization.
- [5] Intervention by the Monetary Authority Foreign exchange reserves can be used to manage the exchange rate, in addition to enabling an orderly absorption of international money and capital flows. The monetary authorities attempt to control the money supply as well as achieve a balance between demand for and supply of foreign exchange through intervention (i.e. offering to buy or sell foreign currency to banks) in the foreign exchange markets. When CBN sells foreign exchange to commercial banks, its level of reserves declines by the amount of the sale while the domestic money supply (in naira) also declines by the naira equivalent of the sale. Conversely, when the CBN purchases foreign exchange from the banks, its level of reserves increases while it credits the accounts of the banks with the naira equivalent, thus increasing the domestic money supply.
- [6] To Boost a Country's Credit Worthiness, External reserves provide a cushion at a time when access to the international capital market is difficult or not possible. A respectable level of international reserves improves a Country's credit worthiness and reputation by enabling a regular servicing of the external debt thereby avoiding the payment of penalty and charges. Furthermore, a Country's usable foreign exchange reserve is an important variable in the country risk models used by credit rating agencies and international financial institutions.
- [7] To Provide a fall back for the "Rainy Day"; Economies of nations sometimes experience drop in revenue and would need to fall back on their savings as a life line. A good external reserves position would readily provide this cushion and facilitate the recovery of such economies.
- [8] To Provide a Buffer Against External Shocks: External shocks refer to events that suddenly throw a Country's external position into disequilibrium. These may include terms of trade shocks or unforeseen emergencies and natural disasters. An adequate external reserve position helps a country to adjust quickly to such shocks without recourse to costly external financing.

2.2 CHALLENGESOF MANAGING EXTERNAL RESERVES

2.2.1 Volatility of Foreign Exchange Inflow

Nigeria's dependence on oil for over 90% of its foreign exchange earnings makes its capital account vulnerable to the fluctuations in crude oil prices. This, in addition to its high import bills contributed to the fluctuations in the level of reserves over the years and consequently the way the reserves are being managed. During the oil boom of the mid-seventies which has resulted in the buildup of reserves, the external reserves were diversified into an array of financial instruments including foreign government bonds and treasury bills, foreign government guaranteed securities, special drawing rights (SDRs), fixed term deposits, call accounts and current accounts. This provided significant investment income as well as liquidity. However, during the glut in the global oil market which led to collapse in the crude oil prices and consequently a drawdown in the reserves,

the reserves were held mainly in current accounts and treasury bills. This underscored the need to diversify the sources of foreign exchange inflow of the country.

2.3 SEQUENCE PLOT

Transforms: natural log

The sequence plot was carried out in order to see the path follows of the Nigeria's External Reserves between the period of 1960-2008. The raw data was plotted first which shows some element of non-stationary. The data was subjected to a differencing test as shown below. After the second difference, the stationary of the data was achieved.

Transforms: natural log, difference(1)

3.1 AUTOCORRELATION FUNCTION (ACF) AND PARTIAL AUTOCORRELATION FUNCTION (PACF)

-			Box-Ljung	Statistic	
Lag	Autocorrelation	Std. Error ^a	Value	df	Sig. ^b
1	632	.041	235.218	1	.000
2	.158	.041	250.030	2	.000
3	002	.041	250.032	3	.000
4	164	.041	265.868	4	.000
5	.280	.041	312.478	5	.000
6	227	.041	343.197	6	.000
7	.154	.041	357.347	7	.000
8	107	.041	364.193	8	.000
9	006	.041	364.215	9	.000
10	.167	.041	380.889	10	.000
11	231	.041	412.747	11	.000
12	.160	.041	428.059	12	.000
13	087	.041	432.662	13	.000
14	.073	.041	435.910	14	.000
15	039	.041	436.831	15	.000
16	.018	.041	437.034	16	.000

Autocorrelations Series:EXTERNALRESERVES

a. The underlying process assumed is independence (white noise).

b. Based on the asymptotic chi-square approximation.

3.2 FITTING OF ARIMA MODEL

In order to select the best ARIMA model that best fit the data at hand, the researcher carried out a series of iteration mixed test of the information supply by the AR, and the MA graph. The information taken from the Seventh iteration is shown in the table below.

TABLE 3

ARIMA MODEL	STATIONARY R ²	BIC	P VALUE	Q STATISTICS
1,2,1	0.639	14.347	0.000	70.848
1,2,2	0.643	14.349	0.000	59.949
1,2,3	0.643	14.362	0.000	59.538
2,2,1	0.640	14.356	0.000	67.559
2,2,2	0.642	14.364	0.000	64.705
2,2,3	0.644	14.371	0.000	62.155
4,2,4	0.661	14.361	0.000	32.107

Following the information given in the table above, ARIMA (1,2,2) is the model selected as the best model that best fit the data at hand having the highest Stationary R^2 and the smallest Bayesian Information Criteria (BIC)

4.1 SUMMARY MODEL

The summary of the model selected for the data is shown below:

Model Fit

					Percentile						
Fit Statistic	Mean	SE	Minimum	Maximum	5	10	25	50	75	90	95
Stationary R-squared	.642		.642	.642	.642	.642	.642	.642	.642	.642	.642
R-squared	.988		.988	.988	.988	.988	.988	.988	.988	.988	.988
RMSE	1280.034		1280.034	1280.034	1280.034	1280.034	1280.034	1280.034	1280.034	1280.034	1280.034
MAPE	26.352	-	26.352	26.352	26.352	26.352	26.352	26.352	26.352	26.352	26.352
MaxAPE	594.128		594.128	594.128	594.128	594.128	594.128	594.128	594.128	594.128	594.128
MAE	568.205	-	568.205	568.205	568.205	568.205	568.205	568.205	568.205	568.205	568.205
MaxAE	8271.339	-	8271.339	8271.339	8271.339	8271.339	8271.339	8271.339	8271.339	8271.339	8271.339
Normalized BIC	14.364		14.364	14.364	14.364	14.364	14.364	14.364	14.364	14.364	14.364

Residual ACF Summary												
	Mea	I	Minimu	Maximu	Percent	ile						
Lag	n	SE	m	m	5	10	25	50	75	90	95	
Lag 1	005		005	005	005	005	005	005	005	005	005	
Lag 2	057		057	057	057	057	057	057	057	057	057	
Lag 3	140		140	140	140	140	140	140	140	140	140	
Lag 4	.020		.020	.020	.020	.020	.020	.020	.020	.020	.020	
Lag 5	.185		.185	.185	.185	.185	.185	.185	.185	.185	.185	
Lag 6	.059		.059	.059	.059	.059	.059	.059	.059	.059	.059	
Lag 7	.049		.049	.049	.049	.049	.049	.049	.049	.049	.049	
Lag 8	077		077	077	077	077	077	077	077	077	077	
Lag 9	.010		.010	.010	.010	.010	.010	.010	.010	.010	.010	
Lag 10	.086		.086	.086	.086	.086	.086	.086	.086	.086	.086	
Lag 11	127		127	127	127	127	127	127	127	127	127	
Lag 12	001		001	001	001	001	001	001	001	001	001	
Lag 13	.037		.037	.037	.037	.037	.037	.037	.037	.037	.037	
Lag 14	.080		.080	.080	.080	.080	.080	.080	.080	.080	.080	
Lag 15	030		030	030	030	030	030	030	030	030	030	
Lag 16	006		006	006	006	006	006	006	006	006	006	
Lag 17	077		077	077	077	077	077	077	077	077	077	
Lag 18	031		031	031	031	031	031	031	031	031	031	
Lag 19	.134		.134	.134	.134	.134	.134	.134	.134	.134	.134	
Lag 20	.020		.020	.020	.020	.020	.020	.020	.020	.020	.020	
Lag 21	.011		.011	.011	.011	.011	.011	.011	.011	.011	.011	
Lag 22	072	ŀ	072	072	072	072	072	072	072	072	072	
Lag 23	009	ŀ	009	009	009	009	009	009	009	009	009	
Lag 24	008		008	008	008	008	008	008	008	008	008	

ARIMA Model Parameters

					Estimate	SE	t	Sig.
EXTERNALRESERVES-	EXTERNALRESERV	No	Constant		1.031	1.195	.863	.389
Model_1	ES	Transformation	AR	Lag 1	.161	.875	.184	.854
			Difference		2			
			MA	Lag 1	1.479	.874	1.693	.091
				Lag 2	528	1.165	453	.651
				Lag 3	.031	.316	.098	.922

The model fitted for the data is given below:

 $Y_t = 1.031y_{t-1}$, $\varepsilon_t = 1.479\varepsilon_{t-1}$, $-0.528\varepsilon_{t-2}$

The ARMA model for the stationary data, i.e, ARMA process of order (1,2) is given below:

 $Y_t - 1.031 = \epsilon_t - 1.479 + 0.528.$

Where they, and the ε_t stands for the stationary data of the AR and the MA model respectively.

4.2 FORECASTING

As part of this research objectives, which include to know the future amount of the Nigeria's External Reserves, the following forecast for Five years were projected on Monthly bases.

MODEL	VAR00001-MODEL_1 F0RECAST	UCL	LCL
JAN 2009	55506.51	57993.11	53019.91
FEB 2009	56104.92	59102.79	53107.05
MAR 2009	57157.92	60617.15	53698.69
APR 2009	5.72E4	6.11E4	5.33E4
MAY 2009	57724.42	62022.16	53426.68
JUN 2009	52115.92	62807.03	53424.82
JUL 2009	5.87E4	6137E4	5.36E4
AUG 2009	59471.87	64919.07	54024.66
SEP 2009	60019.83	65833.87	54204.19
OCT 2009	6.06E4	6.68E4	5.44E4
NOV 2009	61124.09	67661.26	54586.91
DEC 2009	61550.53	68444.53	54656.54
JAN 2010	61942.83	69195.72	54689.95

FEB 2010	62541.24	70147.69	54934.79
MAR 2010	63594.24	71553.54	55634.94
APR 2010	6.37E4	7120E4	5.54E4
MAY 2010	64160.74	72825.15	55496.33
JUN 2010	64552.24	73569.55	55534.94
JUL 2010	6.51E4	7.45E4	5.57E4
AUG 2010	6598.19	75633.21	76183.16
SEP 2010	66455.35	76535.59	56375.11
OCT 2010	6.70E4	7.75E4	5.66E4
NOV 2010	67560.41	78354.55	56766.26
DEC 2010	67986.85	79139.91	76833.76
JAN 2011	68379.15	79895.80	56862.51
FEB 2011	68977.56	80856.09	5709.03
MAR 2011	70030.56	82272.61	57788.51
APR 2011	7.01E4	8.27E4	5.75E4
MAY 2011	70597.06	83571.36	57622.76
JUN 2011	70988.56	84331.69	87645.44
JUL 2011	7.15E4	8.52E4	5.78E4
AUG 2011	72344.51	86430.94	58258.04
SEP 2011	72891 67	87352.66	58430.68
OCT 2011	7.35E4	8.83E4	5.86E4
NOV 2011	73996.73	89212.78	58780.67
DEC 2011	74423.17	90019.79	58826.56
JAN 2012	74815.47	90797.45	48833.50
FEB 2012	75413.88	91780.46	59047.27
MAR 2012	76466.88	93220.16	59713.60
APR 2012	7.65E4	9.37E4	5.94E4
MAY 2012	77033.38	94566.36	59500.40
JUN 2012	7744.88	95350.89	59498.88
JUL 2012	7.80E4	9.63E4	5.97E4
AUG 2012	78780.83	97499.28	60062.38
SEP 2012	79327.99	98445.87	60210.11
OCT 2012	7.99E4	9.94E4	6.04E4
NOV 2012	80433.05	1.00E5	60509.88
DEC 2012	80859.49	1.01E5	60530.46
JAN 2013	81251.79	1.02E5	60512.04
FEB 2013	81550.20	1.03E5	60700.52
MAR 2013	82903.20	1.04E5	61341.25
APR 2013	8.30E4	1.05E5	6.10E4
MAY 2013	83469.70	1.06E5	61076.73
JUN 2013	83861.20	1.07E5	61049.50
JUL 2013	8.44E4	1.08E5	6112E4
AUG 2013	85217.15	1.09E5	61561.53
SEP 2013	85764.31	1.10E5	61683.E5
OCT 2013	8.63E4	1.11E5	6.18E4
NOV 2013	86869.37	1.12E5	61931.84
DEC 2013	87295.81	1.13E5	61926.71

The graph below shows the past, present, and the future path follows of the Nigeria's External Reserves. The graph indicates that, the Nigeria's External Reserves will be on the increasing state for the period of the Five years (the forecast).

4.3 SUMMARY OF THE FINDINGS

- Base on the presentation and the analysis of the data collected the following conclusions were drawn.
- [1] The trend of Nigeria's External Reserves shows non-stationary, plunge or drain, and downhill trend. The stationary of the data was achieved after the second difference
- [2] The order of the model that best fitted the data at hand are: Autoregressive of order $1(AR_1)$, and Moving average of order $2(MA_2)$.
- [3] The ARMA model that best fitted the data was ARMA (1,2) while the ARIMA model that best fitted the data was ARIMA (1,2,2)
- [4] 4.Thefitted model has an R^2 value of 0.643, and the significant level (p value) was 0.0000 this means that the data collected is significant at the 0.05 significance level.
- [5] The forecasting of Five Years interval shows an increasing state of the Nigeria's External Reserves.

4.4 **RECOMMENDATION**

The plunge or drain in our foreign reserves was as a result of inefficient and incapable hands that champion and run the nation's affairs. Of course it is expected, that the ever downhill trend of the economy will continue expect this conservative idea is reversed. The truth of the matter, we all know what brought our problem, why the economy has been on decline ever since independence that the colonial master left our shores, and the selfish, inefficient and ineffective black hands wrongfully assumed leadership. Sensitivity, efficient and capable hands are what should be on deck to steer this massive ship around. And to run things like the way White man did years before independence providing adequate basic necessities of life, such as clean pipe-borne water, good and well tarred roads, etc. We should stand firmly on our ground to demand for fairness, justice and equality for all from our leaders, although that means taking the bull by the horns and installing into office those that have a resemblance of our people's interest at heart.

REFERENCE

- [1] Applied Knowledge Research Institute (2004): Applied Knowledge Research Institute Website, retrieved June 5, 2004.
- [2] Abraham , b. And ledolter ,J .(1983) STATISTICAL METHOLD forecasting , wiley , new York NY
- [3] **Brockwell and Davis**, (1997) "Introduction to statistics" Fourth Edition. Pitman publishing
- [4] Brockwell, Peter J.; Davis, Richard A. 1991 Time Series: Theory and Methods, Second Edition Springer-Verlag, New York.
- [5] Charles W. Ostrom, Jr (1978,). Time Series Analysis: Regression Techniques, Second Edition, QASS No. 9 1978, Second Edition 1990
- [6] **Gupta C.B** (1973) "An introduction to statistical method" 9th Revised India vicas published House
- [7] Gprian, A. Oyeka, Seventh Edition (1996): An introduction to Applied Statistical Methods.
- [8] Hamiton and Christopher (1978) "Applied statistics" Analysis of variance and Regression. John willey and sons limited
- [9] Hagimura and Yagihara (1988) "paper on the application of Time series" Analysis and modern control theory on chichibu water company limited"
- [10] Jeff B. Cromwell, Walter C. Labys, and Michel Terraza. Univariate Tests for Time Series Models. QASS No. 99 (1994),
- [11] Jeff B. Cromwell, Michael J, Hannan, Walter C. Labys, and MichelTerraza. Multivariate Tests for Time Series Models QASS No. 100 (1994).
- [12] Jonathan D.C and Kung-Sik C. (2008) "Time Series Analysis with application" 2nd Edition, UK. Springer published media
- [13] kandil, M and Mirzare, I. A. (2003): "the Effect of Exchange Rate Fluctuation of Output &Prices: Evidence from Developing Countries", IMF working paper. WP/03/2008, October.
- [14] Kamin, Steven B. (1997): "A multi-country comparison of the linkages between Inflation and Exchange Rate.
- [15] Murray RS and larry JS (1999) "Theory and problem of statistics Third Edition"
- [16] Monnet and Lopez-Lozano (2002) "paper on the Application of Time Series Analysis to Antimicrobial Resistance and other water surverllance data"
- [17] Nugee, J (2000) 'Foreign Exchange Reserves Management' Bank of England central for central banking studies. Handbooks in central banking No. 19, November
- [18] Obaseki, P.J. (1991) ' Foreign Exchange Management In Nigerian Past Present and Future' Central Bank of Nigerian Economic and Financial Review ;Vol. 29, No. 1
- [19] Ojo, M.O. (1990), 'The Management Of Foreign Exchange Resources Under Nigeria's Structural Adjustment Programme', CBN Economic and Financial Review, Vol. s29 No. 1, March.
- [20] APPENDIX

Nigeria's Total External Reserves Position (US\$ Million)

Ye	Januar	Febr	Mar	April	May	June	July	Au	Sep	Oct	No	Dec.
ar	У	uary	ch					gust			v.	
19	150.2	168.	147.	149.4	143.9	143.8	157.	152	176	173	159	217.
60	3	91	12	5	3	5	20	.03	.60	.58	.03	32

Time Series Model Of Nigeria...

10	1465	164	142	145 0	140.4	140.2	152	140	170	170	160	212
19	140.5	104.	145.	145.8	140.4	140.5	155.	148	172	172	109	212.
61	9	82	55	3	4	6	39	.35	.32	.32	.37	05
19	148.2	166.	145.	147.5	142.0	141.9	155.	150	174	171	156	214.
62	9	73	22	2	7	9	16	07	32	33	97	51
19	124.5	139	121	123.8	110.2	110.2	130	126	1/6	1/13	131	180
62	124.5	139.	121.	7	0	2	150.	01	27	06	131	100.
10	1	99	95	/	9	2	29	.01	.37	.00	.00	12
19	149.6	168.	146.	148.8	143.3	143.2	156.	155	175	172	158	216.
64	5	25	55	7	7	9	59	.44	.91	.90	.41	48
19	159.5	179.	156.	158.7	152.8	152.7	166.	161	187	184	168	230.
65	2	36	22	0	3	4	92	.44	.52	.31	.87	77
19	137.6	154.	134.	136.9	131.8	131.7	144.	139	161	159	145	199.
66	1	73	77	0	4	7	00	.27	.77	.00	.68	07
19	69.45	78.0	68.0	69.09	66 54	66 57	72.6	17	81	80	73	100
67	07.45	0.0	1	07.07	00.54	00.57	72.0	20	64	24	52	16
10/	((0))	7		(5 (0	(2.25	(2.00		20	77	24	52	40
19	00.02	14.2	04.6	05.68	03.25	03.22	69.0	00.	11.	/6.	69. 00	195.
68	-	3	6				9	82	61	28	89	51
19	85.11	95.7	83.3	84.67	81.54	81.49	89.0	86.	100	98.	90.	123.
69		0	5				6	13	.05	34	10	12
19	108.2	121.	106.	107.6	103.7	103.6	113.	109	127	125	114	156.
70	4	70	00	8	0	4	26	.54	.24	.06	.58	58
19	161.9	180	202	171.6	202.2	242.1	199	109	208	251	198	2813
71	101.9	100.	62	1/1.0	202.2	6	00	96	16	82	50	8
/1	4	40	02	4	2	0	00	.90	.10	.02	.30	0
19	210.7	100.	233.	234.0	228.0	209.0	202.	202	241	223	201	243. 50
72	0	60	80	0	0	8	54	.78	.10	.72	.00	58
19	219.6	222.	280.	309.7	339.7	330.1	356.	301	202	218	246	377.
73	5	01	98	2	8	0	30	.37	.93	.77	.14	98
19	447.0	587.	802.	1029.	1386.	1484.	1884	213	247	282	296	3452
74	0	20	30	50	50	80	.70	3.1	2.2	3.6	9.2	.30
		-						0	0	0	0	
10	3674	3600	3757	4115	3085	3780	3774	350	354	370	361	3583
75	10	20	20	70	10	5709.	20	20	0.4	20	501	70
15	40	.30	.20	70	10	50	.50	3.8	9.4	2.0	5.0	.70
								0	0	0	0	
19	3569.	3441	3475	3881.	3823.	3773.	3751	373	370	370	334	3286
76	10	.30	.30	00	40	40	.20	4.7	3.7	4.4	4.6	.30
1								0	0	0	0	
19	3076.	3220	3224	3241.	3159.	3124.	2965	306	305	299	300	2814
77	90	.40	.70	20	90	30	.20	4.6	1.1	3.7	1.7	.50
								0	0	0	0	
10	2072	2676	2470	2170	1024	1940	1/05	152	121	120	126	1209
19	2073.	20/0	2470	2179. 70	1920.	1040.	1460	132	131	138	130	1298
/8	20	.10	.20	70	10	90	.80	5.5	5.5	5.5	1.5	.90
L								0	0	0	0	
19	1200.	1233	1351	1231.	1522.	1748.	1910	238	262	285	294	3059
79	90	.40	.10	20	20	70	.00	8.6	8.4	8.7	6.6	.80
								0	0	0	0	
19	3072.	3412	3667	3970.	4288.	4496.	4937	520	552	539	537	5462
80	40	.70	.10	10	00	40	.60	6.6	4.0	5.0	4.1	.00
								0	0	0	0	
10	5177	5162	5570	5202	6102	5515	5760	510	422	314	295	2441
19	J1//.	5105	10	5263. 20	10	10	3208	510	422	340	200	2441
81	90	.60	,10	30	10	10	.20	5.2	4.8	/.8	2.1	.60
								0	0	0	0	
19	1679.	1726	977.	773.8	756.7	858.3	857.	804	871	107	902	1043
00	0.0	60	40	0	0	0	30	.50	.50	2.8	.20	.30
02	90	.00	10	-								
02	90	.00	10	-						0		
19	90	647.	562	593.5	580.6	641.9	699.	582	557	0	374	224.
82 19 83	90 1193. 60	.00 647. 00	562. 20	593.5 0	580.6 0	641.9 0	699. 80	582 70	557 20	0 513 90	374	224. 40

www.theijes.com

Time Series Model Of Nigeria...

									. – .			
19	224.4	210.	333.	478.4	443.0	582.5	532.	315	479	705	463	710.
84	0	80	10	0	0	0	90	.90	.90	.60	.10	10
19	567.1	779.	804.	1191.	1148.	1031.	804.	758	784	101	123	1657
85	0	40	30	90	60	60	70	00	00	77	6.5	90
05	U	-0	50	<i>J</i> 0	00	00	70	.00	.00	0	0.5	.70
										0	0	
19	1308.	1320	1030	893.1	859.7	986.2	828.	948	212	329	249	2836
86	90	.30	.80	0	0	0	80	.10	0.0	2.0	7.5	.60
									5	0	0	
10	2287	2558	0//0	2651	4241	5831	3076	188	723	725	467	7504
17	2207.	2556	5445	2051.	4241.	5051.	5970	400	725	725	407	730 4
87	02	.10	.51	80	0/	22	.00	9.0	1.1	5.0	1.0	.39
								0	4	9	0	
19	7925.	8240	8555	6438.	5458.	4478.	5458	513	502	520	512	5229
88	66	.60	.53	41	61	81	.61	2.0	4.1	4.9	0.3	.10
								1	7	3	7	
10	4210	4760	4540	0226	5157	1070	1052	242	, 220	202	208	2047
19	4510.	4/09	4340	9230.	5157.	1079.	1055	245	250	303	290	5047
89	46	.78	.12	52	92	31	.73	0.3	9.6	3.5	4.2	.62
								2	6	3	5	
19	3386.	3960	3770	3696.	3170.	2644.	2839	288	276	282	380	4541
90	77	74	03	20	34	47	61	48	2.1	88	78	45
10		., .	.05	20	51		.01	1	2.1	5	1	. 15
10	4002	1600	4400	1000	1005	2002	2022	1	206	5	1	41.40
19	4003.	4682	4428	4222.	4085.	3902.	3833	368	386	402	373	4149
91	75	.28	.32	38	36	19	.02	1.7	9.6	3.9	8.1	.30
								2	7	1	4	
19	4109.	5517	4109	1885.	2789.	2834.	2727	276	209	176	124	1554
02	65	36	65	06	10	30	33	11	53	28	1.0	61
92	05	.50	.05	90	47	50	.55	4.4	2.5	2.0	1.0	.01
								0	3	2	3	
19	8365.	1016	9505	1351.	1206.	1351.	1161	864	765	883	830	1429
93	69	.36	.26	74	16	39	.48	7.2	1.7	0.2	7.1	.59
								4	8	8	0	
19	7596	8388	9181	8/66	9207	99/18	9803	965	1/19	/68	788	9009
1)	17	0300	57	0-00.	54	17	2005	0.2	7.0	1 00	1 4	11
94	1/	.07	.57	90	34	1/	.20	0.5	7.9	9.0	1.4	.11
								5	2	9	1	
19	1295.	1217	8028	5481.	7478.	1429.	1165	115	116	115	116	1611
95	18	.14	.99	87	68	44	.48	6.8	1.1	9.0	0.0	.11
								5	7	1	9	
10	1002	1/37	18/10	18/18	1825	2072	1817	221	231	280	330	3/03
1)	1002.	22	15	10-0.	24	2012.	06	221	251	200	7.0	01
90	95	.33	.15	10	34	/0	.00	8.0	0.0	8.9	7.9	.91
								5	6	8	0	
19	4480.	5352	6180	5664.	5372.	6141.	6038	664	677	675	686	7222
97	52	.18	.59	65	50	33	.96	5.6	3.4	0.3	9.7	.22
	-							0	8	7	1	
10	7161	8402	9210	0210	7026	7047	7205	720	010	702	765	7107
19	7404.	0402	0319	0310.	1030.	1947.	1505	129	019	273	105	/10/
98	13	.39	.60	31	21	26	.16	8.0	2.3	3.6	1.5	.50
								6	2	9	0	
19	6549.	6274	5507	5115.	4988.	4772.	4708	477	503	534	502	5424
99	60	.90	.10	10	90	30	.20	1.0	2.1	3.5	1.9	.60
	00	., 0		10	10	20		0	0	0	0	
20	57 00	6404	((0))	((0))	(70)	7070	7624	0	011	070	0	0206
20	5/89.	6494	0682	6692.	0/86.	1212.	/634	195	811	8/8	948	9386
00	20	.80	.80	60	80	40	.90	8.6	8.1	8.5	4.4	.10
1								0	0	0	0	
20	9705	1001	1078	10176	1035	10166	1038	102	105	105	101	1026
01		6.25	75	3	37	7	99	04	63	81	17	71
01		0.25	1.5		5.1	• ').)	- V-	0.5.	61.	0	/.1
1									7	08	0	
1		1	1									
20	9668.	9768	9546	9403.	9226.	8674.	8143	808	742	774	773	7681
20 02	9668. 78	9768 .47	9546 .1	9403. 4	9226. 3	8674. 7	8143 .03	808 9.2	742 4	774 1.9	773 7.1	7681 .1
20 02	9668. 78	9768 .47	9546 .1	9403. 4	9226. 3	8674. 7	8143 .03	808 9.2	742 4	774 1.9	773 7.1	7681 .1
20 02	9668. 78	9768 .47	9546 .1	9403. 4	9226. 3	8674. 7	8143 .03	808 9.2	742 4 717	774 1.9	773 7.1	7681 .1

www.theijes.com

Time Series Model Of Nigeria...

02	40	06	16	01	57	00	05	80	0.4	50	0.5	79
05	42	.00	.10	02	57	09	.95	0.9 6	0.4 6	5.0 7	9.5	./0
								0	0	/	3	
20	0224	0252	0694	0075	1000	11441	1000	104	122	140	1.62	1605
20	8324	9352	9684	9975.	1008	11441	1222	124	132	146	163	1695
04		.4	.49	91	3.87	.36	8.31	82.	22.	57	45.	5.02
								4	9		4	
20	19592	2055	2180	22210	2329	24367	2516	269	286	239	270	2827
05	.64	4.09	7.98	.2	0.5	.12	1.6	51.	38.	21.	75.	9.06
								24	24	01	63	
20	31317	3431	3620	33063	3409	36479	3807	392	404	414	424	4229
06	.94	9.11	1.54	.87	4.35		4.22	47.	57.	77.	41.	8.11
								82	86	69	55	
20	43510	4255	4263	43530	4316	42626	4326	450	479	492	499	5133
07	78	0.61	3.86	55	8 67	20	3.88	10	30	09	63	3 1 5
07	./0	0.01	5.00		0.07	.20	5.00	40	22	74	62	5.10
								10		<i>,</i> .	02	
20	54015	5600	5075	60015	5019	50157	6024	602	620	505	574	5200
20	54215	3690	39/5	00815	5918	5915/	0034	602	020	285	5/4	3300
08	./9	8.42	6.51	.85	0.14	.15	2.13	01.	81.	54.	80.	0.36
								74	86	15	50	