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I. INTRODUCTION 
 The theory of ternary algebraic systems was introduced by LEHMER [4] in 1932,but earlier such 

structures was studied by KASNER [2] who give the idea of  n-ary algebras. LEHMER[4] investigated certain 

algebraic systems called triplexes which turn out to be commutative ternary groups. Ternary semi-groups are 
universal algebras with one associative ternary operation.  It is well known that if Li, i = 1, 2 are the rings of 

linear transformations of finite dimensional vector spaces Mi over division ring Di, then f is an isomorphism of 

L1 into L2 if and only if there exists a one to one semi linear transformation S of M1 into M2 such that Af = S-

1AS holds for all A ∈ L1.  This theorem was extended to near rings by RAMAKOTAIAH[5] by introducing the 

notion of a semi space (M, S) where M is a group and S, a set of endomorphism of M containing the zero 

endomorphism O of M satisfying (1) S\{O} (the complement of O in S) is a group of auto-orphisms’ on M and 

(2) ms = mt for some 0 ≠ m ∈ M and s, t ∈ S implies s = t.  ANJANEYULU[1] introduce S-semi spaces and 

obtain an isomorphism theorem of semi-group of S-homomorphism on semi spaces and deduce the well known 

LJAPIN’s[3] theorem on the semi-group of transformations over a set.  In this paper we introduce  T-semi 

spaces and exhibit a class of primitive idempotents of rank 1 in the ternary semigrooup of all T-homomorphisms 
on a semispace. We obtain a characterization of minimal (one sided) ideals in ternary semigroups of T-

homomorphisms of a semispace containing all T-homomorphisms of rank 1 and obtain equivalent conditions for 

the ternary semigroup of T-homomorphisms on a semispace, to be a ternary group. 

 

II. PRELIMINARIES : 

DEFINITION 2.1 : Let T be a non-empty set. Then T is said to be a Ternary semigroup if there exist a 

mapping from T×T×T to T which maps   (
1 , 2 , 3

x x x )   1 2 3
x x x satisfying the condition 

:      1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
x x x x x x x x x x x x x x x             

i
x    T, 1 5i  . 

NOTE 2.2 : For the convenience we write 
1 2 3

x x x  instead of  1 2 3
x x x  

NOTE 2.3 : Let T be a ternary semigroup. If A,B and C are three subsets of S , we shall denote the set ABC = 

 : , ,abc a A b B c C   . 

DEFINITION 2.4 : An element a of ternary semigroup T is said to be left identity of T provided aat = t for all 

t T. 
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NOTE 2.5 : Left identity element a of a ternary semigroup T is also called as left unital element. 

DEFINITION 2.6 : An element a of a ternary semigroup T is said to be a lateral identity of T provided ata = t 

for all t  T. 

NOTE 2.7 : Lateral identity element a of a ternary semigroup T is also called as lateral unital element. 

DEFINITION 2.8: An element a of a ternary semigroup T is said to be a right identity of T provided taa = t 

 t  T. 

NOTE 2.9 : Right identity element a of a ternary semigroup T is also called as right unital element. 

DEFINITION 2.10 : An element a of a ternary semigroup T is said to be a two sided identity of T provided  

aat = taa = t  t T. 

NOTE 2.11 : Two-sided identity element of a ternary semigroup T is also called as bi-unital element. 

DEFINITION 2.1: An element a of a ternary semigroup T is said to be an identity provided  

aat = taa = ata = t  t T. 

NOTE 2.13 : An identity element of a ternary semigroup T is also called as unital element. 

NOTE 2.14 : An element a of a ternary semi group T is an identity of T iff a is left identity , lateral identity and 

right identity of T. 

DEFINITION 2.15 : An element a of a ternary semi group T is said to be an idempotent element provided 
3

a a . 

DEFINITION 2.16 : An idempotent is said to be primitive idempotent if it is non-zero and is minimal in the set 

of non-zero idempotents. 

NOTE 2.17 : A non-zero idempotent element e of a ternary semigroup T is primitive if for any non-zero 

idempotent f of T, the relation eff = fef = ffe = f implies e = f. 

THEOREM 2.18 : An idempotent element e  is an identity of a ternary semi group T then it is unique. 

DEFINITION 2.19 : A nonempty subset A of a ternary semigroup T is said to be left ternary ideal or left ideal 

of T if b, c   T, a   A implies bca   A. 

NOTE 2.20 : A  nonempty subset A of a ternary semigroup T is a left ideal of T if and only if TTA   A. 

DEFINITION 2.21 : A nonempty subset of a ternary semigroup T is said to be a lateral ternary ideal or simply 

lateral ideal of T if b, c   T , a   A implies bac   A. 

NOTE 2.22 : A nonempty subset of A of a ternary semigroup T is a lateral ideal of T if and only if TAT   A. 

DEFINITION 2.23 : A nonempty subset A of a ternary semigroup T is a right ternary ideal or simply right 

ideal of T if b, c   T , a   A implies abc   A  

NOTE 2.24 : A nonempty subset A of a ternary semigroup T is a right ideal of T if and only if ATT   A. 

DEFINITION 2.25 : A nonempty subset A of a ternary semi group T is said to be ternary  ideal or simply an 
ideal of T if  b, c   T , a   A implies bca   A, bac  A, abc  A. 

DEFINITION 2.26 : An ideal A of a ternary semi group T is said to be a minimal ideal provided A is a proper 

ideal of T and is properly contained in any ideal of T. 

DEFINITION 2.27 : A ternary semigroup T is said to be left cancellative if abx = aby ⇒ x = y  for all  

a, b, x, y ∈ T. 
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DEFINITION 2.28 : A ternary semigroup T is said to be lateral cancellative if axb = ayb ⇒ x = y  for all  

a, b, x, y ∈ T. 

DEFINITION 2.29 : A ternary semigroup T is said to be right cancellative if xab = yab ⇒ x = y  for all  

a, b, x, y ∈ T. 

DEFINITION 2.30 : A ternary semigroup T is said to be cancellative if T is left, right and lateral cancellative. 

DEFINITION 2.31 : An element a of a ternary semigroup T is said to be invertible in T if there exists an 

element b in T such that abx = bax = xab = xba = x for all x ∈ T. 

DEFINITION 2.32 : A ternary semigroup T is said to be a ternary group if for a, b, c ∈ T, the equations  

abx = c, axb = c and xab = c have solutions in T. 

3. SEMISPACES : 

DEFINITION 3.1 : Let T be a ternary semigroup.  A non empty set M is called a right operand or right  

T-system or simply an T-system, provided there exists a mapping (m, n, s) → mns of M × M × T → M such that 

mn(stu) = m(nst)u = (mns)tu for all m, n ∈ M and s, t, u ∈ T.  We denote a right T-system M by MT.  

DEFINITION 3.2 : Let T be a ternary semigroup.  A non empty set M is called a lateral T-system provided 

there exists a mapping (m, s, n) → msn of M × T × M → M such that m(stu)n = (mns)tu = mn(stu) for all  

m, n ∈ M and s, t, u ∈ T.  We denote a lateral T-system M by 
T

M . 

DEFINITION 3.3 : Let T be a ternary semigroup.  A non empty set M is called a left T-system provided there 

exists a mapping (m, n, s) → mns of T × M × M → M such that (stu)mn = s(tum)n = st(umn) for all m, n ∈ M 

and s, t, u ∈ T.  We denote a left T-system M by TM.  

DEFINITION 3.4 :  Let MT be a right T-system.  Then an element x ∈ M is called a fixed element of MT 

provided mmt = m for all t ∈ T.    

NOTE 3.5 : If MT is a right T-system.  Then we denote the set FM = { m ∈ M : mmt = m for all  t ∈ T} and FM 

is read as the set of fixed(= invariant) elements of an operand MT over a ternary semigroup T. 

DEFINITION 3.6 : Let MT be a right T-system.  Then a nonempty subset N of M is called an T-subsystem of 

MT provided NNT ⊆ N, that is for all m, n ∈ N and t ∈ T, mnt ∈ N.  

DEFINITION 3.7 : A right T-System MT is said to be unital provided T contains 1 and m.1.1 = m for all m ∈M. 

DEFINITION 3.8 : A right T-System MT is said to be transitive provided for any m, n,  p ∈ M, there exists an 

 t ∈ T such that mnt = p. 

DEFINITION 3.9 : A right T-System MT is said to be irreducible provided MMS ⊈ FM and the only 

subsystem of M of cardinality greater than one is M itself. 

THEOREM 3.10 : Let MT be a right T-System with FM = ∅, that, MT has no fixed elements.  Then MS is a 

transitive T-System if and only if MT is an irreducible  

 

III. T-SYSTEM. 

Proof : Let MT is a transitive T-System.  Suppose if possible MT is not irreducible.  Then MMS ⊆ FM ⇒ for all 

m ∈ M, t ∈ T, mmt = m and hence MT is not transitive.  We have the contradiction.  Therefore MMS ⊈ FM 

implies that MT is an irreducible. 

 Conversely suppose that MT is an irreducible T-System.  That is MMS ⊈ FM ⇒ for m ∈ M,  mmt ≠ m 

for all  t ∈ T ⇒ m, n, p ∈ M, there exists an t ∈ T such that mnt = p.  Therefore MT is a transitive T-System.  

DEFINITION 3.11 : Let MT and NT be two right T-Systems.  A mapping f : M → N is called an  

T-homomorphism from MT into NT provided f (mnt) = f(m)nt for all m∈ M and n, t ∈ T. 
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NOTE 3.12 : We denote the set of all T-homomorphisms form MT into NT by HT ( M, N) and the set of all  

T-homomorphisms form MT into itself by HT(M) or simply H. 

DEFINITION 3.13 : Let f : MT → NT be a T-homomorphism from the right T-system MT into the right  
T-system NT.  Then we say that f is an T-monomorphism  provided f  is one one. 

DEFINITION 3.14 : Let f : MT → NT be a T-homomorphism from the right T-system MT into the right  

T-system NT.  Then we say that f is an T-epimorphism  provided f  is onto. 

DEFINITION 3.15 : Let f : MT → NT be a T-homomorphism from the right T-system MT into the right  

T-system NT.  Then we say that f is an T-isomorphism provided f  is bijection. 

DEFINITION 3.16 : An unital T-system MT is said to be an T-semispace or simply a semispace provided T is a 

ternary group such that mns = mnt for some m, n ∈ M and s, t ∈ T implies that s = t.  We call T, a centralizer of 

M. 

NOTE 3.17 : Let MT be any semi-space.  Then the transitive relation on MT is an equivalence relation, which 

we call T-equivalence relation and the corresponding equivalence classes as T- equivalence classes.  Also each 

equivalence class is a transitive T-system and hence an irreducible T-system. 

 Let {Cα}α ∈ Δ be the family of T-equivalence classes.  By axiom of choice, there exists {Wα}α ∈ Δ such 

that Wα ∈ Cα.  In what follows we fix the family of elements {Wα}α ∈ Δ and for simplicity, we write α instead of 

Wα for each α ∈ Δ, that is, we consider Δ, as subset of M. 

 Let α ∈ Δ.  We define a mapping Sα on M as follows.  Let m ∈ M.  Then m = βst for some β ∈ Δ and 

 s,t ∈ T.  Write for r ∈ T, mSα = (𝛽st)Sα = 𝛼st.  Now clearly Sα is an T-homomorphism. 

THEOREM 3.18 : For every X ∈ H, range of X is a union of T-equivalence classes. 

Proof : Let n ∈ range of X.  Then there exists an element m ∈ M such that mX = n.  If n ∈ Cα then n = 𝛼pt for 

some p ∈ M, t ∈ T.  Let q ∈ Cα.  Then q = 𝛼ps for some s ∈ T.   

Consider (mt-1s )X = (mX)t-1s = nt  -1s  = 𝛼ptt -1s = αps = q.  So q ∈ range of X.   

Thus range of X is a union of T-equivalence classes. 

DEFINITION 3.19 : Let X ∈ H.  The cardinality of the set of all T-equivalence classes if the range of X is 

called the rank of X. 

NOTE 3.20 : It is clear that rank of X is greater than or equal to 1 for all X ∈ H and for each α ∈ Δ, Sα has rank 

1.  We denote the set of all T-homomorphism of rank 1 by U.  We note that U does not depend on Δ.   

Write V = {S ∈ U : 𝛼SS = 𝛼 for some α ∈ Δ}. 

 We now characterize the idempotent of rank 1 in H   

THEOREM 3.21 : V is the set of all idempotents of rank 1 in H. 

Proof : Let S ∈ V.  So 𝛼S = 𝛼 for some 𝛼 ∈ Δ.  Since S has rank 1, the range of S is C𝛼 .  Let m, s ∈ M.   

Then m = βst for some β ∈ Δ and t ∈ T.  Assume βS = αpq for some  p, q ∈ T.  

 Now mS3 = (𝛽st)S3 = (𝛽S)stS2 = (𝛼pq)stS2 = (𝛼S)pqstS = 𝛼pqstS = (𝛽S)stS = (𝛼pq)stS = (𝛼S)pqst = 𝛼pqst = 

(𝛽S)st  = (𝛽st)S = mS.  Since this is true for all m ∈ M, S is an idempotent.  Conversely suppose that S ∈ U is an 

idempotent.  Suppose range of S is C𝛼.  

 If 𝛼S = 𝛼st for some s, t ∈ T, then 𝛼st = 𝛼S = 𝛼S3 = (𝛼st)SS = (𝛼S)stS = (𝛼S)stS = (𝛼st)stS = (𝛼S)stst = 𝛼s3t3.  

So s = t = e, Where e is the identity of T.  Hence 𝛼S = 𝛼 for some 𝛼 ∈ Δ.  Therefore S ∈ V.  

 In the following theorem exhibit a class of primitive idempotents of rank 1 in H. 

THEOREM 3.22 : For each 𝜶 ∈ 𝚫, the T-homomorphism S𝜶 is a primitive idempotent in H. 

Proof : Let 𝛼 ∈ Δ.  Clearly S𝛼 is an idempotent in H.  Suppose S is an idempotent in H such that SS𝛼 = S𝛼S = S.  

Let m, s ∈ M.  Then m = βst for some β ∈ Δ and t ∈ T.  Now since mS ∈ M and range of S = range of S𝛼 = C𝛼 , 

we have mS = 𝛼pq for some p, q ∈ T.   
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Now (𝛼S)st = (𝛼st)S = (𝛽st)S𝛼S = (𝛽st)S = (𝛽st)S3 = (mS)SS = (𝛼pq)SS = (𝛼SS)pq = (𝛼S)pqS = (𝛼pq)S = 

(𝛼S)pq.  Since MT is a semi-space, it follows that s = p, t = q.  Therefore, mS = 𝛼pq = 𝛼st = mS𝛼.   

Since this is true for all m ∈ M, we have S = S𝛼.  Therefore S𝛼 is a primitive idempotent.  

     

IV. MINIMAL IDEALS: 

 In this section we study minimal (one sided) ideals in ternary semi groups of T-homomorphism on a 

semi space containing U.  We start with the following. 

THEOREM 4.1 : Let X, Z ∈ U.  If range of X = range of Z, then there exists aY ∈ U such that YX = Z. 

Proof : Suppose range of X = range of Z = C𝛼 for some 𝛼 ∈ Δ.  Let 𝛼X = 𝛼uv and 𝛼Z = 𝛼yz for some  

u, v, y, z ∈ T.  Let m,s  ∈ M.  Then m = 𝛼st for some 𝛼 ∈ Δ and t ∈ T.  Define a mapping Y on M as follows.  

mY = (𝛼st)Y = 𝛼u-1v-1yzst.  Clearly Y is an T-homomorphism with range C𝛼 and hence Y ∈ U.  

 Now m(YX) = (mY)X = (𝛼u-1v-1yzst )X = (𝛼X) u-1v-1yzst  = 𝛼uv u-1v-1yzst  = 𝛼yzst = (𝛼Z)st = mZ.   

Since this is true for all m ∈ M, we have YX = Z.  

THEOREM 4.2: If 𝚫 and 𝚪 are two sets of representative elements of equivalence classes, then for any 

ternary semigroup G of T-homomorphism on the semispace MT containing U, GGS𝜶 = GGS𝜷 ; 𝜶 ∈ 𝚫, 

 𝜷 ∈ 𝚪 if and only if 𝜶 and 𝜷 belong to the same equivalence class. 

Proof : Suppose GGS𝛼 = GGS𝛽 ; 𝛼 ∈ Δ and 𝛽 ∈ Γ.  Let X ∈ G.  Then there exists aY ∈ G such that  

XXS𝛼 = YYS𝛽.  Since the range of XXS𝛼 is C𝛼 and YYS𝛽 is C𝛽, we have C𝛼 = C𝛽.  So 𝛼 and 𝛽 belong to the 

same equivalence class.  Conversely suppose that 𝛼 and 𝛽 belong to the same equivalence class.   

That is C𝛼 = C𝛽.  Now by theorem 4.1, there exists Y, Y   ∈ U ⊆ G such that S𝛼 = YYS𝛽 and S𝛽 = Y Y S


  .  

Therefore we have S𝛼 ∈ GGS𝛽 and S𝛽 ∈ GGS𝛼 .  Hence GGS𝛼 = GGS� .  This completes the proof of the 

theorem. 

 We now prove the following useful 

THEOREM 4.3: Let MT be a semispace and let m, n ∈ M.  Then there exists aS ∈ U such that mS = n. 

Proof: Since m, n, s,u ∈ M, m = 𝛼st and n = 𝛽uv for some 𝛼, 𝛽 ∈ Δ and t, v ∈ T.  Define a mapping S on M as 

follows.  Let p, q ∈ M.  Then p = 𝛿qr for some 𝛿 ∈ Δ and r ∈ T.  Write pS = (𝛿qr)S = 𝛽uvs-1t-1qr.  Clearly S is 

an T-homomorphism of rank 1 and hence S ∈ U.  Further mS = (𝛼st)S = 𝛽uvs-1t-1st  = 𝛽uv = n. 

NOTE 4.4: By theorem 4.3., we note that if G is a ternary semigroup of T-homomorphisms on a semispace MT 

containing U, then M is a transitive G-System and hence an irreducible G-System.  We now characterize 

minimal ideals in a ternary semi- group of T-homomorphisms on a semi-space, containing U. 

THEOREM 4.5: If G is a ternary semigroup of T-homomorphisms on a semispace M, containing U, then 

a) For every 𝜶 ∈ 𝚫, GGS𝜶 is a minimal left ideal of G, and G has no other minimal left ideals. 

b) For every S ∈ V, SGG is a minimal right ideal of G which is G-isomorphic to M and G has no 

other minimal right ideals. 

Proof: (a) Let 𝛼 ∈ Δ.  We know that GGS𝛼 is a left ideal of G.  Let L be any left ideal of G such that  

L ⊆ GGS𝛼.  Now we shall show that S𝛼 ∈ L.  Let X ∈ L.  So X ∈ GGS𝛼 and hence X has rank 1 with range C𝛼.  

Since range of X = range of S𝛼 = C𝛼, by theorem 4.1., there exists aZ ∈ U such that ZZX = S𝛼.  Therefore S𝛼 ∈ 

L.  Hence L = GGS𝛼.  Thus GGS𝛼 is a minimal left ideal. 

Let L be any minimal left ideal of G.  Let X ∈ L.  Then the range of X contains an equivalence class, say 

C𝛼.  So there is an equivalence class C𝛿 such that X maps C𝛿 into C𝛼.  Now Now 𝛿X = 𝛼st for some s, t ∈ T.  

Define Z on M as follows.  Let m ∈ M.  Now m = 𝛽uv for u ∈ M and v ∈ T.  Write mZ = (𝛽uv)Z = 𝛿s-1t-1uv.  

Then Z ∈ U,  with range C𝛿.  So Z ∈ G.  Now m(ZZX) = (mZ)ZX = ((𝛽uv)Z)ZX = (δs-1t-1uv)ZX = (𝛿X)s-1t-1uvZ  

= (𝛼sts-1t-1uv)Z = (𝛼uv)Z = (𝛽uv)S𝛼 = mS𝛼.  So ZZX = S𝛼.  Thus S𝛼 = ZZX ∈ L.  So GGS𝛼 ⊆ L.  Since L is a 

minimal left ideal, GGS𝛼 = L.  Thus every minimal left ideal is of the form GGS𝛼 for some 𝛼 ∈ Δ. 

(b) Let S ∈ V.  Then SGG = K is a right ideal of G.  Since S ∈ V, there exists an  

𝛼 ∈ Δ with 𝛼S = 𝛼 such that range of S = C𝛼.  Since M is an irreducible G-system, 𝛼K = 𝛼SGG = 𝛼GG = M.  

Now consider the mapping k → 𝛼kk1
 from K into M.  Clearly this mapping is an G-epimorphism.   
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Suppose 𝛼k1k2 = 𝛼k3k4 for some k1, k2, k3, k4 ∈ K.  Now ki = SAi, i = 1, 2, 3, 4 for Ai ∈ G.  Since 𝛼k1k2 = 𝛼k3k4, 

we have 𝛼A1A2 = 𝛼A3A4.  Let m, s ∈ M.  Then m = 𝛽st for some 𝛽 ∈ Δ and t ∈ T.   

Suppose 𝛽S = 𝛼pq for some p, q ∈ T.  Now mk1k2 = (𝛽st)SA1SA2 = (𝛽S)SstA1A2 = (𝛼pq)SA1A2st  

= (𝛼A1A2)Spqst = (𝛼A3A4)Spqst = (𝛼pq)SA3A4st = (𝛽S)SA3A4st = (𝛽st)SA3SA4 = mk3k4.  Since this is true for 

all m ∈ M, k1 = k3, k2 = k4.  Therefore K is G-isomorphic to M.  Since M is an irreducible G-system, K = SGG is 

a minimal right ideal of G. 

Let K be any minimal right ideal of G.  Then clearly K ⊆ U.  Let S ∈ K.  Now SKK is a right ideal of G 

contained in K.  Since K is minimal, K = SKK.  So there exists S  ∈ K such that S = S S  .  Suppose range of S 

is C𝛼 and assume 𝛼S = 𝛼st for some s, t ∈ T.  Then 𝛼S S   = 𝛼S implies 𝛼st = 𝛼S = 𝛼S S   = (𝛼st) S   = ( 𝛼 S  )st  

So 𝛼 = 𝛼 S  .  Hence S  ∈ V and also since S   ∈ K, we have S  GG = K.  So every minimal right ideal of G is 

of the form SGG for some S ∈ V.   

THEOREM 4.6: The following are equivalent on a semispace MT. 

[1] H is a ternary group 

[2] H is a simple ternary semigroup 

[3] H = U. 

[4] T is T-isomorphic to M. 

[5] Every element of H is a T-isomorphism. 

Proof : Suppose H is a simple ternary semigroup.  So T has no proper ideals.  Since U is three sided ideal of H, 

we have H = U.  If H = U, then the identity mapping I ∈ H = U.  So I has rank 1 and hence range of I = M is the 

only T-equivalence class. Let 𝛼 ∈ M.  Define 𝜃: T → M as follows s𝜃 = 𝛼st.  Suppose s𝜃 = u𝜃 for some s, u ∈ T.  

This implies 𝛼st = 𝛼ut.  Since MT is a semispace, we have s = t.  therefore 𝜃 is one-one.  Since M is the only  

T-equivalence class, we have θ is onto.  (sut)𝜃 = 𝛼(stu)t = (𝛼st)ut = (s𝜃)ut.  Thus T is T-isomorphic to M.  

Suppose T is T-isomorphic to M.  Let 𝜃 be an T-isomorphism from T into M.  Write (e)𝜃 = 𝛼 ∈ M, where e 

is the identity of T.  Now for any t, s ∈ T, s𝜃 = 𝛼st.  Since 𝜃 is onto, M is the only T-equivalence class.   

Let S ∈ H.  Write 𝛼S = 𝛽.  Suppose mS = nS for some m, n ∈ M.   Now m = 𝛼st and n = 𝛼pq for some  
s, t, p, q ∈ T.   (𝛽st) = (𝛼S)st = (𝛼st)S = mS = nS = (𝛼pq)S = (𝛼S)pq = 𝛽pq.  Since MT is a semispace, we have 

 s = p and t = q.  Therefore m = n.  Hence S is one – one.  Let n ∈ M.  Now n = 𝛽st for some s, t ∈ T.   

Put m = 𝛼st.  Now mS = (𝛼st)S = (𝛼S)st = 𝛽st = n.  So T is onto.   

Therefore every element of H is an T-isomorphim. 

V. CONCLUSION 

The theory of ternary semi groups can applied to many algebraic structures in pure mathematics like 

semi groups, Gamma semi groups, Partially ordered semi groups, Partially ordered ternary semi groups, near 

rings, semi rings and gamma semi rings ect,.  
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