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--------------------------------------------------------ABSTRACT-----------------------------------------------------------                             

Support Vector Machines (SVMs) have been accepted as a promising technique to address the classification 

problems. This method is able to achieve high predictive accuracy subject to providing appropriate values for 

the parameters of kernel functions. The process of tuning the kernel parameters is also known as model 

selection. These parameters vary from one dataset to another, therefore, SVM model selection is an important 

dimension of research. This paper presents a Multi-Objective Genetic Algorithm approach to optimize the 

kernel parameters. In this work, a MOGA is designed with two conflicting objectives to be optimized 
simultaneously. These two objectives are based on the error rate and a ratio of number of support vectors to the 

number of instances of the dataset under consideration. To evaluate the performance of the proposed method, 

experiments were conducted on the datasets from LibSVM (library for SVM) tool webpage and the results 

obtained were compared with the traditional grid algorithm for parameters searching. Compared with grid 

algorithm, the proposed MOGA based approach leads to less error rate and gives a Pareto front of solutions 

giving a user an opportunity to exercise choices with a trade-off between the two objectives. 
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I. INTRODUCTION 
 A Support Vector Machine (SVM) is a statistical classification method introduced by Vapnik and 

coworkers in 1992 [1]. This technique has shown promising results while addressing classification problems in 

various fields like medical diagnosis [2], text and image recognition [3][4] and bioinformatics. SVMs are 

supervised learners that classify data presented with class labels by determining a set of support vectors that 
outline a maximal margin hyper plane. To apply SVM to non-linearly separable classification problems, data is 

mapped into high dimensional space using some kernel functions. These kernel functions are important as they 

influence the performance of the SVM. Every kernel function has parameters associated with it which govern 

the training process. It is important to tune these parameters including the penalty parameter C before we can 

really employ SVM as an effective classifier. This process of parameter tuning is known as model selection or 

parameter selection which aims at finding a classifier that minimizes the error in prediction [5].  

 The grid algorithm has been used for finding the best C and the specified kernel parameters. However, 

this method is time consuming and does not perform well as described by Hsu and Lin (2002). Promising results 

have been obtained by using Genetic Algorithms (GAs) to optimize the SVM parameters [6]. Nonetheless, a GA 

has the limitation of considering one objective to be either maximized or minimized. It has been observed that 

no single criterion is sufficient and there are number of objectives, most often conflicting in nature, that have to 

be taken into account for designing  an effective SVM classifier.  
 In this work, we propose a Multi-objective Genetic Algorithm (MOGA) to find best parameter C and 

the other associated kernel functions parameters. Multi-objective Genetic Algorithm has the potential to 

simultaneously consider number of conflicting criteria and gives non- dominated solutions. The set of non- 

dominated solutions are known as Pareto-optimal or non-inferior solutions. In view of the fact that none of the 

solutions in the non- dominated set is absolutely better than the other, any one of them is an acceptable solution 

[7]. In this paper, two objective functions have been considered for finding the appropriate C and associated 

kernel function parameters. These objective functions involve error rate and risk of the SVM classifier in terms 

of number of support vectors and instances in the training data. 

 The remainder of the paper is organized as follows. Section 2 divulges into the essential details of 

SVM. The related work on SVM parameter selection is given in Section 3. The MOGA based approach 

proposed in this paper is described in Section 4. The experimental design and results are presented in Section 5. 
Finally, conclusions and the future direction of this work are listed in Section 6. 
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II. SUPPORT VECTOR MACHINES 
Support Vector Machines are a relatively new learning method used for binary classification. It is also been 

extended for multi-class classification which is still an ongoing research issue. The basic idea in SVM classifier 

is to find a hyperplane which separates the n-dimensional data perfectly into two classes. However, since 
example data is often not linearly separable, SVM‟s introduce the idea of a “kernel induced feature space” 

which casts the data into a higher dimensional space where data become separable. Therefore, we can say SVM 

are of two types: one is linear SVM which does not use any kernel function and the other is non-linear SVM 

which use kernel functions to find a non-linear and complex decision boundary.   

 

2.1 Linear SVM 

 A SVM is a supervised learning algorithm for the classification of both linear and non-linear data. 

Given a training set of instance-label pairs ),( ii yx  ; i = (1, 2, 3…, m) where each 
n

i RXx   is an input 

vector and }1,1{ iy is the corresponding binary class label. A SVM separates the examples by the means 

of Maximal Margin Hyperplane (MMH). SVM finds this hyperplane using Support Vectors which are nothing 

but the subset of training instances and the margins which are the sides of the hyperplane at the shortest 

distance. Support Vectors lie on these margins [5][8]. The algorithm strives to maximize the distance between 
examples that are close to the hyperplane. This margin of maximum separation is related to Vapnik-

Chervonenkis dimensions (VCdim) which measures the complexity of the classifier.  

The equation for a separating hyperplane is written as w.x + b = 0; where w is a weight vector associated with 

every attribute, namely },.......,,{ 21 nwww  ; and b is a scalar referred as the bias. For linearly separable case, 

the data points will be correctly classified by the following equations [9]: 
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Equation (1) and (2) can be combined into one set of inequality as given below.        
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Examples/Instances in the training dataset which satisfy eq. (3) with equality are called support vectors. The 

SVM finds the MMH by solving the following optimization problem [10]:
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This is a quadratic optimization problem and to solve it one needs to find the saddle point of the Lagrange 

function as given below [11]:
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where i  0 is the vector of Lagrange multiplier corresponding to the constraint (4) associated with every 

training instance. By differentiating above eq. with respect to w and b, the following equations are obtained 

which are also known as Karush Kuhn-Tucker (KKT) conditions [12]:
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We also get an additional KKT complementary condition as given below: 

(8)             ..,2,1,0]1).([ mibxwy i

T
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The above complementary condition implies that the instances corresponding to i  > 0 are Support Vectors. 

From eq. (6) and (8) we get 
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Now by substituting the eq. (6) and (7) in eq. (5), we get the final dual formulation of the eq. (4) given in 

following eq. (10): 
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2.2 Linear generalized SVM for linearly non-separable data 

It is to be noted that there will be some misclassification of examples in which linear hyperplane does not exist. 

To get the settings for this problem the non negative slack variables 0i are introduced for every example, 

i=1, 2, 3, ., m such that the eq. (1) and (2) becomes:  
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In terms of these slack variables, the problem of finding the hyperplane now becomes: 
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 The penalty parameter C characterizes the weight given to the classification errors [9]. The decision function 

remains the same as of eq. (9) for any Support Vector ix  such that 0< i <C.

 2.3 Non linear SVM 

For the non-linear case, SVM maps the data to some higher dimensional space using a mapping function , 

also called as kernel function. The optimization problem to be solved remains the same as eq. (13). Under this 

mapping the solution obtained has the following form [13]:  

bxwsignxF T  )(()(  
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The mapping is performed by a kernel function ),( yxK  = )().( yx  which is the dot product of two feature 

vectors in decision function eq. (14). Hence the decision function f(x) given by non linear SVM becomes:  
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The dual form of eq. (10) is reformulated as below: 
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The most common kernel functions available include linear, Radial Basis Function (RBF), sigmoid, and 

polynomial kernels which are given in eq. (17), (18), (19), (20) respectively [14]. In order to improve 

classification accuracy, the parameters for these kernel functions should be appropriately set. 

Linear kernel:          (17)                             * yx                
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RBF kernel:   (18)              )2|^|*exp( yxg          

Sigmoid kernel: (19)             ).*tanh( ryxg T          

Polynomial kernel:     (20)         )^*( dryxg T        

 

III. RELATED WORK 
 A grid approach to parameter selection is based on ideas from design of experiments which starts with 

a coarse grid search and refines both the grid solution and search boundaries iteratively. After each of the 

iteration all the sample points are evaluated and the point with best performance is chosen. The results obtained 

by this technique demonstrate that it is robust and works effectively and efficiently on a variety of problems 

[15]. A method based on crossbreed genetic algorithm, which uses two fitness functions, has been proposed to 

choose the kernel functions and their corresponding parameters based on two criterions namely: empirical 

estimators and theoretical bounds for the generalization error for improving the performance of SVMs. This 

method has been able to avoid premature convergence and, thereby, improves predictive accuracy [16].  

Another GA-based approach was able to simultaneously optimize the SVM parameters and size of the feature 
subset without degrading the classification accuracy. In this approach three criteria- classification accuracy, 

number of selected features, and the feature cost were combined to create a single objective function. The results 

obtained using this approach have  achieved higher predictive accuracy and that is with fewer number of 

features as compared to grid-based approach [6]. Gene expression programming (GEP) has also been used to 

evolve kernel functions. This technique trains a SVM with the kernel function most suitable for the training data 

set rather that pre-specifying the kernel function. Here, kernel functions were derived from the various existing 

kernel functions and fitness of the kernel was measured by calculating accuracy through cross validation. 

Results obtained using GEP also attained high accuracy and generalization capabilities for a given data set [17].  

A meta-strategy utilizing genetic algorithm was proposed to automate model selection for support vector 

machines which combined various kernel functions in data-driven manner. In this strategy, two fitness functions 

were designed to represent two criteria which were incorporated in two genetic algorithms. On comparing these 

two model selection measures, it was found that both are appropriate to choose a classifier that will generalize 
well to unknown data [5]. A multi-objective optimization method has also been suggested for SVM model 

selection using the NSGA-II algorithm. Non -dominated set of solutions were obtained using two objectives 

which are false acceptance (FA) and false rejection (FR) rates.  Experimental results obtained from the proposed 

work were analyzed and it was found that solutions achieved by employing FA/FR curve dominate the solution 

obtained with the criterion area under ROC curve (AUC) [18].  

 Based on the behavior of model parameters, Zhao et al. (2008) made an area search table and after 

analyzing it, they suggested first a parametric distribution model followed by a genetic algorithm based on this 

model to improve classification performance. The results obtained indicate that classification accuracy of 

genetic algorithm based on parametric distribution model is better than that of grid search [19]. Scatter search 

meta-heuristic approach, an evolutionary method which integrated with support vector machine called as 3SVM 

was devised to find near optimal values of kernel parameters. To measure the performance of the proposed 
method, experiments were conducted on ten datasets and the results attained were very promising and gave 

competitive performance as compared to other available methods [20].  

 

IV. PROPOSED MULTI-OBJECTIVE GA APPROACH TO SVM PARAMETERS 

SELECTION 
4.1 Multi-Objective GA 

 Multi-Objective GA is a multi-objective optimization algorithm that can simultaneously optimize two 
or more conflicting objectives. Due to conflicts among objectives, no single solution is best with respect to all 

objectives. For multiple objective cases, there exist a set of solutions known as non-dominated solutions or 

Pareto optimal solutions. This dominance concept has been proposed by Vilfredo Pareto in the 19th century. A 

decision vector is said to dominate another decision vector v  if u is not worse than for any objective 

functions and if is better than  for at least one objective function. This is denoted as . More formally, a 

solution is said to be Pareto optimal if it is non-dominated by any other solution.  Therefore, a Pareto optimal 

solution cannot be improved with respect to any objective without worsening any other objective. For a given 

Pareto optimal solution set, the corresponding objective function values in the objective space are called Pareto 

front.  

 Genetic algorithms (GAs) consider one objective which is either to be minimized or maximized. 

Therefore, for multi-objective optimization problems, GA, which is based upon Darwin‟s principle of the 

„survival of the fittest‟, is modified as Multi-objective GA (MOGA) [21]. Generally, a multi-objective GA 
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differs from a simple GA based on their fitness assignment procedures, and diversification or elitism 

approaches. Operations like selection, crossover and mutation remain same as that of GA. MOGA ranks the 

individuals according to the dominance rule and each solution is assigned a fitness value based on its rank, and 

not on its actual objective function value. Fitness sharing or crowding technique is used to maintain diversity in 

the population. Elitism means maintaining the best solution and is implemented by either storing it internally in 

the population itself or externally in a secondary list [7]. There are many MOGAs developed to date [22-27] 

with the purpose to find Pareto optimal solutions. 

 

4.2 Criteria for model selection 

 Model selection is an optimization process which requires the choice of several efficient criteria to be 

optimized. The accuracy of classification and risk of classifier are often used to evaluate the performance of 

SVM. Therefore, we consider the following two objectives to be optimized simultaneously. The first one is error 

rate which needs to be minimized and is given by: 

F (1) = 100/accuracy                              (21)  

The risk can be estimated by VC dimension. But the VC dimension is difficult to estimate. So we have used a 

simple bound T for the leave-one-out error given in [1] as our second objective: 

 F (2) = Nsv/Nm                                (22) 

Where Nsv is the number of Support Vectors and Nm are the number of training examples. 
The whole process of the MOGA approach is shown in Fig. 1 below: 
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V. EXPERIMENTAL RESULTS AND DISCUSSION 

 We have carried out our experiments on the MATLAB 2010 using the MOGA toolbox development 

environment and the LibSvm. The MOGA toolbox in MATLAB consists of a variation of NSGA-II algorithm 

[28]. LibSvm is a library for support vector classification. A general use of LIBSVM involves two steps: first, a 
training data set is used to obtain a model and subsequently the model is validated on a test data set for 

predictive power. The empirical evaluation was performed on Intel Pentium Dual CPU running at 1.73 GHz, 3 

GB of RAM and windows 7 professional Operating System. The proposed MOGA based model selection is 

validated on seven datasets taken from LibSvm webpage [14]. Table I describes these datasets in terms of 

number of attributes, instances and classes.  

Table I: Datasets Information 
Dataset Features Instance Classes 

Breast Cancer 10 683 2 

Diabetes 8 768 2 

Heart disease 13 270 2 

Liver-disorders 6 345 2 

Ionosphere 34 351 2 

Australian 14 690 2 

German 24 1000 2 

 

 We have considered a 2/3 partition of each dataset as training set for model construction and a 1/3 

partition as the test set for evaluating the classification accuracy. For each dataset, SVM model was constructed 

using different a kernel functions. We have used the default settings for population size (20) and number of 

generations (no of parameters of kernel function * 200) of MOGA toolbox. Results of the proposed approach 

are compared with standard SVM classifier trained using linear, RBF and sigmoid kernel. Model selection for 

the standard SVM is obtained by means of grid search algorithm in which pairs of various parameters‟ values 

are tried and the one with the best cross-validation accuracy is chosen. The grid search algorithm searches the 

best parameters with respect to one objective only which is predictive accuracy. In fact, model selection is a 

multi-objective optimization problem as described in the previous sections. The ranges of parameters for the 
standard SVM are listed in Table II. 

Table II: Parameter Range for Grid Search* 

Kernel function Log(C) Log(g) Log(r) 

Linear {-12,….,5} - - 

RBF {-12,.....,5} {-12,….,1} - 

Sigmoid {-12,….5} {-12,…..1} {0,..,2} 

 

*All parameters are varied on log scale. A „-‟ sign indicates that the corresponding parameter is not present in 

that particular kernel.  

 The MOGA based SVM model selection gives non-dominated multiple solutions with respect to both 

the objectives and any one of them can be acceptable solution. Results obtained using linear sigmoid, radial 

kernels are shown in Table III, IV and V respectively. The error rate in this paper is measured as 100/accuracy 

which implies the minimum error rate to be one when accuracy is maximum i.e. 100.  It is clear from the tables 

that the proposed approach has been able to achieve less error rates almost on all the datasets as compare to 

standard SVM with all kernel functions except on Australian dataset with linear kernel and German dataset with 

sigmoid kernel. It is also to be noted that if we look at results in F (1) column, it is observed that RBF performs 
better than other kernels and it gives more number of solutions giving more choices for user to exercise. 

Similarly by observing values in column F (2), we found that linear kernel performs better than the other kernels 

for all the datasets. The Pareto fronts obtained for various datasets using RBF kernel is shown in Fig. 2, 3, 4 and 

5.    
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Table III: Results for Linear Kernel 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Table IV: Results for Sigmoid Kernel 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Table V: Results for RBF Kernel 

 

Sr. 

no. 

 

Datasets 

MOGA Std. SVM 

F(1) F(2) F(1) 

1 Breast Cancer 1.01

00 

0.146 1.0111 

2 Diabetes 1.22

8 

0.662 1.2329 

3 Heart disease 1.14

9 

0.395 1.1739 

1.16

1 

0.377 

4 Liver-disorders 1.46

8 

0.787 1.4839 

5 Ionosphere 1.06

9 

0.337 1.093 

6 Australian 1.19

5 

0.341 1.174 

7 German 1.29 0.54 1.3029 

 

Sr. 
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SVM 

F(1) F(2) F(1) 

 

1 
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1.007 0.173  

1.011 1.015 0.154 

1.010 0.159 

 

2 
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1.228 1.029  

1.237 1.233 0.979 

 

3 
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1.161 0.673  

1.213 1.174 0.642 

1.20 0.623 

4 Liver-disorders 1.50 1.357  
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Fig. 3 Pareto front for Heart 
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VI. CONCLUSION 
 In this paper, we presented a MOGA based approach to SVM model selection. The kernel parameters 

are important to SVM and influence the performance of a SVM. But it is difficult to choose a kernel function 

and its parameters because they are dependent on datasets. A SVM model selection is multi-objective 

optimization problem, therefore, MOGA based approach has been applied to optimize the parameters of SVM 

according to two objectives, namely error rate and risk of classifier. We conducted experiments to evaluate the 

performance of the proposed approach with three different kernel functions and the results obtained were 

compared with those obtained with grid algorithm (standard SVM). The results obtained show enough evidence 
that the proposed approach has less error rates across most of the datasets as compared to grid algorithm. We 

can also conclude that RBF kernel gives better results as compared with other kernel functions. Further, we plan 

to implement the MOGA bases approach to some of the novel user-defined kernel functions [17].  
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