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------------------------------------------------------ABSTRACT----------------------------------------------------  
In this third part of the paper series, we provide answers to the most important questions in shooting pool: Will 

the shot be successful? And if so, how favorable will the next shot be? These are the title questions. We answer 

these questions by developing the post-collision kinematics of the object ball and then the cue ball. We present a 

generalized algorithm for simple, procedural computation of the kinematics. Effects of friction between the balls 

and of ball-table friction are included. We conclude with a few simple strategic principles. 
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I. INTRODUCTION 
 Billiards, particularly pocket billiards (pool), is distinct amount the world’s major ball games in that, 

with pool, multiple balls are always in play. Whereas baseball, football, basketball, soccer, tennis, golf, and 

bowling all use only one ball at a time, pool may involve all 16 balls (at least, in the beginning break). 

Nevertheless, in pool, the focus is primarily on only two balls – the cue ball and the object ball. In this third part 

of the paper series we use the findings and results of Parts I and II to answer the game-important title questions. 

The collision of billiard balls is used in elementary texts to illustrate the conservation of momentum principle 

and the concept of impact/rebound modeled by a "coefficient of restitution”. These elementary illustrations, 
however, generally neglect the effects of friction and rotational inertia. But we need to include these effects to 

obtain a more precise analysis of the ball dynamics, which is necessary to accurately predict the post impact ball 

dynamics. 

 

 During the play, there are occasions when there is no direct path between the cue and object balls. In 

such occasions pocketing the object ball may require a bank shot or the use of a third, or intermediate, ball. In 

our analysis herein we avoid these special cases and consider only those instances where there is a clear path 

between the cue and object balls, and also between the object ball and a pocket.The balance of the paper is 

divided into five sections with the first of these defining the nomenclature and geometry. Sections 3 and 4 then 

focus upon the dynamics of the object and cue balls, respectively. The effects of shooting errors are studied in 

Section 5. The final section provides a discussion and concluding remarks including implications for shooting 

strategies. 
 

II. BALL-TO-BALL IMPACT GEOMETRY AND NOMENCLATURE 
 Imagine a typical shot attempting to “cut” an object ball toward a pocket as represented in Fig. 1, where 

T is the tangent plane at the contact point P between the cue and object ball. Also, in Fig. 1   represents the 

“cut angle”. (For a “straight shot”   is zero.)      Consider next a view of the impact as in Fig. 2. As before, we 

introduce dextral Cartesian axes systems (for each ball) with the Z-axes being vertical and the X-axes being 

normal to the tangent plane as shown. The origins of the axes systems are at the ball centers 
c u e

G  and 
o b j

G  

where the subscripts “cue” and “obj” are used throughout to distinguish between quantities for the cue and 
object balls. 
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For example, just before impact, the cue ball center velocity is expressed as: 
 

 c u e
G

c u e X X c u e Y Y
V V V N N         (1) 

 

where
X Y

,  ,N N and 
Z

N  are unit vectors parallel to the respective X, Y, and Z axes. 

     Similarly, the angular velocity of the cue ball just before impact is expressed as: 

 

 cu e

cu eX X cu eY Y cu eZ Z
     ω N N N        (2) 

 

     Just after impact the cue ball center velocity and cue ball angular velocity are expressed as: 

 

 c u e

c u e X

*       

G * *

X c u e Y Y
V V V N N         (3) 

and 

 

*      

cu e * * *

cu eX X cu eY Y cu eZ Z
      N N N        (4) 

where the * denotes immediate post impact condition. 

     Similarly, just after impact, the object ball center velocity and the object ball angular velocity are expressed 

as: 

 

 o b j

*       

G * *

o b jX X o b jY Y
V V V N N         (5) 

and 

 

*         

o b j * * *

o b jX X o b jY Y o b jZ Z
     ω N N N        (6) 
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III. OBJECT BALL DYNAMICS 
 While Fig. 2 shows an overhead view of the impact of the object ball by the cue ball, Fig. 3 shows a 

rear view, or shooter’s view, of the object ball. With the point of impact on the object ball being at point P, as 

shown, we have impact on a horizontal great circle, which is a simpler case than the impact of a cue stick on a 
cue ball, as in Part I. 

Z

Y

r
P, G

obj

objobj

 
           Fig. 3. Rear View (Shooter’s View) of the Object Ball 

 

 In view of the analyses of Parts I and II, we can assume that we know the pre-impact kinematics of the 

cue ball. Then upon impact, the cue ball will exert an impulsive force, on the object ball, with magnitude F in 

the X-direction and corresponding impulsive friction forces in the Y and Z directions. Depending upon the 

impact angle   and the rotational directions of the cue ball, just before impact, the friction forces may be in 

either the positive or negative Y and Z directions. That is, the impulsive force o b j
F̂  on the object ball may be 

expressed as: 

 o b j X B Y B Z
ˆ F F F    F N N N         (7) 

where
B

  is the coefficient of friction between the balls, and where the + or – signs are determined by whether P 

is to the left (+) or the right (-) of the object ball center (as viewed by the shooter), and whether there is back-

spin (+) or front-spin (-) of the cue ball.For competitive equipment 
B

  is usually small. Marlow [1] lists 
B

  as 

less than 0.07. Correspondingly the coefficient of friction   between a ball and the table surface is also small 

typically less than 0.3 [1]. Therefore, it is reasonable to assume in the analysis that terms containing products of 

the friction coefficients are very small and consequently negligible.With the object ball being at rest just before 

impact, we can immediately use the procedures of Part I with the impulsive force of (1) to determine the post-

impact movement of the object ball. 

In the object ball coordinate system: 
o b j o b j o b j

X , Y , Z  the coordinates of the impact point P are: 
 

 o b j o b j o b j
x , y , z r , 0 , 0   

 
        (8) 

 

where, as before, r is the ball radius. 

     Using the procedure in (36) to (41) of Part I, we readily obtain the following analysis procedure, or six-step 

algorithm: 

 

1)  Form the functions 
o b jx

f  and 
o b jy

f  as: 

 

    ob jx ob j Z ob j X B
ˆ ˆf x F z 2 r / 5 F 2 / 5 rF        

  
m      (9) 

and 

    o b jy o b j Z o b j Y B
ˆ ˆf y F z 2 r / 5 F 2 / 5 rF      

 
      (10) 

 

2)  Form 
o b j

f : 

 

    
1 / 2

2 2

o b j o b jx o b jy B
f f f 2 / 5 rF    

 
m        (11) 
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3)  Determine 
o b j

s in  and 
o b j

c o s  : 

 

 o b j o b jy o b j B
s in f / f     and

o b j o b jx o b j
co s f / f 1        (12) 

 

4)  Determine 
o b j

 : 

 

 
1

o b j o b jy o b jx B
tan f / f


            (13) 

 

From Table 1 of Part I: 

 

If  
o b j B

s in      then  
o b j

0 / 2     

If  
o b j B

s in      then  
o b j

3 / 2 2            (14) 

 

5)  Determine 
* *

o b jx o b jy
V ,  V , and 

*

o b jc
V : 

 

    
*

o b jx x Z o b j
ˆ ˆV F / m F / m co s F / m            (15) 

 

    
*

o b jy Y Z o b j B
ˆ ˆV F / m F / m sin F / m            (16) 

 

        
*

ob jc ob j Z B
ˆV 5f / 2 rm 7 / 2 m F F / m 1 5 / 2     

 
m      (17) 

 

6)  Determine 
* *

o b jX o b jY
,  ,  and 

*

o b jZ
 : 

 

  
* * *

o b jX o b jc o b j o b jY
V sin V r 0            (18) 

 

      
* * *

o b jY o b jc o b j o b jX B
V cos V / r 5 / 2 r F / m      m      (19) 

 

        
* 2

o b jZ o b j Y o b j X B
ˆ ˆx F y F 5 / 2 m r 5 / 2 r F / m    m      (20) 

 

In obtaining these results we have neglected small terms – specifically, terms involving products of  and 
B

 . 

Also, 
*

o b jc
V  denotes the immediate post-impact speed of the object ball’s contact point with the table. As before, 

m is the ball mass. Observe the results of (11) to (18) involve the magnitude of the interactive impulsive force F. 

We can obtain F by considering the cue ball dynamics, as in the following section. 

 

IV. CUE BALL DYNAMICS 
 In view of Figs. 1 and 2 consider an overhead view of the cue ball at the time of impact with the object 

ball, as in Fig. 4, where the interactive impulsive force components (F and 
B

Fm ) from the object ball are of 

equal magnitude but oppositely directed from those exerted by the cue ball on the object ball. 
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 With the cue ball moving just prior to impact, the dynamical analysis procedure of Part I needs to be 

modified to account for the pre-impact movement: That is, in the integrations over the brief impact time *
t  in 

(20) of Part I, the lower limit value is no longer zero, but instead it is the immediate pre-impact kinematic 

component. For example, the first expression of (20) becomes: 

 
*

t

*

X X X

0

V V a d t            (21) 

Then the integrated equilibrium equations [(21) through (26)] become: 

 

  
*

X cue cueX cueX
ˆ ˆF N cos m V V 0             (22) 

 

  
*

Y cu e cu eY cu eY
ˆ ˆF N sin m V V 0             (23) 

 

 *

Z
ˆ ˆF m g t N 0            (24) 

 

    
2 *

cu e Z cu e Y cu e cu eX cu eX
ˆ ˆ ˆy F z F rN sin 2 / 5 m r 0              (25) 

 

    
2 *

cu e X cu e Z cu e cu eY cu eY
ˆ ˆ ˆz F x F rN cos 2 / 5 m r 0              (26) 

and 

    
2 *

cu e Y cu e X cu eZ cu eZ
ˆ ˆx F y F 2 / 5 m r 0            (27) 

 
     The immediate post-impact kinematic equations [(27) and (28) of Part I] remain the same and in the current 

format, they become: 

 

 * * *

cu eX cu ec cu e cu eY
V V co s r            (28) 

and 

 * * *

cu eY cu ec cu e cu eX
V V sin r            (29) 

 

 (20) to (27) now form eight equations for the eight unknowns: 
*

c u e X
V ,

*

c u e Y
V ,

cu e
,

*

c u e X
,

*

c u e Y
,

*

c u e Z
,

*

c u e c
V , and N̂ ; and for the interactive force F, via 

X
F̂ ,

Y
F̂ , and 

Z
F̂ . As 

in Part I, the unknowns are distributed sparsely across the equations. We can thus solve the equations using 

Gauss elimination as before. The results immediately lead to the following six-step algorithm: 

 

1)  Form the functions 
cu eX

f  and 
cu eY

f  as: 

 

      c u e X c u e Z c u e Y c u e Y c u e X
ˆ ˆf y F z 2 r / 5 F 2 / 5 m r V r      

 
    (30) 

and 

      c u e Y c u e Z c u e X c u e X c u e Y
ˆ ˆf x F z 2 r / 5 F 2 / 5 m r V r      

 
    (31) 

 

2)  Form 
c u e

f  as: 

 

 
1 / 2

2 2

cu e cu eX cu eY
f f f  

 
         (32) 

 

3)  Form 
cu e

s in  and 
cu e

co s  : 

 

 
cu e cu eY cu e cu e cu eX cu e

sin f / f    an d    co s f / f          (33) 
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4)  Find 
c u e

  as: 

 

  
1

c u e c u e Y c u e X
ta n f / f


           (34) 

 

(The quadrant of 
c u e

 is determined from the conditions of Table I of Part I.) 

5)  Find * * *

cu eX cu eY cu eC
Y ,  Y ,  an d  Y  using the expressions: 

 

    
*

cu eX cu eX X Z cu e
ˆ ˆV V F / m F / m co s            (35) 

 

    
*

cu eY cu eY Y Z cu e
ˆ ˆV V F / m F / m sin            (36) 

and 

    c u e c Z c u e
ˆV 7 / 2 m F 5 f / 2 rm           (37) 

 

6)  Determine * *

cu eX cu eY
,  ,  and *

c u e Z
  using the expressions: 

 

    
* * *

cu eX cu eY cu ec cu e
V / r V / r s in            (38) 

 

    
* * *

cueY cueX cuec cue
V / r V / r cos           (39) 

and 

    
* 2

cu eZ cu eZ Y X
ˆ ˆˆ ˆ5 / 2 m r x F yF            (40) 

 

Although these algorithm steps are slightly more detailed than those for a struck stationary ball, as for the cue 

ball of Part I, and the object ball of Sec. 3, the steps are still relatively simple, leading directly to the sought after 
kinematic results. The procedure is further simplified by neglecting terms with products of small quantities. 

To illustrate this consider now the cue ball striking an object ball: We can obtain the impulse force components 

from (5) and the coordinates of the impact point by inspection from Fig. 4. That is, the impulsive force 
c u e

F̂ on 

the cue ball is: 

 

 c u e o b j X B Y B Z
ˆ ˆF F F F F     N N Nm m        (41) 

 

     From Fig. 4 the coordinates of the point of impact in cue-based axis system are: 

 

  c u e c u e c u e
x , y , z r , 0 , 0            (42) 

 

     By substituting from (39) and (40) into the equations of the six-step algorithm we readily obtain the results: 

 

        c u e X B c u e X c u e Y
f 2 / 5 rF 2 m r / 5 V r      

 
m      (43) 

 

      cu eY B cu eY cu eX
f 2 r F / 5 2 m r / 5 V r    m       (44) 

 

  c u e 1 c u e Y c u e X
ta n f / f


           (45) 

 

  
*

c u e X c u e X
V V F / m           (46) 

 

  
*

c u e Y c u e Y B
V V F / m m         (47) 

 



Inshootingpool, Partiii:  Where… 

www.theijes.com                                                The IJES                                                            Page 44 

    
1 / 2

* 2 2

cu ec cu eX cu eY
V 5 f / 2 rm    w h e re    f f f         (48) 

 

 *

cu eX cu eX
             (49) 

 

      
* 2

cu eY cu eX cu e
V / r F / m r 5f / 2 m r cos           (50) 

and 

  
*

c u e Z c u e Z B
5 F / 2 rm   m         (51) 

 

where as before we have neglected the insignificant terms. 

Observe in these results that all of the terms on the right sides of the equations are expressed in terms of the cue 
ball kinematics just before impact and the interactive impulsive force F. 

We are now in a position to determine F: From the elementary concept of impact/restitution [2,3] we have: 

 

 
* *

o b jX c u e X c u e X
V V e V           (52) 

 

where e is the coefficient of restitution. For ball-to-ball impact with competitive equipment Marlow [1] lists e as 

greater than 0.9. 

By substituting for 
*

o b jX
V  and *

c u e X
V  from (13) and (44) into (50) we obtain the ratio F/m as: 

 

   c u e X
F / m 1 e / 2 V  

 
         (53) 

 

By knowing (F/m) the immediate post-impact kinematics of both the object ball and the cue ball are known. The 

center velocities are: 

 

    
* *

o b jX c u e X o b jY B c u e X
V 1 e / 2 V    ,    V 1 e / 2 V        

   
     (54) 

and 

    
* *

c u e X c u e X c u e Y c u e Y B c u e X
V 1 e / 2 V     ,     V V 1 e / 2 V       

   
m     (55) 

 

where the upper (lower) sign is used when the cue ball strikes the left (right) side of the object ball. 

 

V. SHOOTING ERROR ANALYSIS 

 In view of Figs. 1 and 2, (52) shows that with the ball-to-ball friction coefficient 
B

  being small, the 

object ball moves primarily in the direction perpendicular to the contacting tangent plane T between the cue ball 

and the object ball. Unfortunately for the shooter the orientation of the tangent plane is extremely sensitive to 

the pre-impact direction of the cue ball and that this sensitivity increases with the intended “cut-angle”   (see 

Fig. 1) on the object ball. A small deviation in the pre-impact cue ball path has a magnified effect upon the 

tangent plane orientation and consequently upon the direction of the object ball movement. Moreover, this effect 

is amplified as the shooting distance between the cue ball and the object ball is increased. To illustrate this, 

consider the elementary geometric analysis of Fig. 5, where   is the angle of deviation of the cue ball path from 

that of a “straight” (center-to-center) shot, and   is the angle of the normal to the tangent contact plane with the 

center-to-center line. Thus, for small friction between the balls,   is a measure of rebounding cue ball direction. 

The initial center-to-center distance is taken as a multiple p (not generally an integer) of the ball diameter d. 
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T

ψ

δ
p d

c u e b a ll

c u e b a ll

C o nta c t ta n g en t

p la ne

φ

r

rV

V
o b j

c u e

F ig . 5   C ue  b a ll/O b je c t b a ll im p a c t ge o m e t ry  
 

If 
m a x

  is the maximum value of  for which contact occurs (that is, with right-triangle geometry), we see that 

the diameter multiplier p and 
m a x

  are related by the simple expression: 

 

m ax
s in 1 / p            (56) 

 

Observe in Fig. 5 that when   is 
m ax

,     has a maximum value: 
m a x

 , the complement of 
m a x

 . Table 1 

provides a listing of values of 
m ax m ax

,     and the ratio 
m ax m ax

/ ,   for initial center-to-center ball separation 

distances which are integer multiples of the ball diameter. 

     Observe in Table 1 that for large initial ball separation distances changes (errors) in pre-impact cue ball 

direction can produce changes 30 or more times as great in post-impact object ball direction. 

 

Table 1. Maximum Object Ball Departure Angles as a Function of Initial Ball Separation Distance 

 

p m a x
  (deg) 

m a x
  (deg) 

m ax m ax
/   

3 19.47 70.53 3.62 

4 14.48 75.52 5.21 

5 11.54 78.46 6.80 

7 8.21 81.78 9.96 

10 5.74 84.26 14.68 

15 3.82 86.18 22.54 

20 2.87 87.13 30.40 

30 1.91 88.09 46.11 

 

VI. DISCUSSION 
 In this third part of the paper series we answer the title questions by first employing the algorithm 

presented in Part I for the object ball, and then for the cue ball rebound, we develop and apply a generalization 

of the algorithm. The result of the analysis is a simple procedure for predicting post-impact ball movement in 

terms of pre-impact conditions.During a game, however, a pool player cannot be expected to make trajectory 

calculations even with the developed simple procedures. Nevertheless, the algorithms and the accompanying 

error analysis establish a series of principles and strategic suggestions: 

 

[1] Aim the cue stick so that the point of impact with the cue ball, the center of the cue ball, the desired point 
of contact on the object ball, and the cue stick itself, all lie in the same vertical plane. 

[2] If the object ball is relatively close to a pocket, English may be used to help position the rebounding cue 

ball for the next shot. “English” (or Z-axis spin) can be obtained by positioning the point of impact on the 

cue ball, by the cue stick, slightly to the left (or to the right) of the vertical plane of the cue ball center and 

the desired point of impact on the object ball, while keeping the cue stick parallel to the plane. This 

intentional left (or right) positioning of the point of impact on the cue ball will accentuate the post-impact 

movement of the cue ball to the left (or right). 

[3] Whenever possible, avoid long shots. Error effects increase exponentially with the distance between the 

cue ball and the object ball. 

 



Inshootingpool, Partiii:  Where… 

www.theijes.com                                                The IJES                                                            Page 46 

REFERENCES 
[1] W.C. Marlow, The physics of pocket billiards (Palm Beach Gardens, FL, MAST (Marlow Advanced Systems Technologies) 

1995), 267, 269. 

[2] F.P. Beer and E.R. Johnston Jr., Vector mechanics for engineers, Dynamics, Fifth Ed. (New York: McGraw Hill, 1988), 493, 

532. 

[3] R.C. Hibbler, Engineering Mechanics, Dynamics, Eighth Ed. (Saddle River, NJ: Prentice Hall, 1998), 37-47. 

 


