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---------------------------------------------------ABSTRACT-------------------------------------------------------  
Reed-Solomon (RS) codes have been widely employed for error correction in modern digital communication 

and data storage systems. Currently, for decoding RS codes with random-error correction, numerous literatures 
have given extensive studies on theoretical algorithms as well as hardware implementations [4], [5], [8], [9]. 

However, for specific RS burst-error decoder design, although some dedicated algorithms had been reported 

[3], [7], the VLSI implementations for these burst-error correcting algorithms are still under-investigated which 

are limited by their cubic computation complexity. In this brief, starting from a recent theoretical work, a low-

complexity reformulated inversionless burst-error correcting (RiBC) algorithm is developed for practical 

applications. Then, based on the   algorithm, a unified VLSI architecture that is capable of correcting burst 

errors, as well as random errors and erasures, is firstly presented for multi-mode decoding requirements. This 

new architecture is denoted as unified hybrid decoding (UHD) architecture.  
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I. INTRODUCTION 
Digital communication system is used to transport an information-bearing signal from the source to a user 

destination via a communication channel. The information signal is processed in a digital communication 

system to form discrete messages, which makes the information more reliable for transmission. Channel coding 

is an important signal processing operation for the efficient transmission of digital information over the channel. 

In channel coding the number of symbols in the source encoded message is increased in a controlled manner in 

order to facilitate two basic objectives at the receiver: error detection and error correction.  

 
Fig. 1 Digital Communication System 

 

Reed Solomon Codes are the non- binary form of the Block codes. These codes are defined as RS (n, k) 

with m- bit symbols. The RS code encoder_LFSR takes k data symbols and, parity symbols are added to it to 
form n symbols codeword. The RS codes detect and correct the errors in the symbols. These codes are 

constructed with encoding and decoding techniques, which follows directly to the BCH code techniques. The 

major difference between the binary BCH and non- binary RS codes is, in BCH code the error magnitude is 1 so 

it needs to find out only the location of error while in non binary RS codes the first step is to locate the error 

position and then correct it. Reed Solomon codes are also follows the GF mathematics properties for encoding 

and decoding techniques. Reed-Solomon codes are non-binary cyclic codes with symbols made up of m-bit 

sequences, where m is any positive integer having a value greater than 2. R-S (n, k) codes on m-bit symbols exist 

for all n and k for which 

0 < k < n < 2m + 2                                    (1.1) 

For the most conventional R-S (n, k) code, 

           (n, k) = (2m - 1, 2m - 1 - 2t)                          (1.2) 
where t is the symbol-error correcting capability of the code, and n - k = 2t is the number of parity symbols. 

 

II. REED – SOLOMON CODES 
A brief overview of the encoding and decoding of Reed – Solomon codes is given in this section. 
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2.1 Encoding of Reed – Solomon Codes 

Let 
1 2 1 0

( , , ..., , )
k k

d d d d
 

 denote k  m - bit data symbols (bytes) that are to be transmitted over a 

communication channel (or stored in memory). These bytes are regarded as elements of the finite field (also 

called Galois field) (2 )
m

G F , and encoded into a codeword 
1 2 3 1 0

( , , ....., , )
n n n

c c c c c
  

 of n > k bytes. These 

codeword symbols are transmitted over the communication channel (or stored in memory). For Reed–Solomon 

codes over (2 )
m

G F , n = 2m - 1, k  is odd, and the code can correct 
2

n k
t




   byte errors. The encoding 

process is best described in terms of the data polynomial 1 2 1 0

1 2 1 0
( ) ..

k k

k k
D x d x d x d x d x

 

 
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being transformed into a codeword polynomial 1 1 1 0

1 1 1 0
( )

n n

n n
C x c x c x c x c x

 

 
        . All 

codeword polynomials  ( )C x  are polynomial multiples of ( )G x   , the generator polynomial of the code, 

which is defined as  

                      0
(

2 1

0

)
( ) ( )

m

t

i

i
G x x 







               (2.1) 

where m0  is typically zero or one. Since 2t consecutive powers 0 0 0
1 2 1

, .
m m m t

  
  
   of    are  roots of 

( )G x   ,and ( )C x  is a multiple of ( )G x  , it follows that 

       0( ) 0       0 2 - 1
m i

C i t


             (2.2) 

for all codeword polynomials ( )C x .Systematic encoding produces codeword’s that are comprised of data 

symbols followed by parity-check symbols and are obtained as follows: Let ( )Q x  and ( )P x   denote the 

quotient and remainder respectively when the polynomial ( )
n k

x D x
  of degree n - 1 is divided ( )G x  by of 

degree 2 t n k  .Thus, ( ) ( ) ( ) ( )
n k

x D x Q x G x P x


  where d eg ( )P x n k  . 

Clearly ( ) ( ) ( ) ( ) ( )
n k

Q x G x x D x P x C x


   , is a multiple of ( )G x . Furthermore, since the lowest degree 

term in ( )
n k

x D x
  is 

0

n k
d x

   while ( )P x is of degree at most n – k - 1, it follows that the codeword is given by 

   1 2 1 0 1 1 0 1 2 1 0
, , , , . . , , , , . . ,

n n k n k n k
c c c c d d d p p p p

      
        and consists of the data 

symbols followed by the parity-check symbols. 

 

2.2 Reed – Solomon Decoding 

RS decoding is done in three levels. First one being, syndrome calculation that tells us whether an error has 
occurred during the transmission of data. The second step includes error location, which tells us where the error 

is present, and the third one is the error evaluation, which corrects the error. However, the decoder has the 

capability of correcting t errors where n=k+2t. 

Let ( )C x denote the transmitted codeword polynomial and let ( )R x denote the received word polynomial. 

The input to the decoder is ( )R x , and it assumes that 

( ) ( ) ( )R x C x E x                       (2.3) 

where, if  e > 0 errors have occurred during transmission, the error polynomial ( )E x   can be written as 

                                                 1 2 3

1 2 3
( ) .

i i i

e
E x Y x Y x Y x Y     (2.4) 

It is conventional to say that the error values 
1 2 3
, , ...

e
Y Y Y Y   have occurred at the error locations 

1 2

1 2
, , .

i i ie

e
X X X       . Note that the decoder does not know ( )E x    ; in fact, it does not even 

know the value of e . The decoder’s task is to determine ( )E x  from its input ( )R x  , and thus correct the errors 

by subtracting off ( )E x  from ( )R x  . If e t   , then such a calculation is always possible, that is, t or fewer 

errors can always be corrected. The decoder begins its task of error correction by computing the syndrome 

values 
0 0 0 0( ) ( ) ( ) ( )          0 2 1

m i m i m i m i

i
s R C E E i t   

   
         (2.5) 

If all  2t syndrome values are zero, then ( )R x  is a codeword and it is assumed that ( ) ( )C x R x  , that is, no 

errors have occurred. Otherwise, the decoder knows that e > 0  and uses the syndrome polynomial ( )S x  which 

is defined to be 

       2 1

0 1 2 1
( )

t

t
S x s s x s x




        (2.6) 

to calculate the error values and error locations. Define the error locator polynomial ( )x   of degree  and the 

error evaluator polynomial ( )x  of degree at most  e - 1 to be 
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These polynomials are related to through the key equation [1], [2] 

      2
Λ ( ) ( ) Ω ( ) m od

t
x S x x x            (2.9) 

Solving the key equation to determine both ( )x  and ( )x   from ( )S x   is the hardest part of the 

decoding process. The BM algorithm and the eE algorithm can be used to solve (4.14). If e t   , these 

algorithms find   ( )x  and ( )x  , but if , then the algorithms almost always fail to find ( )x  and ( )x   . 

Fortunately, such failures are usually easily detected. Once ( )x  and ( )x  have been found, the decoder can 

find the error locations by checking whether Λ ( ) 0
j




  for each j, 0 1j n    . Usually, the decoder 

computes the value of just ( )
j




   before the j-th received symbol 
j

r   leaves the decoder circuit. This 

process is called a Chien search [1], [2]. if Λ ( ) 0
j




 , then j


    is one of the error locations (say 
i

X   ). In 

other words,  
j

r  is in error, and needs to be corrected before it leaves the decoder. The decoder can calculate the 

error value 
i

Y  to be subtracted from 
j

r  via Forney’s error value formula [2] 
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j

m

i x
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Y

x x
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where 2

1 2 3
Λ ( ) 2 3 ..x x x         denotes the formal derivative of ( )x  . Note that the formal 

derivative simplifies 2

1 3
Λ ( )x x        to since we are considering codes over (2 )

m
G F  . Thus, 

3

1 3
Λ ( )x x x x       , which is just the terms of odd degree in ( )x   . Hence, the value of Λ ( )x x   at 

j
x 


  can be found during the evaluation of ( )x at j

x 


   and does not require a separate 

computation.  

 

2.3 RS Decoder Structure 

In summary, a Reed–Solomon decoder structure consists of three blocks: 

• The Syndrome Computation (SC) block; 

• The Key Equation  Solver (KES) block; 

• The Chien Search and Error Evaluator (CSEE) block. 

 
Fig. 2 Decoder Structure 

 

1) SC-Block: At the end of received word, all cells store the syndrome values and Syndrome Computation 

(SC) block sets its flag high if one or more syndrome values are not zero. 

2)  KES-Block: The Key equation solver (KES) block provides two polynomial -error locator polynomial 

and error magnitude polynomial. 

3)  CSEE-Block: Chien Search and Error Evaluator (CSEE) block identifies error location while 

computes its error magnitude. 

4) FIFO register: FIFO register stores 32 received word symbols. To match the order of the bytes in error 

vector and received codeword FIFO is applied as the error vector is produced in the reverse order of the 

received codeword. 

5) Controller: The controller provides synchronization among all four modules -SC, KES, CSEE and 

FIFO Registers. 
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III. DECODING ALGORITHMS 
 3.1 The Berlekamp – Massey Algorithm 

The Berlekamp and Massey Algorithm is a iterative procedure for finding the error locator polynomial  

2
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e

e

j e

j

x X x x x x  



        (3.1) 

After calculating the syndromes, there exist a relation between syndrome and coefficient of error locator 

polynomial which is called as the Newton’s identities. 

                                         

1 1

2 1 1 2

1 1 1

0

2 0                                    (3 .2 )

                           

0
v v v

S

S S

S S S



 

 


 

  

   




 

The first step of iteration is to find a minimum degree polynomial (1)
( )x  whose coefficients satisfies the first 

Newton’s identity of equation (3.2),the next step is to test whether the coefficient of (1)
( )x   also satisfy the 

second Newton’s identity of (3.2). If the coefficients do satisfy the second Newton’s identity then set 
( 2 ) (1)

( ) ( )x x   . If the coefficients do not satisfy the second identity, add a correction term to (1)
( )x to 

form ( 2 )
( )x  such that ( 2 )

( )x  has minimum degree and its coefficients satisfy the first two identities of 

(3.2).Therefore, at the end of the second step of iteration, a minimum degree polynomial ( 2 )
( )x is obtained 

whose coefficients satisfies first two Newton’s identity. Iterations continues until ( 2 )
( )

t
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t
x x   . At the r-th step after finding ( )
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x
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 . 
 

3.2 Random Error and Erasure Correcting Algorithm 

A conventional error alone RS decoding procedure can be modified to correct both error and erasure 

[2] (an erasure occurs when position of the corrupted symbol is known). The ( , )n k   RS code that has 

minimum distance 1d n k    when used on the channel that makes both errors and erasures can be 

corrected provided that 2 1d v    . If ( )C x  is a codeword polynomial and ( )R x  is received polynomial 

then  

                        ( ) ( ) ( )R x C x E x                      (3.3) 

Where ( ) ( ) ( )E x E x F x   is called errata polynomial which is the sum of error polynomial and erasure 

polynomial.  

Let    be the primitive element in (2 )
m

G F  we say errata magnitude  fo r  1, . . . . . . ,
l

l i
Y e l v      , 

occurred at errata locations  fo r 1, ...,l
i

l
Z l v    . Note that provided with 2 1d v    when 

1  o r   2d d      no errors occur and hence errata polynomial is same as errata locator 

polynomial ( )x . The authors of [4] proposed a novel algorithm transformation to reformulate the errors-alone 

correcting BM algorithm to significantly reduce the critical path, where the basic idea is to remove the data 

dependency inside of one iteration at the cost of increased computation complexity so that the critical path can 

be reduced. In this section, we apply the same methodology to reformulate the above BM algorithm for errors-

and-erasures RS decoding. 

 

3.3 Correcting Algorithm single Long Burst error 

A novel low complexity RS burst - error correcting algorithm that only requires O(2nt) computations, 

where n and t are length of the code and traditional correction capability respectively. Wu in [6] proposed a new 

approach to track the position of burst of errors. By introducing a new polynomial that is a special linear 
function of   syndromes, the desired single burst of errors can be acquired by tracking the longest consecutive 

roots of new polynomial.The errors to be a single burst of length f if their locations are within the interval of f. 

Note that it is not necessary that all symbols in the burst interval are erroneous, that is a burst might be 

inconsecutive. In this a new polynomial  ( )x  is defined which is a special linear function is syndromes given 

by 
1

1

1

0
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r

r i

r i i
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Where 1r
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
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.These can correct up to burst of length f maximum of  1r   where
2

r
t   . Note that ( )x  has degree  1r   

and thus may have up to 1r   valid roots, that is there are 1r   candidate single bursts in the worst case, 

hence objective  is to determine the shortest one. The next step is to compute the error magnitudes through 
Forney formula, which is 
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                                       (3.5) 

Where 1

i
X

  denotes the root of  ( )x  and ( )x denotes the derivative of ( )x . Denote s  by the beginning 

position of the burst, then the genuine error locator polynomial can be computed by
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And the error evaluator polynomial is the computed through  
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3.4 Reformulated inversionless Burst error Correcting Algorithm 

The single long burst error correcting algorithm is extended to BC algorithm for correcting a long burst 

of error with length up to 2 1 2t    plus a maximum of   random errors. In the BC algorithm,   is a pre-

chosen parameter that determines the specific error correcting capability. It indicates that the decoder is capable 

of correcting a f-length ( 2 2 )f t     burst of errors plus a maximum of   random errors. The BC 

Algorithm is reformulated to a proposed RiBC algorithm for the decoding of Reed Solomon codes to achieve 

efficient VLSI design and overcome its disadvantages. That is long data path and data dependencies are 

removed using intermediate polynomials also there is simultaneous computation of discrepancies and updates all 

the polynomial. Further there is no need of extra 2t cycles or another copy of original circuitry. Finally the 

inversion operation that exists in error locating   polynomial coefficients is removed.The RiBC algorithm is a 
kind of list decoding algorithm. Eight polynomials are updated simultaneously in each iteration. After every  
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IV.   UNIFIED HYBRID RS DECODER 
The proposed RiBC algorithm is very effective for correcting combination of burst errors and random 

errors (mode-1), while sLBC and rEEC algorithms are well-suited for single burst (mode-2) and random errors 

and erasures (mode-3) correction. By observing the three algorithms, it can be founded that they share many 

common or similar computation steps. Based on this interesting similarity, a unified hybrid decoding(UHD) 

architecture that is capable of correcting these three different types of errors pattern (or called as three work 

modes) will be given in this section. Fig.3 shows the overall architecture of UHD decoder. Three types of lines 
illustrate data flows for different work modes: solid line formode-1, dashed line for mode-2 and dotted line for 

mode-3. Different blocks are used to process different steps. 
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Fig.3 Unified Hybrid Decoder 

4.1 Syndrome Calculator: 

The syndrome is the result of a parity check performed on R(x) to determine whether R(x) is a valid 

member of the codeword set. If in fact R(x) is a member, the syndrome S has value 0. Any nonzero value of S 

indicates the presence of errors. Similar to the binary case, the syndrome S is made up of n - k symbols, {Si} (i = 

1, …, n - k). Thus, for this (7, 3) R-S code, there are four symbols in every syndrome vector; their values can be 

computed from the received polynomial, R(x). The computation of a syndrome symbol can be described as 

follows: 
    ( )      1, 2 ....( )              (4 .1 )

i

i
S R i n k      

 
 

Fig.4 Syndrome Calculator 

4.2    Block Architecture 

   block is used to process steps A1, B1, or C1 in different work modes. No matter which work mode is 

selected, the computation of ( )x  is always carried out as follows: 

     
2

1 2

0

       Ξ 1 (4 .21 )

c

c

i c

i

x A x x x x  



       
 

where 
i

A   denotes    2 2 2 1
,

i t i t
 

      or 
1i

Z


 , and c denotes 2 2 , 2 1,t t    .

 

 
Fig. 5   Block diagram 

By inputting 
i

A  to the block serially, it can be found that can be implemented as shown in Fig 5. In Fig 5, once 

the required work mode is selected, the left-most register is initialized as a specific value. Then after certain 

number of clock cycles that depends on the selected mode, each accumulate unit computes its corresponding 

coefficient of ( )x . Note that if in mode-3 the decoder detects that the current received symbol is not erasured, 

the input 0 of multiplexer will be selected. 

4.3   Block Architecture 

1) Steps A2.1 and B3.1 are implemented in    block as shown in the Fig.6 For these steps, the common 

operation is multiply-accumulate for each coefficient of the polynomial. Only a slight difference exists in 

step B3.1, it is a Chien Search-like step, hence an extra adder tree is required to verify the validity of 

current received symbol. Notice that   block will be idle in mode-3. In mode-1,
i

 , as the coefficients of 

 Ξ x   , are inputted into each multiply-accumulate unit for iterated multiplication. For each l in step A2.1, 

since 2 2 2

1 2 2 2
( ) 1 .. . . . .( )

l t

t
x x x xx




   




      should be maintained within 2t+3 cycles, 3:1 multiplexers 

are introduced to help the lower registers keep the coefficients of current ( )x   during the above time 
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interval. The value of l will increase by 1 every 2t+3 cycles. Once l increases by 1, after 1 cycle, the lower 

registers will output 
i

   to the   -block. 

2) In mode-2,
i

  as the coefficients of ( )x  , are selected to be inputted instead of 
i

 . Then by employing 

adder tree and zero detect, it takes n cycles for ( )x -block to find the roots of ( )x  (step B3.1).  

 
 

Fig. 6   Block diagram 

4.4 -Block Architecture 

 -block is used to execute steps A2.2, B2, and C2. Actually, the inherent nature of steps A2.2, B2, and 

C2 is the multiplication of two polynomials. This operation can be implemented as shown in Fig. 7. In Fig. 7, 

the initial values of registers are all set to 0, and the operating procedures for three work modes are introduced 

as follows: 

1) For mode-1, the coefficients of ( )x  are serially inputted into -block. After                                 

2 2 1t    cycles,
i

 , as the coefficients of ( )x  , are stored in the registers. 

2) For mode-2, being different from mode-1 and mode-3, the coefficients of ( )x  are concurrently fed 

into   -block, and then after only 1 cycle,
i

 , as the coefficients of ( )x  , are calculated and stored 

in the registers. 

3) For mode-3, similar with mode-1, the coefficients of ( )x  are serially inputted into  -block. After 

1   cycles, 
i

  , as the coefficients of ( )x  , are stored in the registers. 

 
Fig. 7  - Block diagram 

4.5 KES Block Architecture 

In UHD decoder, KES block is employed to carry out steps A2.4, B4, B5, and C4. Fig. 8 presents the 

overall architecture of KES block and the internal structure of its two types of processing elements (PE), PE0 

and PE1.As shown in Fig. 8(a), the KES block consists of PE0’s and PE1’s. The detailed operating scheme is 

presented as follows. 

1) For mode-1, in the r th iteration, each register in P E 0 / P E 1
i i

  stores the corresponding coefficients 

of different polynomials. For each outer iteration, it takes 2    cycles to compute ( 2 )

i


   and  2

i


   

as the coefficients of  2 β
Λ ( )x and ( 2 )

( )x


  .Meanwhile, ( 2 )

i


  will also be computed and 

outputted into PT block to track the longest consecutive   2 β
Λ ( )x  that are identical. 

2) For mode-2, as aforementioned, KES block is arranged to carry out steps B4 and B5. Accordingly, both 

of the initial values in registers and input signals are different from those in mode-1, and they are 

operated based on the following schedule: 

i. First, 2t-1 PE0’s compute step B4 * 2 2
( ) ( )

s t
x x

 
   . In each PE0i, the second uppermost 

register is initialized with
1i




 , in addition Ctrl and ( )

0

r
    are always set to 1 and 0, 

respectively. Then after 2 2s t   cycles, these registers in group A just store the 

coefficients of polynomial ( )x


  . 

ii. The successive step C5 * * *

0 1 1 0
.....  

i i i i
S S S


       for i =0,1,..2t-1 is carried out by 2t PE1’s. In 

each PE1, the uppermost register group B is initialized with 0,while the initial value in the 
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third uppermost register group C is 
2 1t i

S
 

 ,meanwhile Ctrl and ( )r
  are always set to 0 and 

1. Additionally in the r-th cycle, ( )

0

r
  is set to 

2 1
 fo r 0    2 - 1

t r
r t



 
    then after 2t 

cycles registers in group B store the coefficients of ( )x


 .  

3) For mode-3, the rEEC algorithm can be directly carried out by KES block by replacing ( ) ( )
 b y  

r r

i i
   

in each 1
i

P E ’s. Note that in this case only half of the hardware component of each PE0/PE1 is 

utilized. Therefore it can be derived that the total throughput would be improved by twice if two 

independent codeword are inputted. 

 
Fig. 9(a) Overall architecture of K ES block. (b) The block diagram of 0

i
P E (c) The block diagram of 1

i
P E  

4.6 Position Track (PT) Block Architecture 

PT block is used to track the longest consecutive polynomials that are identical (step A3) or position of 

roots (step B3.2 and B3.3) 

1) Fig.10 illustrates the architecture of the PT block for mode1 .The inputted 2 2 2
,  a n d  

i i i

  
      from 

the KES block at the l th outer iteration are denoted as ( ) , ( )  a n d  ( ) .
i i i

l l l    In addition  ( )
i

te m p  

represents  1
i

l   while  ( )
i

s to r e  are the coefficients of current continuously identical 2
( )x


  

. Moreover,  ( )
i

lo n g e s t stores the coefficients current longest continuously identical 2
( )x


 . 

After l reaches n  ( )
i

lo n g e s t  and  ( )
i

lo n g e s t are outputted as the coefficients of overall error 

locator polynomial ( )x


  and overall error evaluator polynomial ( )x


 . 

2) In mode 2 since finding the roots of ( )x  has been implemented in   -block there is no need for PT 

block to carry out this function, but it is used to track the longest consecutive roots of ( )x . 

 
Fig. 11 Architecture of PT block in mode 1 

V. SIMULATION RESULTS AND DESIGN SUMMARY 
5.1 Simulation Result 

The Simulation is done in the three modes of a (7, 3) RS Decoder for the received signal R(x) = {100 011 

011 100 101 110 111} with the 4th and 5th corrupted symbols. 

 
 

Fig. 12 Simulation Result in mode 1(RiBC) 
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Fig. 13 Simulation Result in mode 2 (sLBC) 

 

 
 

Fig. 14 Simulation Result in mode 3 (rEEC) 

 

5.2 Design Summary 

The Fig.15 gives the detailed design summary of the UHD decoder. 

 

 
 

Fig.15 Design Summary of the UHD decoder 

 

 

VI. CONCLUSION 
In this brief a Unified Hybrid Decoder architecture that can support three different modes so that it can 

correct three different types of error pattern is implemented. Also the simulation results and design summary for 

a (7,3) RS Decoder is shown. 
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