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---------------------------------------------------ABSTRACT------------------------------------------------------- 
 In shooting pool, as with any ball sport, seemingly minor nuances in the shot can result in significant changes 
in the subsequent ball dynamics. In addition to variation in shooting kinematics and kinetics, there are 

numerous popular notions about how to obtain desired results. In this first of a three-part series we address the 

title question by quantifying the interactive effects of: 1) the location of the point of impact between the cue stick 

and the cue ball; 2) the cue stick orientation; 3) the impulsive force magnitude; and 4) the friction between the 

ball and table surfaces. The analysis is based upon the solution of eight simultaneous equations obtained using 

classical mechanics principles. Various specific cases are then considered, illustrated, and discussed. 
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I. INTRODUCTION 
 In a recent conversation with a university administrator she stated that she was an expert pool player. 

When asked for the secret of her expertise she stated: “It’s all in the direction of the cue stick. The cue ball goes 

in the direction of the cue stick regardless of where the ball is struck by the stick.” Is this true? What is the 

effect, if any, of the cue stick not being in a plane of a vertical great circle of the ball? 

 

 The objectives of this and the subsequent two papers are to address these and related questions, such 
as: Where does the struck object ball go? And then: Where will the rebounding cue ball go?To answer these 

questions we (the writer and readers) consider first the induced dynamics of a ball struck with an impulsive 

force applied at an arbitrary point on the ball surface with an arbitrary magnitude and direction. We assume 

ideal geometry (a spherical ball in point contact with a flat horizontal table surface) but we restrict the analysis 

to cue stick (herein called the “cue”) forces directed so that the ball remains on the table. We include the effect 

of friction between the ball and the table.The sport of pool (or “pocket billiards”) is a centuries-old game. 

Numerous articles and books can be found discussing various game rules, game strategy, shooter posture, and 

skill development. But only a few of these writings provide an analytical discussion of ball dynamics. Perhaps 

the most noteworthy of the analytical discussions is that provided by Marlow [1]. The writings of Mosconi [2], 

of Mizerak, Panozzo, and Fels [3], of Pejcic and Meyer [4], and of Alciatore [5] are also useful.     In this paper 

we seek to present a somewhat more focused analysis of cue/cue ball dynamics leading to an elementary 
algorithm for studying subsequent collisions and movements. 

 

     The balance of the paper is divided into five sections with the first of these providing the terminology used in 

the sequel, the basic assumptions, and the definition of the problem being solved. The next section presents a 

kinetic, kinematic, and dynamic analysis resulting in the governing equations of motion. These equations are 

solved in the subsequent section. The solution algorithm is then illustrated via a series of special problems in the 

penultimate section. The final section presents a brief discussion and concluding remarks. 

 

II. TERMINOLOGY, ASSUMPTIONS, AND PROBLEM DEFINITION 
 Consider a sphere B (the “cue ball”) initially at rest on a flat horizontal surface S (the “table”) as in Fig. 

1. Let G be the geometric and mass center of B. Let C be the contact point of B with S and let P be that point on 

the surface of B where an impulsive force F from the cue stick (the “cue”) is applied.     Let X, Y, Z be a 

Cartesian axis system fixed relative to S, with the Z-axis, along CG, being normal to S. Let the origin O of the 

axis system initially coincide with the mass center G of B. Let NX, NY, and NZ be unit vectors parallel to X, Y, 

and Z. 
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Let r and m be the radius and mass of B. Let   be the coefficient of friction between B and S. Let (x,y,z) be the 

X,Y,Z coordinates of P and let FX, FY, and FZ be the NX, NY, and NZ components of F. Finally, let N be the 

magnitude of the vertical (Z-axis, or NZ) component of the force exerted by S on B at C. 

     The given terminology and definitions imply the following assumptions: 

[1] B is a rigid, homogeneous sphere. 
[2] With S being a flat, horizontal surface, there is only point contact (at C) between B and S. 

[3] The force system exerted by S on B at C may be represented by a single force C passing through C. 

[4] If the velocity VC of C relative to S is not zero, the magnitude of the horizontal component of C is simply 

 N and its direction is opposite to that of VC. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
Fig. 1A sphere B representing a cue ball and a pool table S 

 

[1] There is no slippage of the cue on the surface of S. 

[2] During and following the impulse, B and S remain in contact. 

[3] During the short impulse time there is relatively little change in the position and orientation of B, but 

there are significant changes in the velociytVGof G and/or the angular velocity B
 of B. 

     With this notation and terminology, the fundamental problem to be solved is: Given (FX, FY, FZ), (x,y,z), m, 

r, and  , determine the immediate NX, NY, and NZ components of the velocity V
Gand the angular velocity 

B
 (both relative to S). 

 

III. Dynamic Analysis 

 To solve the problem we can use the foregoing definitions and assumptions to readily obtain the 

governing equations of motion. To this end, consider a free-body diagram of B as in Fig. 2, where the applied 

(“active”) forces are: F, W, and C representing the cue, the weight, and the contact forces by S on B. 

Correspondingly the inertia (“passive”) forces are represented by the force F* passing through the mass center G 

and a couple with torque T*. 

 

 
Fig. 2A free-body diagram of the ball B 
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 In terms of the unit vectors of Fig. 1 the active forces may be expressed as: 

 

 F = FXNX + FYNY + FZNZ         (1) 

 W = -mgNZ          (2) 

 C = CXNX + CYNY +NZNZ         (3) 

Similarly, using d’Alembert’s principle [6,7,8] we can express the inertia force F* and torque T* as: 

 F
* = -ma

G = -m(aXNX + aYNY + aZNZ)       (4) 
and 

 T
* = -I B B

    (I B
 ) = -I(

X
 NX + 

Y
 NY + 

Z
 NZ)     (5) 

 

Where g is the gravity acceleration; aG is the acceleration of G relative to the table S, with X, Y, Z components 

 X Y Z
a , a , a ; I is the central inertia dyadic [6,7,8]; B

  is the angular velocity of B in S (as before); and I is the 

moment of inertia of B, about a diameter, given by: (2/5)mr2. 

     In (5), due to the symmetry of the sphere, I is simply I multiplied by the identity dyadic. Consequently, 

I 
B

  is simply B
I  and thus the second term in the second expression of (5) vanishes. 

     By setting the resultant of the forces in Fig. 2 equal to zero, and by setting the moments of the forces about G 

equal to zero, we have: 

 

 *
0   F W C F          (6) 

and 

 p F  (-rN3) 
*

 0C T           (7) 

 

Where p is a position vector locating P relative to G. 

Upon impact from the cue, the velocity of the contact point C generally will not be zero. Therefore to develop 

the analysis and specifically to develop the terms of (5) and (6) it is helpful to initially consider: VC
0  and then 

let VC=0 be a special case. 

     In this regard, consider an overview of B depicting VC as in Fig. 3, where   defines the inclination of VC 

relative to NX. Let nC be a unit vector parallel to VC with the same sense as VC. Then by the Coulomb friction 

law the X and Y components of the contact force C may be expressed as: 

 

 
 

 

 

 

 

  

 

 

 
 

 

 

     

Fig. 3  A Top/Down View of B. 

 

 
X Y

C N co s    an d    C N sin             (8) 

 

     By substituting from (1) through (5) together with (8) into (6) and (7) and by projecting the resulting vector 

equations along X, Y, and Z we immediately obtain six scalar expressions: 

 

 
X x

F N co s m a 0              (9) 

 
Y Y

F N sin m a 0              (10) 

 
Z

F m g N 0             (11) 

 2

Z Y X
yF zF rN s in ( 2 / 5 ) m r 0              (12) 
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 2

X Z Y
zF x F rN co s ( 2 / 5 ) m r 0              (13) 

 2

Y X Z
x F yF ( 2 / 5 ) m r 0            (14) 

     Next, since C and G are both fixed in B, we have the kinematic relation: 

 

 V
G = VC + B

  rnz         (15) 

 
Where nz is a member of the unit vector set: nx,ny, and nz, fixed in B, and initially parallel to NX , NY , and NZ 

respectively. Since there is little change in the orientation of B during the short time interval of the cue impact, 

nz remains nearly parallel to NZ during the impact time. Then by expressing (15) in component form we have: 

 

 G

X C Y
V V co s r             (16) 

and 

 G

Y C X
V V sin r             (17) 

 

Where G G

X Y X
V ,  V ,    and 

Y
  are NX and NY components of VGand B

 , and where 
C

V  is the magnitude of VC. 

     The assumption that: there is neither little position nor orientation change of B during the cue impact, is 

equivalent to the impact time t* being small. Indeed, tests show that the impact time may be as low as 10 ms 

(0.01 sec). 

     The short impact time enables us to simplify the dynamical equations by integrating through the time 

interval. To this end, it is helpful to make the notational definitions: 

 

      
G * * G * * C * *

X X Y Y C
V t V  ,    V t V  ,    V t V    

            (18) 

      
* * * * * *

X X Y Y Z Z
t  ,   t  ,   t          

 
Similarly, it is helpful to define the following impulses: 

 

 

* * * *
t t t t

X X Y Y Z Z

0 0 0 0

ˆ ˆ ˆ ˆF F d t  ,    F F d t  ,    F F d t  ,    N N d t            (19) 

 

(Observe that the units of these impulses are: force-time.) 

     Then we have the following results: 

 

 

* * *
t t t

* * *

X X Y Y X X

0 0 0

V a d t  ,    V a d t  ,    d t        

            (20) 

 

* *
t t

* *

Y Y Z Z

0 0

d t  ,    d t        

 

     By integrating through *
t  in (9) through (14) we have: 

 

 *

X X
ˆ ˆF N c o s m V 0              (21) 

 *

Y Y
ˆ ˆF N sin m V 0              (22) 

 *

Z
ˆ ˆF m g t N 0            (23) 

 2 *

Z Y X
ˆ ˆ ˆyF zF rN s in ( 2 / 5 ) m r 0              (24) 

 2 *

X Z Y
ˆ ˆ ˆzF x F rN co s ( 2 / 5 ) m r 0              (25) 

 2 *

Y X Z
ˆ ˆx F yF ( 2 / 5 ) m r 0            (26) 

Also with this notation (16) and (17) become: 
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 * * *

X C Y
V V co s r             (27) 

 * * *

Y C X
V V sin r             (28) 

 

IV. SOLUTION ALGORITHM 

 (21) and (28) form a system of eight algebraic equations for the eight unknowns: *

X
V , *

Y
V , N̂ ,  , 

*

X
 , *

Y
 , *

Z
 , and *

C
V . [The other parameters (

X
F̂ , 

Y
F̂ , 

Z
F̂ ,  , m, g, r, x, y, z) are assumed to be known.] 

Since the unknowns are distributed sparsely across the equations, the solution of the system may readily be 

obtained using Gauss elimination: 

     Specifically, from (23) and (26) N̂  and *

Z
  are: 

 

 *

Z
ˆ ˆN m g t F            (29) 

and 

    
* 2

Z Y X
ˆ ˆ5 / 2 m r x F yF           (30) 

 

     Next, by substituting for N̂  in (21) and (22), and by substituting for *

X
V  and *

Y
V  from (27) and (28), (21) 

and (22) may be written as: 

 

  
2 * * *

Y X Z C
ˆ ˆm r rF m g t F r co s m rV co s              (31) 

and 

  
2 * * *

X Y Z C
ˆ ˆm r rF m g t F r s in m rV sin               (32) 

 

Then by substituting in turn for 2 *

X
m r  , * *

Y
m r  , and N̂  in (24) and (25) and rearranging terms we have: 

 

        
* *

Z C Z Y
ˆ ˆ ˆr 7 / 5 m g t F 2 / 5 m V s in yF z 2 r / 5 F         

   
    (33) 

and 

        
* *

Z C Z X
ˆ ˆ ˆr 7 / 5 m g t F 2 / 5 m V c o s x F z 2 r / 5 F         

   
    (34) 

 

Finally, by dividing these last two equations we obtain the relatively simple expression for determining  : 

 

 

 

Z Y

Z X

ˆ ˆyF z 2 r / 5 F

tan
ˆ ˆx F z 2 r / 5 F

  
 

 
  
 

        (35) 

 

Once   is known we can immediately determine the remaining unknowns by back substitution. That is, 

knowing   we can find *

C
V  from either (33) or (34). (31) and (32) then produce *

X
  and *

Y
 . Finally, (27) and 

(28) provide *

X
V and *

Y
V . 

There is, however, a note of caution: While (35) determines   the value is only accurate to within a multiple of 

 . Since  ta n ta n n      we need to select the value of the arctangent function appropriate for the given 

physical conditions (as in the following algorithm). It is easy to develop the foregoing procedure into a 
relatively simple seven-step algorithm: 

 

1)  Form the functions: fx and fy as: 

  x Z X
ˆ ˆf x F z 2 r / 5 F   

 
        (36) 

and 

  y Z Y
ˆ ˆf y F z 2 r / 5 F   

 
        (37) 

2)  Form f defined as: 
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1 / 2

2 2

x y
f f f      f 0            (38) 

 

3)  Determine sin   and cos   as: 

 

 
y x

s in f / f     an d     co s f / f            (39) 

 

Observe in (33) and (34) that the term:      
* *

Z C
ˆr 7 / 5 m g t F 2 / 5 m V   

  
 is positive and equal to f. (It is 

positive since 
Z

F̂  is negative, for otherwise the ball would not remain in contact with the table surface, and *

C
V  

being the magnitude of C
V  at *

t  is positive.) Note further that the term: m g t *  is likely to be negligible since 

*
t  is very small. 

 

4)  Find   using (39). That is, 

 

 1

y x
ta n f / f


            (40) 

 

The quadrant of   is determined as follows:  Observe that since f 0 , we have: 

 

 
y x

sg n (s in ) sg n f     an d     sg n (co s ) sg n f          (41) 

 

Then knowing the signs of sin   and cos   the quadrant of   is immediately known from Table 1. 

 

Table 1.  Quadrant of Contact Point Velocity VC Direction   
 

Quadrant of   
I 

 0 / 2     

II 

 / 2      

III 

 3 / 2      

IV 

 3 / 2 2      

sin   + + - - 

cos   + - - + 

 

5)  Determine *

X
V , *

Y
V , and *

C
V  using the expressions: 

 

    
* *

X X Z
ˆ ˆV F / m F / m co s g t co s              (42) 

    
* *

Y Y Z
ˆ ˆV F / m F / m sin g t s in              (43) 

        
* *

C Z
ˆV 5 f / 2 rm 7 / 2 / m F 7 / 2 g t           (44) 

 

{See (21), (22), and (29) and note that      
* *

Z C
ˆf r 7 / 5 m g t F 2 / 5 m V    

  
.} 

6)  Determine *

X
 , *

Y
 , and *

Z
  using the expressions: 

 

  
* * *

X C Y
V sin V / r             (45) 

  
* * *

Y C X
V co s V / r              (46) 

    
* 2

Z Y X
ˆ ˆx F yF 5 / 2 m r           (47) 

[See (26), (27), and (28).] 

 

7)  Determine N̂  as: 

 *

Z
ˆ ˆN m g t F            (48) 

[See (23).] 
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V. ILLUSTRATIONS AND APPLICATIONS 
 In this section we consider a series of fundamental cue orientations and ball impact points. The 

objective is twofold; 1) to illustrate the utility of the algorithm and 2) to provide an answer to the title question. 

 

Case 1.A Straight Shot 

 Consider first a horizontal cue directed along a diameter of the ball as represented in Fig. 4, which also 

provides a free-body diagram for the active (applied) forces on the ball. 

 

 
 

Fig. 4.A center-directed horizontal cue. 

 

In this simple case the components of the impact force F and the coordinates of the point of impact P are: (F,0,0) 
and (-r,0,0). 

Using this data, (36), (37), and (38) provide fx, fy, and f as: 

 

    x y
ˆ ˆf 2 r / 5 F   ,     f 0   ,     f 2 r / 5 F          (49) 

 

where F̂  is the impulse of F [see (19)].  (39), (40), and (41) then show that   is zero, and consequently (42), 

(43), and (44) provide *

X
V , *

Y
V , and *

C
V  as: 

 

  
* * * * *

X Y C
ˆ ˆV F / m g t  ,   V 0  ,   V F / m 7 / 2 g t            (50) 

 

Then from (45), (46), and (47), *

X
 , *

Y
 , and *

Z
  are: 

 

  
* * *

X Y Z
0  ,   5 / 2 g t / r  ,    0              (51) 

 

Finally, from (48) N̂  is: 

 

 *
N̂ m g t           (52) 

 

     Observe that, as expected, the ball simply moves on a straight line in the direction of the cue. It is sliding, but 

still rotating about the Y-axis, due to the ball/table friction. 

 

Case 2.A down-angled shot in a central ball plane. 

Consider next the configuration of a ball struck with a downward directed cue in a central (great circle) vertical 
plane as represented in Fig. 5, where the action forces are also shown. 
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Fig. 5.A down-directed cue in a central ball plane. 

 

     Observe in this case that the direction of the friction force  N  may be to the left (-X), or to the right (+X), 

depending upon the direction of the velocity of the contact point C  
*

C
V . 

    Here the components of F and the coordinates of P are:  F co s ,  0 ,  f s in    and (x, 0, z) where x is 

negative. (Note that 2 2 2
x z r  .) 

     With this data, 
x y

f ,  f ,  and f become [(36) to (38)]: 

 

  x y x
ˆ ˆf x F s in z 2 r / 5 F c o s  ,    f 0  ,    f f        

 
                  (53) 

 

where, as before , F̂  is the impulse of F. 

Observe that 
x

f  may be either positive or negative. When 
x

f  is positive, 0  ; when 
x

f  is negative,    . 

     Consider first 0  : In this instance C moves in the positive X-direction (or is zero) and the friction force is 

directed in the negative X-direction as in Fig. 5. (42), (43), and (44) then provide * *

X Y
V ,  V ,  and *

C
V  as: 

 

    
* *

X
ˆV F / m co s s in g t              (54) 

 *

Y
V 0            (55) 

and 

           
*

C
ˆV F / m 5 x / 2 r 7 / 2 s in 1 5 z / 2 r co s 7 / 2 g t *            

   
   (56) 

 

Finally, (45) to (48) * * *

X Y Z
,  ,  ,    and N̂  are: 

 * *

X Z
0              (57) 

         
* *

Y
ˆ5 F / 2 m r x / r s in z / r co s g / r t         

 
     (58) 

and 

 *ˆ ˆN m g t F s in   (59) 

  
 As noted earlier the terms with the factor t* are likely to be insignificant, due to the short impact time. 

With this assumption, (54), (56), and (58) can provide insight about two special subcases: 1) zero speed of the 

ball center G, and 2) zero speed of the contact point C. 

     From (54), with *
g t   being neglected, we see that *

X
V  is zero if: 

 

 tan 1 /             (60) 

 

Thus, for small   a relatively large cue angle is needed to keep the ball in place immediately after impact. 



Inshootingpool, Part I:  How… 

Www.Theijes.Com                                                The IJES                                               Page 73 

Next, if *

C
V  is zero, the ball undergoes “rolling” [6, 7, 8] – that is, there is no sliding relative to the table. From 

(56) (with *
g t  being neglected) we see that this can occur in several ways depending upon the values of x, z, 

and  . To briefly explore this, consider a horizontal cue, that is, 0  : (56) then produces the simple “rolling 

condition”: 

 

 1 – (5z/2r) = 0   or   z = (2/5)r        (61) 

 
(58) then becomes: 

 

 *

Y
F̂ / m r            (62) 

 

The point of impact represented by z = (2/5)r may be regarded as a “center of percussion.” 

Consider next    : In this instance 
x

f  is negative. That is, 

      ˆ ˆx F s in z 2 r / 5 F c o s 0    o r    ta n z 2 r / 5 / x            
   

    (63) 

Note that x is negative (see Fig. 3). For a horizontal cue  0  , z must exceed: 2r/5. This in turn means that 

the point of impact must be above the center of percussion. Alternatively, if, say,  z x 2 / 2 r ,       must be 

less than 23 deg. In either event when    , the contact point C is moving in the negative X direction. The 

post-impact velocities are then routinely obtained using (42) to (48). 

 

Case 3.A slight error in cue alignment with the point of impact 
In the foregoing cases the cue was in the place of a great circle of the ball. The ball responded with its center G 

moving and remaining in that great circle plane. That is, the ball center moves in the direction of the cue. But 

what if the cue is not in a vertical great circle plane? We discuss that occurrence in this case. 

     Consider the ball being struck by the cue along the horizontal great circle, but a small distance   to the left 

of the vertical great circle, as represented in the three views of Fig. 6. Let the cue force F be directed parallel to 

the X-Z plane and downward at angle   as shown. 

 

 

 
Fig. 6A ball struck slightly away from a great circle plane. 
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In this configuration the NX ,NY , NZ components of the impulse of F and the X, Y, Z coordinates of the point of 

impact of P are: 

        
1 / 2

2 2

X Y Z
ˆ ˆ ˆ ˆ ˆF , F , F F co s , 0 , F s in    an d    x , y , z r , , 0

 
        

 
 

   (64) 

If for simplicity both   and   are considered to be small, (64) may be written as: 

        X Y Z
ˆ ˆ ˆ ˆ ˆF , F , F F , 0 , F    an d    x , y , z r , , 0            (65) 

     With the data of (65), the algorithm equations of the foregoing section immediately provide the post-impact 

force functions and ball kinematics. Neglecting higher order terms, the results are: 

    X Y
ˆ ˆ ˆf r 2 / 5 F  ,   f F  ,    f r 2 / 5 F            

   
     (66) 

  5 / 2 r               (67) 

          
* * 2

X Y
ˆ ˆV 1 F / m  ,   V 5 / 2 / r F / m           (68) 

       
*

C
ˆV 1 5 / 2 7 / 2 F / m     

 
       (69) 

              
* 2 * * 2

X Y Z
ˆ ˆ ˆ5 / 2 F / m / r  ,   5 / 2 F / m r 1  ,   5 / 2 F / m r               (70) 

Observe in (68) that *

Y
V , although quite small, is not zero. That is, the ball center G moves away from the 

vertical plane containing the cue. Of perhaps greater significance is the finding of (67) that the contact point C 

also moves away from the vertical cue plane, but on the other side. The angle between the directions of the 

velocities of G and C is seen to be approximately:    5 / 2 / r  . 

It has long been established that when the ball is sliding on the table surface and when the velocities of the 

center and the contact point are in different directions, the ball center moves along a parabolic curve [9]. 

Therefore, in this case the cue ball does not go in the direction of the cue. 

Case 4.  A textbook example 
To illustrate the immediate foregoing remarks T. R. Kane in 1968 posed the problem: Given the impact force 

components and the impact point components as: 

 

        X Y Z
ˆ ˆ ˆ ˆ ˆF , F , F 0 , F 2 / 2 , F 2 / 2    an d    x , y , z r 2 / 2 , 0 , r 2 / 2      (71) 

 

Find the cosine of the angle between the post-impact center and contact point velocities, with 0 .1   [6]. 

     With the given data, (36), (37), and (38) provide the post-impact force functions as: 

 

  x y
ˆ ˆ ˆ ˆf rF / 2 0 .5 rF  ,   f 5 2 2 rF / 10 0 .217 rF          

 and    
1 / 2

ˆ ˆf rF 2 9 1 0 2 / 5 0 0 .5 4 5 rF   
 

       (72) 

 

Then from (39) sin   and cos   are: 

 

 
y x

s in f / f 0 .3 9 8    an d    co s f / f 0 .9 1 7              (73) 

 

With both sin   and cos   being negative, Table 1 shows   to be in the third quandrant. Specifically, 

 

 tan 0.434     or   203 .46  deg          (74) 

 

     Next, (42) and (43) show *

X
V  and *

Y
V  to be (neglecting the small terms involving *

g t ): 

 

 * *

X Y
ˆ ˆV 0 .0 6 4 8 F / m    an d    V 0 .7 3 5 F / m         (75) 

 

     Finally, let nG be a unit vector parallel to the center velocity and, as before, let nC be a unit vector parallel to 
the contact point velocity. Then from (73) and (75) nG and nC are: 
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 n
G

0 .0 8 7 8 N
X

0 .9 9 6 1 N
Y

   and   n
C

0 .9 1 7  N
X

0 .3 9 8 N
Y

    (76) 

 

Then the cosine of the angle   between the velocities of G and C is: 

 

 cos   n
G
 n

C
0 .4 7 7          (77) 

 

VI. DISCUSSION 
 These results show that the assertion: “The cue ball goes in the direction of the cue stick” is valid if the 

ball is struck along the vertical great circle. If, however, the point of impact between the cue and the ball is 
slightly outside the vertical great circle plane, and if there is a downward orientation of the cue, the ball center 

will deviate from the horizontally projected cue direction and move on a parabolic path (Case 3). Although the 

deviation may appear to be small, it can have a significant effect upon the subsequent movement of the cue ball, 

and consequently, a deciding effect upon the movement of an object ball. In Parts II and III of this paper series 

we provide a quantification of these effects.  Beyond this result and analysis, however, the major contribution of 

this paper is believed to be the solution algorithm of Section 4. With virtually no restrictions, this algorithm can 

accommodate all practical cue orientations and point of impact geometries. The output of the algorithm is a 

complete and accurate description of the post-cue impact kinematics of the cue ball.  We will use these results as 

a starting point in our analysis of the post-cue-impact ball movement in Part II. 
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