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In Shooting Pool, Part II:  WhereDoes The Cue Ball Go? 

 

Ronald L. Huston 
Mechanical EngineeringUniversity of CincinnatiCincinnati, OH 

 

---------------------------------------------------ABSTRACT------------------------------------------------------- 
This second, of a three-part paper series, describes the movement of a cue ball immediately after it is struck by 

the cue stick, and then, consequently, the subsequent movement of the ball.  The analysis shows that immediately 
after the impact the ball center moves either on a normally intended straight line or on a slight parabolic curve.  

The curve motion is the result of either shooter error or the intentional introduction of vertical spin ("English") 

on the ball. Immediately after impact the ball typically slides either along the line or the curve.  After sliding 

stops the ball rolls either along the line or on a line extension of the curve. The paper presents the geometric 

parameters of the lines, the curve, and the rolling initiation point.  The paper quantifies how even slight shooter 

error produces increasingly unintended ball movement as the shot length increases. 
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I. INTRODUCTION 
 In Part I of this three-part series of papers we developed an algorithm for predicting the immediate 

post-cue-impact movement of a cue ball.  But this then raises the more pressing question:  What is the 

subsequent struck-ball movement?  In this paper we attempt to provide detailed answers to this question.The 

illustrations of Part I show that if the cue strikes the ball along a vertical great circle, the ball center moves in a 

straight line, along the horizontal projection line of the cue.  If, however, the ball is struck in a plane to the side 

of a vertical great circle plane (as in Case 3), the ball center is expected to move on a parabola as with a 

sliding/spinning bowling ball [1] and as documented in Reference [2].  As the energy of the sliding/spinning ball 

is dissipated, the contact point will come to have zero velocity, and then the ball rolls on a straight line.The title 

question thus evolves into three questions:  1) What are the geometric parameters of the parabola and the line?; 

2) Where is the transition point?" and (most important); 3) How far will the cue ball deviate from its intended 

path?In providing the answers to these questions, the balance of this paper is divided into four sections with the 
following section listing the governing equations for the post-cue-impact ball movement.  The next section then 

presents the solutions of the equations.  Two important application examples are given in the penultimate 

section and the last section provides a discussion with concluding remarks. 

 

II. GOVERNING EQUATIONS OF MOTION 
 Part I of this series of papers provides a development of the governing dynamical equations for the 

immediate post-impulse movement of a struck cue ball. The solution of these equations then defines the initial 

conditions for the subsequent post-impact movement. The equation modeling the post-cue-impact motion is the 

same as those during cue impact except for the impulsive forces. Thus from (9) to (17) of Part I we obtain the 
equations: 

 
G

X
N co s m d V / d t 0             (1) 

G

Y
N sin m d V / d t 0             (2) 

N m g 0            (3) 

  X
N sin 2 / 5 m rd / d t 0             (4) 

  Y
N co s 2 / 5 m rd / d t 0             (5) 

Z
d / d t 0            (6) 

G C

X Y
V V c o s r 0              (7) 

G C

Y X
V V sin r 0              (8) 
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where, as before, G

X
V  and G

Y
V  are the N

X
 and N

Y
 components of the ball center, G, velocity; 

X Y
,  ,   and 

Z
  are the N

X
, N

Y
, and N

Z
 components of the ball angular velocity; C

V  is the magnitude of the velocity of 

the contact point C;   measures the inclination of the contact point velocity C
V relative to the X-axis (or 

alternatively, relative to N
X

); N is the magnitude of the normal force exerted by the table on the ball;   is the 

coefficient of friction between the ball and the table; m is the mass of the ball; g is the gravity acceleration; and r 

is the ball radius. Also, as before, X, Y, and Z are Cartesian axes with origin O at G, with the Z-axis vertical, 

normal to the table surface, the X-axis in the direction of the intended ball movement and the Y-axis being 

perpendicular to X and Z in a dextral sense. Finally, as before, N
X

, N
Y

, and N
Z

 are unit vectors parallel to X, 

Y, and Z. 

Figures 1 and 2 illustrate the geometry where in Fig. 2 n
c
 is a unit vector parallel to V C  and n

c 
 is a unit 

vector perpendicular to n
c
 and equal to: N

Z
 n

c
. 
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Fig. 1Cue ball B on table surface S and point/axis/direction geometries. 
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Fig. 2 Contact point velocity and unit vector geometry 

 

In the following section we solve (1) to (8) using the immediate post-cue-impact kinematics of the ball as initial 

conditions. 

 

III. SOLUTION OF THE GOVERNING EQUATIONS 
 From (3) and (6) we immediately see that the normal force N on the ball B, and the vertical angular 

velocity component of B are: 

 

Z Z 0
N m g    an d     (co n stan t)           (9) 

 

Observe that the remaining six equations involve the six remaining unknowns: G G C

X Y X Y
V ,  V ,  V ,  ,  ,  and  . 



In Shooting Pool, Partii… 

www.theijes.com                                                The IJES                                                            Page 58 

 Observe further that with C
V  being the magnitude of V C , C

V  can have positive values or zero but 

never negative. When C
V  is zero, B is rolling on the table surface S [2] and then there is a kinematic 

(constraint) relation between the velocity V G  of G and the angular velocity  of B. That is 

 

V G
r  N

Z
          (10) 

 

or in component form: 

 
G G

X Y Y X
V r    an d    V r             (11) 

 

Alternatively, when C
V is positive, B is sliding on S and then (10) and (11) are no longer valid. 

For clarity in the analysis it is convenient to consider these cases separately: 

 

Case 1.Rolling cue ball (V C
0 ) 

For observe that with C
V  being zero (7) and (8) immediately reduce to (11). 

Next, if we eliminate N sin   between (1), (2) and (4), (5) we obtain after simplification: 

 
G

Y X
d / d t (5 / 2 r )d V / d t           (12) 

and 

 G

X Y
d / d t (5 / 2 r )d V / d t          (13) 

 

Then by integrating we have: 

 

 G

Y X 1
r (5 / 2 ) V C            (14) 

and 

 G

X Y 2
r (5 / 2 ) V C             (15) 

 

where
1

C  and 
2

C  are constants. 

     Finally, by substituting for 
Y

r  and 
X

r   from (11) we have: 

 

 G G

X 1 Y 2
V ( 2 / 7 )C    an d    V ( 2 / 7 )C         (16) 

 

That is, G G

X Y
V  a n d  V  are constants and consequently from (14) and (15), 

X
  and 

Y
  are constant. Therefore, a 

rolling ball rolls on a straight line at constant speed. 

Case 2.Sliding cue ball  
C

V 0  

     With the post-cue-impact contact point of the ball having non-zero velocity (ball-sliding) there will be a 

continuing loss of kinetic energy of the ball. Consequently, the magnitude C
V  of the contact point velocity will 

be decreasing as the ball slides. Using (1) to (8) we can readily develop the details of the sliding ball kinematics. 

     To this end if we substitute for G

X
V  and G

Y
V  from (7) and (8) into (1) and (2) we obtain: 

 

 
C C

Y
g cos d V / d t co s V sin rd / d t 0         &      (17) 

and 

 
C C

X
g sin d V / d t s in V cos rd / d t 0         &      (18) 

 

where from (9) we have replaced the normal force N with mg. 

     Next, by using (4) and (5) to eliminate 
X

d / d t and 
Y

d / d t , (17) and (18) become: 

 

    
C C

d V / d t co s V sin 7 / 2 g co s 0       &      (19) 

and 

   
C C

d V / d t s in V co s 7 / 2 g co s 0       &       (20) 
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Finally, by solving (19) and (20) for C
V & and C

d V / d t  we have the simple results: 

 

 
C C

V 0    a n d    d V / d t 7 / 2 g    &        (21) 

 

The first expression of (21) shows that the direction of the contact point velocity remains constant throughout 

the sliding motion of the ball. Therefore we can express   and the unit vector n
C

 (see Fig. 2) as: 

O
   an d       n

C
 n

C O
         (22) 

 

where
O

  and n
C O

 are constants. Observe that, as a consequence, n
C 

 is also constant. 

The second expression of (21) shows that the magnitude of the contact point velocity decreases linearly with 

time. That is: 

 

 
C C

O
V 7 / 2 g t V             (23) 

 

Where t is measured from the immediate post-cue-impact time and C

O
V  is the magnitude of the immediate post-

cue-impact contact point velocity. 

 (23) shows that when t is C

O
V / g  the ball stops sliding and begins rolling (in a straight line at constant speed). 

With   being constant, (1) and (2) show that the ball center acceleration components G

X
d V / d t  and G

Y
d V / d t  

are constants. Then by  using (3) the acceleration of the ball center may be expressed as: 

 

a G G

X
d V / d t N G

X Y
d V / d t N

Y
g (co s   N

X
s in  N

Y
) g  n

C O
   (24) 

 

 (24) is seen to have the same form as the classical projectile equation [3,4]: 

 a G
g  k          (25) 

 

withk being a vertical unit vector. Therefore, as with the projectile, the ball center G moves on a parabolic path. 

To develop this further, observe that by integrating in (24) the velocity and position of G may be expressed as: 

 

V G
g t  n

C O
 V G

O
t          (26) 

and 

P G 2
g t / 2  n

C O
 V G

O
t         (27) 

 

whereV G

O
 is the immediate post-cue-impact velocity of the ball center and where P G  locates G relative to its 

immediate post-cue-impact position. 

 

IV. APPLICATION 

 Observe in (26) that if V G

O
, the ball center velocity immediately after cue impact, is parallel to n

C O
 

(and thus parallel to the contact point velocity), the ball moves on a line parallel to n
O C

. Alternatively, if V G

O
 is 

not parallel to n
O C

, the ball will move on a parabolic curve. In this section we present simple, but yet important, 

practical examples illustrating both of these conditions. 
 

Example 1.  A Straight Sliding/Rolling Shot 

We developed the impulse dynamics for this example in Part I, Case 2 of the paper series. 

 

 
Fig. 3 Side view of the geometry of a straight shot with a downward directed cue. 

Figure 3 illustrates the basic geometry of the shot where, as before, F is the impulsive cue force applied at point 

P on the vertical great circle of the ball, in the X-Z plane. Both F and P are in the X-Z plane. The figure also 



In Shooting Pool, Partii… 

www.theijes.com                                                The IJES                                                            Page 60 

provides a representation of the initial post-cue-impact velocities of the ball center G and the contact point C. 

(Note: C C

O O
V V ) Observe in Fig. 3 that the cue force is directed downward with a large inclination angle  

and that C has an initial speed C

O
V  along the X-axis. This means that the ball is sliding with ”back-spin”. That 

is, the ball rotation impedes the forward (X-direction) movement of the ball. Observe also that the configuration 

of Fig. 3 represents a typical intended shot of a pool player while attempting to avoid a “scratch” (unintended 

cue ball into a pocket). The downward cue angle produces back-spin, which slows the forward movement of the 

ball. 

From Part I, Case 2, the ball is seen to move along the X-axis, (54) and (56) show G

O
V  and C

O
V  to be: 

 

    
G

O
ˆV F / m co s s in             (28) 

and 

         
C

O
ˆV F / m 5 x / 2 r 7 / 2 s in 1 5 z / 2 r co s          

   
    (29) 

 

where, as before, F̂  is the impulse of F (that is, 

*
t

0

d t F ), m is the ball mass, and the impact time *
t  is small. 

Observe in (28) and (29) that both G

O
V  and C

O
V  are positive for practical values of ,  ,  x, and z. 

From (23), the contact point velocity is zero and rolling begins when t is: C

O
2 V / 7 g . Thus when sliding stops 

and rolling begins, the mass center velocity is: 

 

 V  
G G C

O O C O
V 2 V / 7  n          (30) 

 

Observe that if G

O
V  is greater than C

O
2 V / 7  the ball will be moving forward (away from the shooter) when 

rolling begins – assuming it has not previously contacted an object ball. 

Finally, from (27), when rolling begins the ball position is given by: 

 

   
G C G C

O O O O C
2 V / 7 g V V / 7  P n        (31) 

 

After rolling begins the ball will continue to roll on a straight line with constant speed, given in (30), until it 

strikes an object ball or a table rail. 

 

Example 2.  A Slight Error in Cue/Ball Point of Impact and/or Cue Direction 

 We also developed the impulse dynamics for this example in Part I (Case 3) of the paper series. Recall 

in that case a downward angled cue, intending to strike the ball at the surface intersection of the horizontal 

(equator) and vertical great circles, actually strikes the ball slightly (a distance  ) to the left of that point (from 

the shooter’s perspective). Observe that due to the ball symmetry, this is an error equivalent in its analysis to the 

cue striking the ball at the intended great circle intersection point, but with the cue erroneously angled slightly 

out of the vertical great circle plane.     Figure 4 illustrates the geometry of the shot. 

     The analysis of Case 3 in Part I shows that immediately after cue impact the center and contact point 

velocities are [(68) and (69)]: 

 

 G G G

O O X X O Y Y
V V V N N          (32) 

and 

 C C

O O O C
VV n           (33) 

 

where by neglecting higher-order small terms, the components G G

O X O Y
V ,  V ,  and C

O
V  are: 

 

              
G G 2 C

O X O Y O
ˆ ˆ ˆV 1 F / m  ,  V 5 / 2 / r F / m  ,  an d   V 1 5 / 2 7 / 2 F / m           

 
 (34) 
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Fig 4.  Cue ball struck slightly outside of the intended vertical great circle plane. 

where the inclination angle   of the contact point velocity relative to the X-axis is: 

 

5 / 2 r              (35) 

Similarly the inclination angle   of the immediate post-impact center velocity G

O
V  with the X-axis is 

(neglecting higher-order terms): 

 
G G 2

O Y O X
tan V / V 5 / 2 r              (36) 

 

Figure 5 illustrates the relative inclination of the post-cue-impact velocities of the center and contact points 

 
G C

O O
 an d  V V . With G

O
V and C

O
V  being non-parallel and with C

O
V  being non-zero, the ball is initially sliding 

and its center moves on a parabolic path. When the sliding ends, the ball will roll on a straight line at constant 

speed. 
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Fig. 5 Inclinations of post-cue-impact center and contact point velocities (not to scale). 

 

These findings then raise several questions: 1) What are the coordinates of the point where sliding stops and 

rolling begins? 2) What is then the inclination of the rolling line? and 3) What is the subsequent rolling speed of 

the ball? 

     To answer these questions, it is convenient while the ball is sliding, to express the kinematics in terms of unit 

vectors 
O C

n and 
C 

n . To this end observe from Fig. 5 that with the angle: 5 / 2 r  being small, we have the 

relations: 

 

    X O C C Y O C C
5 / 2 r    an d    5 / 2 r

 
        N n n N n n     (37) 

 

     Similarly, we have the inverse relations: 

 

    O C X Y C X Y
5 / 2 r    an d    5 / 2 r


       n N N n N N      (38) 

 

     (23), (26), (34), and (37) show that while the ball is sliding, the velocities of the contact point and ball center 

(neglecting higher-order small terms) are: 

 

         C

O C
ˆ7 / 2 ) g t 1 5 / 2 7 / 2 F / m        

 
V n      (39) 

and 

        
G

O C C
ˆ ˆg t F / m 1 F / m 5 / 2 r


         
  

V n n      (40) 

 

Correspondingly, (27), (34), and (37) show that while the ball is sliding, the position of the ball center G is 

given by: 

 

          
G 2

O C C
ˆ ˆg t / 2 F / m 1 t F / m 5 t / 2 r


         
  

P n n     (41) 

     Next, observe in (23) and (39) that the magnitude C
V  of the contact point velocity decreases linearly in time. 

These equations show that the time 
R

t  when C
V  is zero (when sliding stops and rolling begins) is: 

        
C

R O
ˆt 2 / 7 g V F / m g 2 / 7 5 / 7        

 
     (42) 

 

By substituting the result (for t) into (40) and (41) we see that the ball center position and velocity when rolling 

begins are (again neglecting higher-order small terms): 

 

           
2

G

O C C
ˆ1 / g F / m 1 2 / 4 9 2 5 / 4 9 5 / 7 r


         
 

P n n    (43) 
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and 

        
G

C C
F̂ / m 5 / 7 1 5 / 2 r


     
 

V n n       (44) 

 

     Finally, using (38) we see that the X-Y coordinates  R R
x , y  and the 

X Y
,N N  coordinates  

G G

X R Y R
V , V  of 

the ball center position and velocity of the initiation of rolling are given by: 

 

           
2

G

R X R y X Y
ˆx y 1 / g F / m 1 2 / 4 9 2 5 / 4 9 5 / 4 9 r           

 
P N N N N  (45) 

and 

        
G G G

X R X Y R Y X Y
ˆV V F / m 5 / 7 1 5 / 7 r       

 
V N N N N     (46) 

 

     (45) provides the coordinates  R R
x , y  where rolling occurs, and (46) shows that the slope M of the rolling 

line and the rolling speed G
V  (neglecting higher-order terms) are simply: 

 

    
G ˆM / r    an d    V 5 F / 7 m 1            (47) 

 
Fig. 6 Exaggerated depiction of ball center path. 

 
Figure 6 provides an illustration (exaggerated) of the path of the ball center. When rolling begins, the ball center 

is:  
2

ˆ5 F / m / 4 9 g r
 

  
 
 

away from the X-axis – arguably a very small deviation when   and   are small. 

But this deviation becomes increasingly important as rolling begins and as the shot lengthens. Observe also that 

the shooting error, being proportional to  , may be either positive or negative, and thus the ball center path may 

be either to the left or to the right of the X-axis. 

     On rare occasions a shooter may intentionally strike the cue ball in a plane to the left or to the right of the 

vertical great circle plane of the ball [5, 6, 7]. As Mosconi [5] observed, the objective of a small out-of-vertical-

plane cue impact is to introduce a vertical spin  Z
  on the ball (“English” or “side-spin”) which will aid in 

positioning the cue ball after it strikes an object ball and/or a rail. 
     Part III presents a detailed discussion and quantification of the effects of shooter error and English. 

 

V. DISCUSSION 
 These analyses and example results show that immediately after the cue impact, the ball’s subsequent 

movement is completely established. But the characteristics of that movement are extremely sensitive to the 

cue’s orientation and its point of impact on the ball. Indeed the ball will either go straight, as usually intended, 

or (more likely) the ball will move on a parabolic curve. 

On most occasions there is lengthy sliding of the ball across the table due to the typical downwardly inclined 

cue. This cue inclination occurs due to the table rails being higher than the table surface, and due to most 
shooters’ intent to induce back-spin on the ball to avoid a “scratch”. Unless the point of impact of the cue is 
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exactly on the vertical great circle of the ball, in the plane of the cue, the ball movement will deviate from that 

of a straight line. Even if this deviation is initially small, the ball position can be significantly affected, in a long 

shot, as it approaches an object ball. For shorter shots, however, a shooter may, on occasions, intentionally move 

the point of impact on the ball slightly to the left or right to obtain a favorable cue ball position after 

successfully striking an object ball. But this is a “trade off”: A skilled shooter will accept a slight risk of an 

unsuccessful object ball strike in exchange for a controlled post-impact positioning of the cue ball. A skilled 

shooter will compensate the cue aim to account for the slight curve of the cue ball path. 
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