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--------------------------------------------------------ABSTRACT------------------------------------------------------------- 

This paper presents a new version of super convergent line series for solving optimization problems. It has 

proven to be more precise because it converges very fast. This method does not constitute the non-negativity of 

the constraint equations. Unlike other general purpose solution methods of solving constrained optimization 
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I. INTRODUCTION: 
OPTIMIZATION PROBLEM  

 An optimization problem is a well known problem in operations research. Optimization problems as 

defined by Inyama (2007) are problems that seek to maximize or minimize a given quantity called the objective 

function which depends on a finite number of input variables. These input variables may be independent or 

related through one or more constraints. The linear constraint in optimization problems guarantees a convex 

solution space. The constraints of linear optimization problem can be either equality constraints or inequality 

constraints. Equality constraints problem can be represented as: 

Max (min) Z = f(x)         … (1) 

Subject to : gi (x) = i         … (2) 

  

While inequality constraints can be represented as  

Max (Min) Z = f(x)         … (3) 

Subject to: gi (x) ior          … (4) 

Many real life problems can be stated as constrained numerical optimization problems. 

There are many constrained optimization problems with simply given postulated solutions, and there are 

different solution algorithms in solving different kinds of linearly constrained optimization problems. 

 This proposed algorithm introduces a new method of solving linearly constrained optimization 

problems that is so effective were other classical methods are not. 

 

II. OPTIMAL DESIGN OF EXPERIMENTS 
 Optimal designs are class of experimental designs that are optimal with respect to some statistical 

criterion.In design of experiments for estimating statistical models, optimal designs allow parameters to be 

estimated without bias and with a minimum variance. A non-optimal design requires a greater number of 

experimental runs to estimate the parameters with the same precision as an optimal design. 

The optimality of a design depends on the statistical model and is assessed with respect to a statistical criterion, 

which is related to the variance matrix of the estimator. Optimal designs are called optimum designs. 

 

III. OPTIMALITY CERTERIA 
Onukogu (1997) cited some optimality criteria of a design of experiment. 

 G-optimality criteria: This criterion minimizes the maximum variance of the estimate of the surface. 

 D-optimality criteria: This criterion ensures that the determinant of the information matrix is 

maximized. 
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 Ds-optimality criteria: This criterion is appropriate when an experimenter’s interest is on estimating a 

subject of S parameters very precisely. 

 A-optimality criteria: The average variance of the parameter estimates is minimized. 

 E-optimality criteria: In this type of criterion, the variance of the least well-estimated contrast is 

minimized subject to the constraint. 

 

IV. CONDITIONS FOR CONVERGENCE OF A LINE SERIES 
This condition follows kolmogorov’s criterion for convergence. 

A sufficient condition for a series of independent random variables }x{ j  with finite variance  j
2  

to be convergent with probability one is for, 

2

2

j

j


            … (5) 

At the jth step, let the sequence be defined by the equation. 

jx  = 1j1j1j dx           … (6) 

Let Xj be an N x n design matrix and Xj, be spanned by the vector  

 
njj2j1

x,x,x           … (7) 

Then the column space of the matrix at 1jX   is spanned by the vector 

 
njjnj,j2jj2j1jj1 dx...,dx,dx        … (8) 

Hence the design matrices at j+1 step are: 

j

1

jj1j
d1XX 


        … (9) 

11  = (1,1,…,1)
1
 is an N- component vector of ones. 

And the information matrix at j + 1 step is  

0X1d̂dNXXXX j

1

jj

2

jjj

1

j1j

1

1j        … (10) 

See Onukogu (1997) 

 

V.    SIGNIFICANCE OF STUDY 
 This paper is important as its outcome will add to knowledge on the methods of solving constrained 

optimization problems. This method does not require partitioning or segmentation unlike the initial method of 

super convergent line series. This work is a contribution to the field of operations research. It will be relevant to 

all using quadratic optimization method to solve certain problems as facing real life. It will be useful to 

researcher as it will help to prove other arguments as concerns constrained optimization problems. 

Finally, it will help to guide researchers who want to carry out similar study on how to go about their work. 

 

VI.   SCOPE OF STUDY 
This work shows how a line search algorithm is used to solve constrained optimization problems. 

 

Using a polynomial objective function  xf  of degree m, where m  2, subject to linear constraints, 

 K,...,2,1k;bxcxcxcCx~ knmk2k21ikk     … (11) 

the use of first order linear regression introduces an element of bias; 

Thus from the 1
st
 order partial derivative, we have  

21 awa
x

)x(f





         … (12) 

which is the first order model = ,awa 21          … (13) 
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where 























n0

02

01

1

a

:

a

a

a ,  























Bn

1B

0B

2

a

:

a

a

a  

and 2
aw  is the biasing element/part 

A matrix X was generated from the function f(X), the convex combination and the direction becomes  

  21
aWHIaHd   and 























n

1

0

d

:

d

d

d         … (14) 

The iterate was evaluated as 

dx*x            … (15) 

where x  is the vector of the starting point, 

  is the step length 

d  is the direction 

This paper is to develop a new version of super convergent line series for solving constrained optimization 

problems with a necessity to partition the feasible region, and to show that the new method is globally 

convergent. 

 

Literature Review 

There are many optimization problems with simply given postulates known solutions. There are also different 

algorithms for solving different kinds of linearly constrained optimization problem. 

 

One simple method for solving optimization problem is the gradient descent method. Fletcher (1981) explained 

this method as a first order optimization algorithm to find a local minimum of a function. He also showed that 

using Gradient descent method, steps taken are proportional to the negative of the Gradient or of the 

approximate Gradient of the function at the current point if instead of one takes steps proportional to the 

gradient one approaches the local maximum of that function. The procedure is known as Gradient ascent or 

steepest decent or method of steepest descent. This method yields zigzag phenomena in solving practical 

problems. The algorithm converges to an optimal solution very slowly or even fails to converge when solving 

large scale minimization problem.  

 

Karmarkar (1984) developed another method of solving optimization problem known as interior point or 

Newton Barrier method. This method solves inequality constraint problem. It is characterized by preserving 

strict constraint feasibility at all times, by using a barrier term which is infinite on the constraint boundaries. 

This can be advantageous if the objective function is not defined when the constraints are violated. The 

sequence of minimizer is also feasible. The two most important cases are the inverse barrier function 

 (X, r) = f(X) + r , Ci (X)
-1

       … (16) 

and the logarithmic barrier function 

 (X, r) = f(X) –r log [Ci (X)]       … (17) 

 

The coefficient r is used to control the barrier function iteration. In this case sequence r 
(k)
 o is chosen 

which ensures that the barrier term becomes more and more negligible except close to the boundary. 

 Also X (r 
(k)

) is defined as  (X, r
(k)

). The barriers method has a difficulty of locating the minimizer 

due to ill-conditioning and large gradients. It is undefined for infeasible points and the simple expedient of 

setting it to infinity can make the line search inefficient. Also the singularity makes conventional quadratic or 

cubic interpolation in the line search work less efficiently. For this reason, Fletcher and McMann (1969) 

recommended special purpose line searches. 
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Another difficulty is that an initial interior feasible point is required and this in itself is a non-trivial problem 

involving the strict solution of a set of inequalities. In view of these difficulties and the general inefficiency of 

sequential techniques, barrier functions currently attract little interest. The calculation of the direction is the 

most time consuming step of the interior point method. 

 Another method of solving quadratic optimization problem is developed by Phil-Wolf and Frank in 

(1956) known as Frank and Phil-Wolf algorithm. This algorithm is also known as convex combination 

algorithm. 

 Fletcher (1981) explained that each step of the algorithm linearizes the objective function and a step is 

taken in a direction that reduces the objective function while maintaining feasibility.Fang and Li (1999) 

designed an efficient solution procedure for solving an optimization problem with one linear objective function 

and fuzzy relation equation constraints. A more general case of the problem, an optimization model with one 

linear objective function and finitely many constraints of fuzzy relation inequalities was presented in the work. 

 Compared with the known methods, the proposed algorithm shrinks the searching region and hence 

obtains an optimal solution fast. For some special cases the proposed algorithm reaches an optimal solution very 

fast since there is only one minimum solution in the shrunk searching region and hence obtains an optimal 

solution fast. 

 At the end of the work, two numerical examples were given to illustrate the differences between the 

proposed algorithm and the known ones. The work studied the new linear objective function optimization with 

respect to the relational inequality in the constraints. The fuzzy inequality enabled them to attain the optimal 

points that are better solution than those results from the resolution of the similar problem with ordinary 

inequality constraints. The work thus presented an algorithm to generate such optimal solution in quadratic 

optimization problems. There are several other classical local search algorithms and their extensions which can 

be used in solving quadratic optimization problems. 

 

VII. METHODOLOGY 
ALGEBRAIC DEVELOPMENT OF THE ALGORITHM 

 The general formulation of the problem is to find the optimizer particularly the minimum of the given 

objective function f(x) subject to K-constraints. 

 

In the common polynomial regression model of degree m of n variant, we consider the problem of determining 

the optimal of a given function subject to certain constraints: 

}b,,,xc,xx~ k

1           … (18) 

We represent f(x) with x~ by 1
st
 – order linear equation   

eax)x(y            … (19) 

To generate matrix (X),  

b
x

f
)x(y

i





           … (20) 

bawa
x

f
21

i





         … (21) 

i.e. taking partial derivative of f(X) w.r.t.X 

The direction d  becomes 

  aBaWHIaHd 21          … (22) 

and, 

 























n

1

0

d

:

d

d

d          … (23) 
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





















n0

02

01

1

a

:

a

a

a          … (24) 























Bn

1B

Bo

2

a

:

a

a

a          … (25) 

0B0010
a)h1(ahdd   

1B111111
a)h1(ahd         … (26) 

: 

nB1nn1nn
a)h1(ahd   

Making change of parameters to obtain an equivalent model 

Var(d) = H Var (a1) H
1
 + (I – H) W var(a2)W

1
 (I – H)

1 cov2    ... (27) 

Where   H=





















1n

11

10

h

:

h

h

 

X= X1, X2  

var 























)avar()aacov(

)aacov()avar(

a

a

212

211

2

 

HH
1
 + (I – H) WW

1
 (I – H)

1
 = 1  

  
   

















1
WHI

H
WHIH  

BB
1
= 1  

Note. B is normalized using the Gaussian elimination techniques as cited by Onukogu (1997). 

 M=B(X
1
X) B

1
         … (28) 

Z is obtained by partitioning the M-matrix and substituting in to the objective function values of X1 andX2. 























nn1nno

n11110

n00100

m...mm

::::

m...mm

m...mm

M        … (29) 

f  
02010

mm           … (30) 

11211
Z)mm(f          … (31) 

: 

n2n1n
Z)m,m(f          … (32) 
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
 1Md 

n

1

0

d

:

d

d
d         … (33) 

Onukogu (2003) cited one of the ways of obtaining the step-length  for constrained response function whose 

minimizer is a boundary point. 

Let the ith constraint be defined by: 

m,...,2,1i;bXC
i

1

i
        … (34) 

where Ci and X are vector and bi is a scalar. 

Then:  











*1

i

i

1

i

i dc

b*xc
min*         … (35) 

The iterate 
*

j
X  is obtained as 

*

j
X – 

ji
d          … (36) 

where: 

x  is a vector of the starting point 

d  is the direction vector 

  is the step-length. 

This approach is based on super convergent line search techniques to find the optimal value of an optimization 

problem. 

 

VIII.   THE ALGORITHM 
The algorithm is defined by the following sequence of steps. 

1) At the initial step, obtain X0, X
~

        … (37) 

det   0XX
0

1

0
 , and  

move to 
00

1

00001 N/x1x;dxx       … (38) 

2)  at the jth step move to 1dd;dxx 1j

1

1j1j1j1jj       … (39) 

  jkkj

1

kj
dcbxcmin         … (40) 

3) Stop if 0)x(f)x(f 1jj          … (41) 

Whenever step (3) does not hold, define 

1

jjj

1

j1j

1

1j

j

j

1j
xxXXXX

x

X
X 













      … (42) 

go back to step 1 

jj1j
MM 

          … (43) 
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IX.     TOPPING RULE 
The following conditions can be adopted as the stopping rule. 

A sequence converges if 

1. Pj > Pj+1 > Pj+2 > … Pj+n        … (44) 

2. Var (dj) > Var(dj+1)        … (45) 

3.    
1j

1

1jj

1

j
XXXX


         … (46) 

4.     0X,XfX,Xf 21

*

2

*

1         … (47) 

5. 
j1j

MM 


 also 
2

1j

2

j1j 
       … (48) 

 
2j1jj

MMM


         … (49) 

 

X.   REGRESSION MODELING 
 A good model gives adequate representation of the response surface with the fewest number of 

parameters. The model of the objective function to be used in this work is called the response function for 

bivariate quadratic surface. 

 

The model is thus represented as: 

eXaXaXXaXaXaa)X,X(f 2

222

2

1112112220110021    … (50) 

The biasing parameters vectors for the above model is defined as 

 )a,a,a(BC
221112

         … (51) 

 

XI.    ANALYSIS 
NUMERICAL EXAMPLE 

A typical quadratic optimization problem was used for illustration of this proposed method. 

 

The problem is to find the vector (X1, X2) that minimizes Ƶ.  

 eX3X2XX4X3X6ZMin 2

2

2

12121      … (52) 

 s.t.   ⋮    X1 + X2  1 

               2X1 + 3X2  0 

To see the biasing terms clearly, we bracket the biasing effects. 

 )X3X2XX4(X3X6ZMin 2

2

2

12121        … (53) 

 









32

11
CK , 










4

1
bk  

 









59.0

93.0
x  

  
q1

X:XX   

We evaluate the possible values of X1, X2 that will satisfy each of the constraint equation, using ENCARTAR 

DVD 2009 MICROSOFT MATHS: 

 

Following the steps of Algorithm above in (7). The initial seven point designs obtained are: 
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












0
2

31

111

101

011

1
2

31

2
1

2
11

3
211

XXX

X

210

1                      



































075.00

111

100

010

125.25.1

25.025.025.0

45.0167.0

XXXX

X

2

2

2

121

q  

lX  = The design matrix 

Xq = The matrix of the biasing effects 

The information matrices for Xl and Xq are 

 



















7.34.32.4

4.38.75.6

2.45.67

XX1

ll                  



















3.38.39.2

8.37.81.5

9.21.58.3

)XX(
q

1

q
 

  

1.13det)XX( 1 ll     1.7det)XX(
q

1

q
  



















51.000

047.00

0061.0

H                      



















5.000

053.00

004.0

H1  





















6.37.33100

7.34.26010

000001

W  





















89.09.08.03.000

9.06.05.103.00

0000024.0

B  





















57.371.33000

71.336.2599.0010

000001

B  

B = U
1
DU 

where D = diag (d1, d2, d3) 

 





















30.7833.6824.91

33.6861.6272.73

24.9172.738.117

B  

Also BB
1
 = 1  
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























4.130897.128193.12538

7.128199.129537.11505

3.125387.115056.13514

M  

 

























1513976535

1492995336

1313543487

Z  

 










































3

2

1

19

19

19

1

d

d

d

108.6

107.4

104.2

ZM  

Normalized d  becomes 

 5618.0d
1
  

 8273.0d
2

  (See appendix) 

The step-length becomes 

 

  























827.0

561.0
1,1
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 = 0.263 

using 2 to evaluate the iterate 

 781.0X*

1
  
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1
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*

1
  

Checking for feasibility 
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
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we make move to the second iterate 
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The information matrices are 
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The H-matrix becomes 



















51.000

047.00

0061.0

H  

 


















494.000

0535.00

00396.0

H1  





















9.41.33100

1.33.36010

000001

W  





















22.18.08.025.000

8.08.05.1025.00

0000024.0

B  





















88.412.33

12.325.399.5

000

100

010

001

B  

B = U
1
DU 

 

























7.1473.1073.132

3.1079.811.109

3.1321.1099.160

B  

 

























6.583824.385686.39750

4.385684.259588.27823

6.397508.278231.32165

M  

 

























6.62220711422

4.9814665859

9.51071303044

Z  

 










































3

2

1

20

20

19

1

d

d

d

102.1

106.2

100.8

zM  

Normalized d  



An Experimental Design Method … 

 

www.theijes.com                                           The IJES                                          Page 38                                          

 

 

 

 9113.0d1   

 4117.0d2   

The step-length 
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Using 1 to evaluate the iterate 
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1
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Checking for feasibility 
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XII.    TEST FOR CONVERGENCE 
Considering the stopping rules listed in Section 9, we thus test for convergence as follows: 

     05X,XfX,Xf
21

x

2

x

1
  

Let  = 0.9 

The value of x1 and x2 which satisfies the constraint equations are 
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F(X1, X2) = 4.0002 which is the value of the objective function. 
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It can also be seen that 
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XIII.        SUMMARY/CONCLUSION AND RECOMMENDATIONS 
It has been seen that in just one move the proposed algorithm has reached an optimal. 

 

To achieve this, the optimal starting design of size (7) was selected algebraically to satisfy the constraint 

equations, which are feasible. The selected points are feasible points. 

The B matrix was normalized following the Gaussian elimination techniques as cited by Onukogu (1997). 

The determinant of the information matrix of both the linear and quadratic design matrices is greater than one, 

and increases as the design points increases. The arithmetic mean  X  was used to evaluate the W-matrix at the 

first iterate and was replaced by the new iterate (X
x
) in the second iterate. The direction vector d  was 

normalized. The vector 
x

X , 
x

d  and 
x  were computed accordingly. In just one move the optimal values of x1, 

x2 which were confirmed feasible were obtained.The algorithm converges to a global point. This is because the 

initial points were picked from the whole feasible region making all the point feasible. 

 

CONCLUSION 
 However, it can be seen that this method can be adopted as one of the method of solving quadratic 

optimization problems. 

 

RECOMMENDATION 
 This method should be applicable to more than two variables and constraints equation. 

Other methods of choosing the optimal starting point design should be verified and adopted by future 

researchers. This method should also be verified using non-linear constraints by further researchers. 
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