

Gbbs free energies for interaction of CuCl² with (E)-1-phenyl-2- (2-(4-((E)-pheyldiazenyl) phenyl hydrazono)-2-(phenylsulfonyl) ethanone in ethanol at different temperatures.

E.A.Gomaa, H.M.Abu El-Nader and Sh.E.Rashed *Chemistry Department, Faculty of Science, Mansoura University, 33516 Mansoura, Egypt.*

the association constants, formation constants and Gibbs free energies of solvation are calculated from the conductometric titration curves of CuCl₂ with (E) -1-phenyl-2-(2-(4-((E) - henyldiazenyl)phenyl)hydrazono)-2-(phenylsulfonyl)ethanone(L) in absolute ethanol at 293.15, 298.15, 303.15 and 308.15 K. On drawing the relation between molar conductance and the ratio of metal to ligand concentrations, different lines are obtained indicating the formation of 1:2, 1:1 and 2:1 (M:L) stoichiometric complexes. The formation constants and Gibbs free energies of these different complexes in absolute ethanol at 293.15, 298.15, 303.15 and 308.15 K follow the order: K_f (2:1) > K_f (1:1) > K_f(1:2) for (M:L); and $\Delta G_f(2:1) > \Delta G_f(1:1) > \Delta G_f(1:2)$ for (M:L).

Key words: Association constant; formation constant; Gibbs free energy of solvation.

I. INTRODUCTION

The long range ion – ion interactions due to screened columbic forces are the most important features of electrolyte in solutions. These act together with shorter – ranged forces between the solvent molecules and between the solvent molecules and ion.Electrical conductivity (EC) is a measure measure of solvent to conduct electric current and depends on : concentration of the ions, ligand and temperature in solutions. Current is carried out by both cations and anions,but to different degree. The conductivity due to divalent cations is more than that of mono-valent cations, it is not true for anions. Metal cations with d° noble gas electron configuration (alkali and alkaline earth) metal ions together with the inert molecular ions like tetraalkylammonium,-phosphonium,-arsonium , and trialkylsulfonium ions exhibit properties mainly determined by their charge and size [1].Solvation of such cations in protic and polar solvents is due essentially to electrostatic ion-dipole and ion induced dipole interactions. Metal cations with filled d-orbitals,the d¹⁰ cations,exhibits partially covalent character in their interactions;their properties depend on the charge and size and partially ontheir electronegativity. Cations with incomplete d- orbitals called $dⁿ$ -cations . With these cations protic and polar solvent molecules are strongly bound in complexes to a central cation through p-d orbital overlap and exchange only slowly with the bulk solvent. Therefore conductivity study is valuable on using transition metal cations [2,3].

The synthesis of transition metal complexes with Schiff bases of nitrogen, oxygen and sulfur donor has stimulated interest due to their vast variety of biological activities ranging from pharmacological, antitumor, fungicide, bactericide, anti-inflammatory, and antiviral activities [4,5]. Cobalt is the active center of [coenzymes](http://en.wikipedia.org/wiki/Coenzymes) called [cobalamins,](http://en.wikipedia.org/wiki/Cobalamin) the most common example of which is [vitamin B12.](http://en.wikipedia.org/wiki/Vitamin_B12) As such it is an essential trace [dietary](http://en.wikipedia.org/wiki/Dietary_mineral) [mineral](http://en.wikipedia.org/wiki/Dietary_mineral) for all animals. Cobalt in inorganic form is also an active nutrient for bacteria, [algae](http://en.wikipedia.org/wiki/Algae) and [fungi](http://en.wikipedia.org/wiki/Fungi) [6,7]. The aim of this work, consists in evaluation of the non-covalent behavior of CoCl2 in presents of (E)-1-phenyl-2-(2-(4-((E)-phenyldiazenyl)phenyl)hydrazono)-2-(phenylsulfonyl)ethanone (L1) in absolute ethanol solutions at 293.15, 298.15, 303.15 and 308.15 K. these non-covalent interactions can help us for analysis of salts role influence in bodies and environment.This work provide the analytical analyst and the biological analyst data can help him for determing the concentration of $CoCl₂$ in blood and different solutions.

Experimental

Material and methods

All manipulations were performed under aerobic conditions. The copper chloride and the used reagents were Merck pure.

The ligand

(*E*)-1-phenyl-2-(2-(4-((*E*)-phenyldiazenyl)phenyl)hydrazono)-2-(phenylsulfonyl)ethanone

Conductometric titration

The conductometric titration of the ligand $(1x10^{-3})$ mole/L against CuCl₂ $(1x 10^{-4})$ mole/L in absolute ethanol was performed with 0.5 ml interval additions from CoCl₂ solution. The specific conductance values were recorded using conductivity bridge HANNA, H1 8819N with a cell constant equal to 1. The conductometer was conducted with a thermostat of the type the Kottermann 4130 ultrathermostat. The temperature was adjusted at 293.15, 298.15, 303.15 and 308.15 K.

Results and discussion

The specific conductance values (K_s) of different concentrations of CoCl₂ in absolute ethanol were measured experimentally in absence and in presence of ligand at 293.15, 298.15, 303.15 and 308.15 K.

The molar conductance (Λ_{m}) values were calculated [8] using equation

 $\Lambda_{\rm m} = (K_{\rm s} - K_{\rm solv}) \text{ Keell x } 1000/c \text{ (1)}$

Where K_s and K_{solv} is the specific conductance of solution and the solvent, respectively ; K_{cell} is the cell constant and C is the molar concentration of the CoCl₂ solutions.

The limiting molar conductance (Λ _o) at infinite dilutions were estimated for CoCl₂ in absolute ethanol alone(Fig. 1) and in the presence of the ligand (L 1)(Fig. 2) by extrapolating the relation between (Λ_m) and $C_m^{1/2}$ to zero concentration. By drawing the relation between molar conductance (Λ_m) and the molar ratio of metal to ligand (M/L) concentrations (Fig. 3- 6), different lines are obtained with sharp breaks indicating the formation of 1:2, 1:1 and 2:1 (M:L) stoichiometric complexes. The experimental data of (Λ_m) and (Λ_o) were analyzed for the determination of association and formation constants for each type of the stoichiometric complexes.

Fig. 1 The relation between molar conductance (Λ_m) and (\sqrt{C}) of CuCl₂ alone in absolute ethanol at 293.15, 298.15, 303.15 and 308.15 K.

Fig. 2 The relation between molar conductance (Λ_m) and (\sqrt{C}) of CuCl₂ in the presence of ligand (L2) in absolute ethanol at 293.15, 298.15, 303.15 and 308.15 K.

The association constants of $CoCl₂$ in the presence of the ligand (L2) in absolute ethanol at 293.15, 298.15, 303.15 and 308.15 K for asymmetric electrolytes were calculated [9,10] by using equation: $K_A = [\Lambda_0^2 (\Lambda_0 - \Lambda_m)] / [4C_m^2 + \Lambda^3 S(z)]$ (2)

Where (Λ_m, Λ_o) are the molar and limiting molar conductance, respectively of CoCl₂; C_m is molar concentration of CuCl₂, S(Z) is Fuoss-Shedlovsky factor, equal with unity for strong electrolytes [11]. The calculated association constants are shown in Table 1.

Fig. 3 The relation between molar conductance (Λ_m) and the molar ratio (M/L) of CuCl₂ in presence of (L2) in absolute ethanol in 293.15 K.

Fig. 4 The relation between molar conductance (Λ_m) and the molar ratio (M/L) of CuCl₂ in presence of (L2) in absolute ethanol in 298.15 K.

Fig. 5 The relation between molar conductance (Λ_m) and the molar ratio (M/L) of CuCl₂ in presence of (L2) in absolute ethanol in 303.15 K.

Fig. 6 The relation between molar conductance (Λ_m) and the molar ratio (M/L) of CuCl₂ in presence of (L2) in absolute ethanol in 308.15 K.

The Gibbs free energies of association (ΔG_A) were calculated from the associated constant [12,13] by applying equation :

 $\Delta G_A = RT \ln K_A$ (3) Where R is the gas constant and T is the absolute temperatures (293.15, 298.15, 303.15 and 308.15 K). The calculated Gibbs free energies were presented in tables (1-4).

$C_{[ligand]}$	$C_{m[CuCl2]}$	K_A				
	Temp	293.15 K	298.15 K	303.15 K	308.15 K	
$0.99E-0.5$	9.09E-05	$3.22E + 08$	$3.1E + 08$	$6.14E + 08$	$9.15E + 08$	
1.96E-05	8.33E-05	$3.72E + 08$	$3.58E + 08$	$7.09E + 08$	$1.05E + 09$	
$2.91E-0.5$	7.69E-05	$4.24E + 08$	$4.09E + 08$	$8.09E + 08$	$1.2E + 09$	
3.84E-05	7.14E-05	$4.79E + 08$	$4.62E + 08$	$9.12E + 08$	$1.35E + 09$	
4.76E-05	6.67E-05	$5.34E + 08$	$5.17E + 08$	$1.01E + 09$	$1.49E + 09$	
5.66E-05	$6.25E-05$	$5.94E + 08$	$5.75E + 08$	$1.12E + 09$	$1.65E + 09$	
$6.54E-05$	5.88E-05	$6.56E + 08$	$6.36E + 08$	$1.23E + 09$	$1.81E + 09$	
7.41E-05	5.56E-05	$7.16E + 08$	$6.94E + 08$	$1.33E + 09$	$1.98E + 09$	
8.26E-05	5.26E-05	$7.79E + 08$	$7.56E + 08$	$1.44E + 09$	$2.14E + 09$	
9.09E-05	0.00005	$8.43E + 08$	$8.17E + 08$	$1.55E+09$	$2.29E + 09$	

Table (1): Association constants of association of $CuCl₂$ with L2 at different temperatures.

Table (2): Gibbs free energies of association of $CuCl₂$ with L2 at different temperatures.

$C_{[\text{ligand}]}$	C_{m} [CuCl2.2H2O]	$\Delta G_A(k$ J/mol)			
	Temp	293.15 K	298.15 K	303.15 K	308.15 K
$0.99E-0.5$	9.09E-05	-47.8997	-48.6198	-51.1688	-53.0362
1.96E-05	8.33E-05	-48.2517	-48.9827	-51.5316	-53.3987
2.91E-05	7.69E-05	-48.5741	-49.3152	-51.8640	-53.7311
3.84E-05	7.14E-05	-48.8713	-49.6180	-52.1663	-54.0328
4.76E-05	$6.67E-05$	-49.1388	-49.8965	-52.4282	-54.2927
5.66E-05	$6.25E-0.5$	-49.3970	-50.1601	-52.6819	-54.5450
$6.54E-0.5$	5.88E-05	-49.6415	-50.4096	-52.9228	-54.7850
7.41E-05	5.56E-05	-49.8534	-50.6260	-53.1285	-55.0242
8.26E-05	5.26E-05	-50.0618	-50.8390	-53.3307	-55.2172
9.09E-05	0.00005	-50.2531	-51.0344	-53.5165	-55.3951

The association free energies evaluated for $CuCl₂$ –ligand complexes are small and spontaneous indicating electrostatic attraction.

The formation constants (K_f) for CoCl₂ complexes were calculated for each type of complexes (1:2), (1:1) and $(2:1)$ (K:L) by using equatin [14,15]:

 $K_f = [\Lambda_M - \Lambda_{obs}]/[(\Lambda_{obs} - \Lambda_{ML})[L]]$ (4)

Where Λ_m is the molar conductance of CoCl₂ alone, Λ_{obs} is the molar conductance of the solution during titration and Λ_{ML} is the molar conductance of the complex.

The obtained values (K_f) for CuCL₂-ligand stoichiometric complexes are presented in tables 2,3. The Gibbs free energies of formation for each stoichiometric complexes were calculated by using the equation: ΔG_f = - RT ln K_f

The calculated ΔG_f values are presented in tables (5-16) [16-18].

\sqrt{obs} $(cm^2.Ohm^{-1})$	[L]	$(\wedge_{\text{obs}} \wedge_{\text{ML}})$ [L]	$(\Lambda_{\rm M}$ - $\Lambda_{\rm obs})$	$K_{\rm f}$	ΔG_f (k J/mol)
16.14746	5.66E-05	$6.24E-06$	14.5899	2337433	-35.8573
16.24727	6.54E-05	1.37E-05	14.49009	1054600	-33.9112
16.36161	7.41E-05	2.40E-05	14.37575	597986.4	-32.5239
16.47820	8.26E-05	3.64E-05	14.25916	391431.4	-31.4878
16.58377	9.09E-05	4.97E-05	14.15359	284866.3	-30.7107

Table.3 (a): Formation constants and Gibbs free energies of formation for 2:1 (M/L) complexes in absolute ethanol at 293.15 K

 $/\mu_{ML} = 16.04 \text{cm}^2 \cdot \text{Ohm}^{-1}$.

Table 3(b): Formation constants and Gibbs free energies of formation for 2:1 (M/L) complexes in absolute ethanol at 298.15 K

$\Lambda_{\rm obs}$ $(cm^2.Ohm^1)$	[L]	$(\bigwedge_{\text{obs}} \bigwedge_{\text{ML}}) [\mathbf{L}]$	$(\bigwedge_{\mathbf{M}} \bigwedge_{\mathbf{obs}})$	K_{f}	ΔG_f (k J/mol)
23.0076	5.66E-05	8.74E-06	18.0088	2060866	-36.1557
23.1473	6.54E-05	1.92E-05	17.8690	928966.7	-34.1741
23.3074	7.41E-05	3.37E-05	17.7090	526173.5	-32.7605
23.4706	8.26E-05	5.10E-05	17.5457	344042.6	-31.7039
23.6184	9.09E-05	6.96E-05	17.3979	250120.3	-30.9110

 $\lambda_{ML} = 22.85 \text{ cm}^2 \text{.} \text{Ohm}^{-1}$.

 Λ_{ML} =25.314 cm².Ohm⁻¹.

 Λ_{ML} =30.04 cm².Ohm⁻¹.

$\Lambda_{\rm obs}$ $(cm2 Ohm-1)$	$[{\rm L}]$	$(\bigwedge_{\text{obs}} \bigwedge_{\text{ML}})$ [L]	$(\Lambda_{\mathbf{M}}\Lambda_{\mathbf{obs}})$	K_f	ΔG_f (k J/mol)
16.69122	9.91E-05	1.06E-05	14.04614	1319098	34.4584-
16.80059	1.07E-04	2.32E-05	13.93677	600729.6	$32.5351 -$
16.91194	1.15E-04	3.77E-05	13.82542	366337.7	31.3258-
17.02532	1.23E-04	5.43E-05	13.71204	252474.2	30.4156-
17.12624	1.30E-04	7.05E-05	13.61112	193007.8	29.7588-

Table.4 (a)**:** Formation constants and Gibbs free energies of formation for 1:1 (M/L) complexes in absolute ethanol at 293.15 K.

 $\Lambda_{ML} = 16.58 \text{ cm}^2 \cdot \text{Ohm}^{-1}$.

Table.4 (b): Formation constants and Gibbs free energies of formation for 1:1 (M/L) complexes in absolute ethanol at 298.15 K.

$\Lambda_{\rm obs}$ (cm ² .Ohm ⁻¹)	$[{\rm L}]$	$(\bigwedge_{\text{obs}} \bigwedge_{\text{ML}})$ [L]	$(\sqrt{M} - \sqrt{obs})$	K_{f}	ΔG_f (k J/mol)
23.7688	9.91E-05	.49E-05	17.2475	1156963.0	-34.7199
23.9220	1.07E-04	3.25E-05	17.0944	526309.1	-32.7611
24.0778	1.15E-04	5.28E-05	16.9385	320589.7	-31.5283
24.2366	1.23E-04	7.60E-05	16.7798	220685.7	-30.5997
24.3779	1.30E-04	9.87E-05	16.6385	168525.9	-29.9291

 Λ_{ML} =23.618 cm².Ohm⁻¹.

Table.4(c)**:** Formation constants and Gibbs free energies of formation for 1:1 (M/L) complexes in absolute ethanol at 303.15K.

 $\Lambda_{ML} = 26.407$ cm².Ohm⁻¹.

Table.4 (d)**:** Formation constants and Gibbs free energies of formation for 1:1 (M/L) complexes in absolute ethanol at 308.15K.

 Λ_{ML} =31.383 cm².Ohm⁻¹.

Λ_{obs} (cm ² .Ohm ⁻¹)	$\left[\mathrm{L} \right]$	$(\bigwedge_{\text{obs}} \bigwedge_{\text{ML}})$ [L]	$(\Lambda_M - \Lambda_{\rm obs})$	$K_{\rm f}$	$\Delta G_f(k$ J/mol)
17.70214	1.74E-04	1.56E-05	13.03522	836852.7	33.3457-
17.7801	1.80E-04	3.01E-05	12.95726	429811.2	31.7165-
17.8725	1.87E-04	4.86E-05	12.86486	264722.3	$30.5314-$
17.9665	1.94E-04	6.87E-05	12.77086	186021.2	29.6687-
18.04839	2.00E-04	8.72E-05	12.68897	145592.5	29.0695-

Table.5 (a): Formation constants and Gibbs free energies of formation for 1:2 (M/L) complexes in absolute ethanol at 293.15 K.

 $/\mu_{ML} = 17.61 \text{ cm}^2 \cdot \text{Ohm}^{-1}$.

Table.5 (b)**:** Formation constants and Gibbs free energies of formation for 1:2 (M/L) complexes in absolute ethanol at 298.15K.

 $\sqrt{M_{\rm BL}}$ =25.036 cm².0hm⁻¹.

Table.5(c): Formation constants and Gibbs free energies of formation for 1:2 (M/L) complexes in absolute

 $\sqrt{M_{\rm BL}}$ =28.615 cm².0hm⁻¹.

Table.5 (d)**:** Formation constants and Gibbs free energies of formation for 1:2 (M/L) complexes in absolute ethanol at 308.15K.

 $\sqrt{M_{\rm BL}}$ =34.475 cm².Ohm⁻¹

Table.6: The enthalpies (ΔH_A) and entropies (ΔS_A) of CuCl₂ with L2 at different temperatures.

M: L	$(\Delta S_f)kJ/mol.K$	(ΔH_f) kJ/mol			
Temp	293.15 K	298.15 K	303.15 K	308.15 K	
2:1	0.3049	0.3008	0.2979	0.2951	53.5394
1:1	0.2877	0.2837	0.2811	0.2779	49.8936
1:2	0.2350	0.2743	0.2724	0.2672	48.4034

Table.7: The enthalpies (ΔH_f) and entropies (ΔS_f) of CuCl₂ with L2 at different temperatures.

The enthalpy change(ΔH) and the entropy change(T ΔS) evaluated for CuCl₂-ligand complexes indicate that (L1) may act as flexidentate ligand.

The Enthalpy change of association (ΔH_A), and the Enthalpy change of formation (ΔH_f) of CuCl₂ in absolute ethanol at 293.15, 298.15, 303.15 and 308.15 K estimated by plotting log K_A and log K_f for different M/L concentrations for (2:1), (1:1) and (1:2) stoichiometric complexes against $1/T$ are represented in(figs. 7,8).

II. CONCLUSION

This work concentrated on the behavior of CuCl2 with the ligand conductometrically .The main target is to discuss the complexation between the metal and ligand for evaluating different concentrations from the metal ion in different solutions.

Fig. 7 The relation between log (K_A) for (2:1), (1:1) and (1:2) stoichiometric complexes against 1/T.

Fig. 8 The relation between $log(K_f)$ for (2:1), (1:1) and (1:2) stoichiometric complexes against 1/T.

The Enthalpy change (ΔH) of CoCl₂ in absolute ethanol was calculated using the equation,
Slope $-\frac{-\Delta H}{\Delta H}$ Slope = $\frac{-\ln x}{2.303 \times R}$

Where R is the real gas constant .

REFERENCES

- [1.] Robison,R.A. and Stokes, R.H.,(2002) ,"Electolyte solutions", Butterworth &Co.(Publishers) Ltd, Newton Abbot,Devon.
[2.] Barthel.J.M.G..Krienke.H.and Kunz.W.,(1998)."Physical chemistry of electricity solutions". Sprin
- [2.] Barthel,J,M.G.,Krienke,H.and Kunz,W.,(1998),"Physical chemistry of electrlolyte solutions", Springer Verlag ,Darmstadt, new York.
- [3.] Trevor M.Letcher,(2007)," Developments an applications in solubility"., The Royal Society of Chemistry ,Cambridge.
[4.] Chaudhary, A., Phor, A., and Singh, R.V. (2005) Bioinorganic Chemistry and Applications 3, 161.
- [4.] Chaudhary, A., Phor, A., and Singh, R.V. (2005) Bioinorganic Chemistry and Applications **3**, 161.
- [5.] Prasad, S. and Agarwal, R.K., (2007) Transition Metal Chemistry **32**, 143.
- [6.] Kumar, M., Qiu, D., Spiro, T.G. and Regsdale, S.W. (1995) Science **270**, 628.
- [7.] Kyritsis, P., Dennison. C., Kalverda, A.P., Canters, G.W. and Sykes, A.G. (1994)J. Chem. Soc. Dalton Trans. 3017. [8.] Gryzybkowski, W. and Pastewski, R. (1980) Electrochimica Acta 25, 279.
- [8.] Gryzybkowski, W. and Pastewski, R. (1980) Electrochimica Acta **25**, 279. [9.] El-Shishtawi,N.A, Hamada, M.A. and Gomaa, E.A.(2010)J. Chem. Eng. Data **55**, 5422.
- [10.] Hamada, M.A. , El-Sheshtawi, N.A. and Gomaa, E.A. (2009) South . Braz. J.Chem. **17**, 33.
- [11.] Gomaa, E.A. (1987) ,Thermochimica Acta **120**, 183.
- [12.] Gomaa, E.A. (1988) ,Thermochimica Acta **128**, 99.
- [13.] El-dousski, F.F. (2008) Journal of molecular Liquids **142**, 53.
- [14.] Takeda, Y. (1983), Bul. Chem. Soc. Jpn **56**, 3600.
- [15.] Rahmi-Nasrabadi, M., Ahmedi, F., Pourmor-tazari, S.M., Ganjal, M.R. and Alizadeh, K. (2009) Journal of Molecular Liquids **144**, 97.