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---------------------------------------------------------ABSTRACT------------------------------------------------ 
Nitrogen Species Catalyzed (NSC) pressure leaching of complex sulfide concentrates has been carried out. This 

entailed performance of bench scale test work on a representative composite sample to ascertain indicative 

recoveries and identify lead deportment in the residue particularly with regards to avoidance of formation of 

plumbojarosite and the production of lead sulfide.   A major equipment list including materials of construction, 

equipment size and power requirements was also provided. Detailed block flow diagrams showing each unit 

process were provided along with basic testing mass balances. Finally, order of magnitude CAPEX and OPEX 

was ascertained to +/-30%.In summary, industrial NSC pressure leaching was effective in leaching silver, zinc, 

copper, nickel and cobalt well over 90 % to solution from the complex sulfide concentrates. The NSC treated 

concentrate composite residue sample was produced as lead oxide and lead sulfide in the DOE testing. In the 

subsequent locked cycle NSC work, this was optimized to produce only lead sulfide leached residue suitable for 

conventional smelting. 
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I.      INTRODUCTION 
The application and optimization of Nitrogen Species Catalyzed (NSC) pressure leach sulfide oxidation 

of complex sulfide concentrates with production of lead sulfide residue was studied. This entailed lab testing at 

the scoping and optimization level for partial NSC sulfide oxidation. This focused on optimization of NSC 

results, locked cycle testing of the optimized flowsheet along with a detailed order of magnitude capital and 

operating cost assessment for the application of NSC to complex sulfide concentrates. 

 

II.      NSC THEORETICAL CONSIDERATIONS 
As a first step, the basics of nitrogen species catalyzed (i.e. NSC) hydrometallurgical pressure oxidation 

will be outlined. The commonly reported leach reaction of a sulfide mineral with nitric acid in conjunction with 

sulfuric acid is shown below. 

 

        3MeS (s) + 2HNO3 (aq) + 3H2SO4 (aq)  3MeSO4 + 3S° (s) + 2NO (g) + 4H2O                              (1) 

 

However, it has been postulated and confirmed that the actual reaction species is NO
+
 and not NO3

-
 (Anderson, 

1992, Anderson, 1996, Baldwin, 1996, Gok, 2009).  The addition of or presence of NO2
-
 instead of  NO3

-
 

accelerates the formation of NO
+
.  As shown in Table 1, the NO

+
/NO couple is capable of an extremely high 

redox potential (Peters, 1992).  So, NO
+
 is readily formed from nitrous rather than nitric acid.  For example, a 

convenient source of nitrous acid can be sodium nitrite (Anderson, 1992, Anderson, 1996).  When it is added to 

an acidic solution, nitrous acid is readily formed. 

 NaNO2 (aq) + H
+
  HNO2 (aq) + Na

+ 
(2) 

 

 Nitrous acid further reacts to form NO
+
. 

 HNO2 (aq) + H
+
  NO

+
 (aq) + H2O (3) 

 

 The NO
+
 then reacts with the mineral and oxidizes the sulfide to sulfur. 

 MeS (s) + 2NO
+
 (aq)  Me

2+
 (aq) + S° + 2NO (g) (4) 
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Of course, at higher temperatures and/or nitrogen species concentrations the sulfide can be fully oxidized to 

sulfate.   

                   Table 1.  Relative Potentials of Hydrometallurgical Oxidizers. 

 

Oxidant Redox Equation 
E°h (pH = 0, H2 

ref.) 

Fe3+ Fe3+ + e-  Fe2+ 0.770 V 

HNO3 NO3
- + 4H+ +3e-  NO + 2H2O 0.957 V 

HNO2 NO2
- + 2H+ + e-  NO + H2O 1.202 V 

O2 (g) O2 + 4H+ + 4e-  2H2O 1.230 V 

Cl2 (g) Cl2 (g) + 2e-  2Cl- 1.358 V 

NO+ NO+ + e-  NO 1.450 V 

 

As can be seen, nitric oxide gas, NO, is produced from the oxidation of sulfides.  As this gas has a limited 

solubility in aqueous solutions, it tends to transfer out of solution.  In the pressure leach system, a closed vessel 

with an oxygen overpressure is used.  The nitric oxide gas emanating from the leach slurry accumulates in the 

headspace of the reactor where it reacts with the supplied oxygen to form nitrogen dioxide gas.  The NO is then 

regenerated to NO
+
.  Overall this can be viewed as: 

 

                                                                NO (g) + O2 (g)  2NO2 (g)                                                  (5) 

 

                                                                    2NO2 (g)  2NO2 (aq)                                       (6) 

 

                                                    2NO2 (aq) + 2NO (aq) + 4H
+
  4NO

+
 (aq) + 2H2O                                   (7) 

 

Since the nitrogen species is continuously regenerated, its role in the overall reaction as the actual oxidizer is not 

obvious.  The net overall reaction has the sulfide mineral reacting with the acid solution and oxygen to solubilize 

the metal value into the sulfate solution and form some elemental sulfur.   

 

                                              2MeS (g) + 4H
+
 + O2 (g)  2Me

2+
 (aq) + 2S° + 2H2O                                        (8) 

 

Of course, at higher temperatures and/or nitrous acid concentrations the sulfide would be fully oxidized to 

sulfate. Overall, the nitrogen intermediates serve as an expedient means to transport oxygen to the surface of the 

solid particle and allow the resulting reaction to take place at a heightened redox potential.  This inherent asset of 

the unique novel NSC system eliminates the need for the use of high temperatures and high pressures, which lead 

to higher costs in other pressure leach processes.  For example, commonly available stainless steel can be used 

for the reactor vessel.  And, complete oxidation of sulfide to sulfate can be achieved without the excessive 

conditions found in other pressure leach systems.  Thus, the rapid kinetics of the system leads to smaller reactor 

volumes and higher unit throughputs.  Finally, 99.9% of the nitrogen species utilized in the leach system report 

to the gas phase when the pressure vessel is flashed and they are readily destroyed and contained by 

commercially available scrubber systems.  So, environmental impacts are minimized and the NSC leach plant 

solutions contain little or no nitrogen species.  In summary, NSC was first used industrially from 1984 until 1995 

on silver bearing copper concentrates. It has also been found to be applicable to and effective in the treatment of 

zinc, gold, lead, nickel, cobalt, copper PGM and molybdenum concentrates.   

 

III.     COMPLEX CONCENTRATE ANALYSIS 
 A complex concentrate comprised of mixed sulphides and precious metals was tested with NSC 

pressure oxidation. The goal was to dissolve and recover the Ag, Cu, Co, Zn while leaving an insoluble PbS 

residue suitable for conventional smelting. . 

 

Some general concentrate mineralogy information is as follows: 

 

Copper Chalcopyrite (CuFeS2) observed visually, chalcocite may also be present, cobalt and nickel are 

associated with the copper minerals and also occur as fine grained intergrowths of siegenite (CoNi)4S3 in the 

copper minerals. 
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Lead Primarily as galena (PbS), cobalt nickel and silver are associated with the lead minerals with fine grained 

intergrowths as siegenite in the galena. 

 

Cobalt Primarily occurring as siegenite, cobalt is intimately associated with nickel and is associated with and 

intergrown in both copper and lead minerals. It tends to be concentrated in the presence of Mn and diminishes as 

Zn increases. 

 

Nickel Primarily occurring as siegenite, nickel is intimately associated with cobalt and is associated with and 

intergrown in both copper and lead minerals. 

 

Silver Primarily associated with lead. 

 

Zinc Present as sphalerite ((Zn,Fe)S), zinc is present in much of the orebody at low levels. Zinc tends to increase 

as Co content diminishes and increases to the west. 

 

Iron Primarily present as pyrite (FeS2), the orebody is generally pyrite  

deficient, particularly where high levels of galena are found. There is little evidence of cobalt associated with 

pyrite. 

 

Carbon (as kerogen and/or graphite) is found throughout the orebody. It is higher in copper lenses (~6% C) and 

lower in lead lenses (~2% C). It slimes over particles unselectively during fine grinding and must be depressed 

during flotation. 

 

Sulfur is primarily associated with copper, lead, iron, cobalt, nickel and zinc. 

 

Two separate complex sulfide concentrates were analyzed and treated with NSC pressure leaching. The first was 

treated with baseline scoping testing using optimized conditions. The second was treated with Stat Ease DOE 

based optimization and locked cycle testing. These concentrate analysis were very similar and are summarized as 

follows in Tables 1 &2 and Figures 1 through 6. 
 

Table 1. Complex Sample #1 Elemental and Size Analyses. 

 

Pb, %   Zn, %  Co, %  Cu, %  Ni, % Ag g/T  TS, % TC, % 

28.5     2.56     0.47      0.85   0.40      59.1   16.0      7.5 

 

Size (µm) 

Ind. Wt. 

(g) 

Ind. Wt. 

% 

Cum. Wt. % 

Pass 

     

300 0 0.00 100.0 

147 0.3 0.17 99.8 

106 0.92 0.52 99.3 

75 8 4.52 94.8 

53 20.91 11.82 83.0 

44.6 8.31 4.70 78.3 

37.5 10.49 5.93 72.3 

31.5 12.40 7.01 65.3 

26.5 13.24 7.49 57.8 

22.3 13.08 7.40 50.4 

18.7 11.94 6.75 43.7 

15.8 12.19 6.89 36.8 

13.3 11.43 6.46 30.3 

11.1 11.51 6.51 23.8 

9.4 9.76 5.52 18.3 

7.9 10.40 5.88 12.4 

6.6 8.57 4.84 7.6 

5.6 6.32 3.57 4.0 

4.7 5.20 2.94 1.1 

3.9 1.87 1.06 0.0 
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Figure 1. Complex Concentrate #1 XRD Pattern 

 

 
 

Figure 2. Complex Concentrate #1 MLA Phase Analysis. 
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Figure 3. Complex Concentrate # 1 MLA Elemental Analysis. 

 

                 Table 2. Complex Sample #2 Elemental and Size Analyses. 

 

Pb, %   Zn, %  Co, %  Cu, %  Ni, % Ag g/T  TS, % TC, % 

21.6     2.66     0.81     2.02    0.66      53.0     18.9     8.5 

 

Size 

(µm) 

Ind. Wt. 

(g) 

Ind. Wt. 

% 

Cum. 

Wt. % 

Pass 

     

300 0 0.00 100.0 

147 0.09 0.05 100.0 

106 0.08 0.04 99.9 

75 1.82 0.95 99.0 

53 6.05 3.17 95.8 

44.6 3.20 1.68 94.1 

37.5 4.21 2.21 91.9 

31.5 12.65 6.63 85.3 

26.5 15.97 8.37 76.9 

22.3 15.36 8.05 68.9 

18.7 17.03 8.93 59.9 

15.8 18.31 9.60 50.3 

13.3 17.88 9.37 40.9 

11.1 17.17 9.00 31.9 

9.4 16.02 8.40 23.5 

7.9 14.05 7.37 16.2 

6.6 12.16 6.37 9.8 

5.6 9.21 4.83 5.0 

4.7 7.02 3.68 1.3 

3.9 2.48 1.30 0.0 
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Figure 4.Complex Concentrate #2 XRD Analyses. 

 

 

 
 

Figure 5.  Complex Concentrate #2 MLA Phase Analysis. 
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 Figure 6. Complex Concentrate #2 MLA Elemental Analysis. 

                                

NSC DOE OPTIMIZATION TESTING. 

For optimization, Stat-Ease Design Expert software was used. The ¼ testing matrix shown in Table 3. was set up 

and the NSC tests were run on concentrate #2 according to this table and the  conditions shown in Table 4.  

             

 

Table 3.  Stat Ease DOE NSC PARTIAL OXIDATION MATRIX. 

 

                                         Std Run Grind  Time   Initial Acid  Max Temp  Leach Time 

                                          1      1        0   Min         50 g/L           150 C       120 Min 

                                          7      2        0   Min        200 g/L          130 C         60 Min 

                                          5      3        0   Min          50 g/L          150 C         60 Min 

                                         10     4        5   Min        125 g/L          140 C         90 Min 

                                          3      5        0   Min        200 g/L          130 C       120 Min 

                                          4      6     10   Min         200 g/L          150 C         60 Min 

                                          6      7     10   Min           50 g/L           130 C      120 Min 

                                          2      8     10   Min           50 g/L           130 C         60 Min      

                                          8       9    10   Min          200 g/L          150 C      120 Min       

                                          9    1 0      5    Min          125 g/L          140 C         90 Min      

 

 

TABLE 4. NSC PARTIAL OXIDATION CONDITIONS 

 

 

Nitrogen Species Catalyzed  

Partial Oxidation Leach Conditions. 

                      

                Grind Time =  Table 3 

                Initial Free Sulfuric Acid =  Table 3  

                Reactor Working Pressure  = 620 kPag  

                Slurry Solids Content  =  100 g/L 

                Maximum Temperature   =  Table 3  

                Total Tine = Table 3 

                Nitrogen Species Concentration  =  2.0 g/L 
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TABLE 5. NSC PRESSURE OXIDATION TESTING RESULTS 

 

               Std Run Grind Time Initial Acid  Max Temp Leach Time  Cu%   Co%   Zn%    Ag%     Ni, %    

               1        1      0   Min      50 g/L         150 C         120 Min      85.1    87.3     85.2     0.0       84.7 

               7        2      0   Min     200 g/L        130 C          60 Min       92.2    91.3     90.8    93.2      91.7     

               5        3      0   Min       50 g/L        150 C          60 Min       82.3    81.1     78.2     0.0       83.1   

               10      4      5   Min     125 g/L        140 C          90 Min       87.2    84.3     81.3    10.7      86.5 

                3       5      0   Min     200 g/L        130 C        120 Min      92.8     93.2     91.7    94.3     92.1 

                4       6      10 Min     200 g/L        150 C          60 Min      84.4     82.3     79.2    91.3     85.1  

                6       7      10 Min       50 g/L        130 C        120 Min      98.2     97.1     98.7      0.0     97.7 

                2       8      10 Min      50 g/L         130 C          60 Min      97.6     96.9     98.1      0.0     96.6 

                8       9      10 Min     200 g/L        150 C        120 Min      89.1     89.2     87.9     95.5    89.3  

              9       10        5 Min     125 g/L        140 C          90 Min      86.9     85.1     81.6    10.9     86.1 

    

These results were then input into the Stat Ease Design Ease software, modeled and optimized. Table 6 

illustrates the optimized NSC criteria and results. Table 7 illustrates the results of testing these optimized 

conditions on Complex concentrate #1 at 200 g/l slurry density. Figures 7 through 10 illustrate various MLA and 

XRD analysis on a composite sample of the leached NSC residue from the optimization testing.  

 

TABLE 6. STAT EASE DOE MODEL OPTIMIZED NSC PARTIAL  

OXIDATION CONDITIONS WITH SILVER RECOVERY. 

  

  Best Conditions for the Considered Variables and Variable Range 

   Factor             Name              Level    

      A             Grind Time         10.00                        

      B                 Acid               200.00                        

      C                 Temp              130.00                        

      D                 Leach              60.00       

                 

    Response            Prediction      95% CI low  95% CI high                     

                                                  Cu, %                   97.3             94.80              99.83                        

                                                  Co, %                   96.2             92.60              99.49                                              

                                                  Zn, %                   97.1             92.63            101.18                                              

                                                  Ag, %                   92.2             90.80              93.72                                              

                                                   Ni, %                   97.2             96.18             98.18                

 

 

 

TABLE 7. STAT EASE DOE OPTIMIZED CONDITIONS  

APPLIED TO COMPLEX CONCENTRATE #1. 

 

Nitrogen Species Catalyzed  

Partial Oxidation Leach Conditions. 

                      

                Grind Time = 10 minutes                  

                Initial Free Sulfuric Acid =  200 g/L  

                Reactor Working Pressure  = 620 kPag  

                Slurry Solids Content  =  200  g/L 

                Maximum Temperature   =  130 C  

                Total Tine = 60 minutes 

                Nitrogen Species Concentration  =  2.0 g/L 

                Particle Size = 80% passing 10 micron 

                Copper Recovery =  98.5 % 

                Silver Recovery    =  92.4 % 

                Cobalt Recovery = 95.4 % 

                Zinc Recovery = 97.2 % 

                Nickel Recovery = 96.7 % 
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Figure 7. MLA Phase Analysis of NSC DOE Leach  

Testing Treated Residue Composite Sample. 

 

 
 

Figure 8. MLA Elemental Analysis of NSC DOE Leach  

Testing Treated Residue Composite Sample. 
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Figure 9. Semi Quantitative XRD Analysis of DOE NSC 

Leaching Treated Composite Sample.  

 

 
 

Figure 10. XRD Qualitative Phase Analysis of DOE NSC Leaching Treated Composite Sample. 
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TABLE 8. STAT EASE OPTIMIZED LOCKED CYCLE  

NSC PARTIAL OXIDATION FINAL RESULTS 

 
 

Nitrogen Species Catalyzed  

Partial Oxidation Leach Conditions. 

                                      

                Locked Cycles = 7                                  

                Recycle Percentage = 25 % 

               Grind Time = 10 minutes 

                Initial Free Sulfuric Acid =  200 g/L  

                Reactor Working Pressure  = 620 kPag  

                Slurry Solids Content  =  100 g/L 

                Maximum Temperature   =  130 C  

                Total Tine = 60 minutes 

                Nitrogen Species Concentration  =  2.0 g/L 

                Copper Average Recovery =  95.1 %                      

                Silver Average Recovery    = 96.2 % 

                Cobalt Average Recovery = 97.3 % 

                Zinc Average Recovery = 98.4 % 

                Nickel Average Recovery = 96.8 % 
 

 

From the locked cycle testing and the NSC plant operating experience of  personnel a general flowsheet was 

generated. The NSC process battery limits were concentrate regrind through to the flash system. This is 

illustrated in Figure 11.. 

 

 
 

Figure 11.  Proposed NSC POX Flowsheet. 

 

ORDER OF MAGNITUDE CAPEX AND OPEX. 

 

Based on the testing data and the NSC plant operating experience of  personnel, CAPEX and OPEX estimates 

were generated. Again, the NSC process battery limits were concentrate regrind through to flash.  Table 9 

illustrates the concentrate annual tonnages and quality.  Tables 10 and 11 illustrate the order of magnitude 

capital and operating cost estimates with silver recovery. 
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TABLE 9.  COMPLEX CONCENTRATE ANNUAL  

PROJECTED QUANTITY AND QUALITY. 

 

Tonnes Per Annum     841,000  

Assay Pb 25.00 % 

 Cu 2.8 % 

 Co 0.74 % 

 Ni 0.44 % 

 Zn 1.41 % 

 Ag 43.29 g/T 

 Fe 6.71 % 

 TS 12.83 % 

 

TABLE 10.  ORDER OF MAGNITUDE CAPITAL COST ESTIMATE. 

 

  Equipment Costs   $5,250,000  

Installation  43% $2,257,500  

  Piping & Instruments 20% $1,501,500  

Engineering  25% $2,252,250  

Sub Total   $11,261,250  

Contingency   30% $3,378,375  

TOTAL CAPITAL COSTS USD:   $14,639,625  

 

TABLE 11. ORDER OF MAGNITUDE OPERATING COST ESTIMATE. 

 

Regrinding of Feed  

 15 kWh/t 15 

 $ 0.1351/kWhr All In  $               0.12  

 Annual Cost  $    1,705,438.00  

   

Agitation and Pumping  

 400 kWh/tS 400 

 0.1351/kWh  $                0.10  

 Annual Cost  $    5,830932.21  

Oxygen    

 160 Kg/T 160 

 O2 $ 150.00/t  $             140.00  

 Annual Cost  $  20,197,632.00  

   

Maintenance  

 5 $/t S  $                5.00  

 Annual Cost  $       539,501.50  

   

Labor   

 8 Operators   

 Annual Cost  $       800,000.00  

   

Supplies    

 $ 1.00 per T Con  $                1.00  

 Annual Cost  $       841,000.00  

   

Sulfuric Acid with Silver Recovery  

 100 Kg/tonne 100 

 $ 132/tonne 400 

 Annual Cost  $  11,108,698.00  
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Nitrogen Species  

 10 Kg/Tonne 10 

 $ 1,050/T  $          1,050.00  

 Annual Cost  $    8,830,500.00  

   

NOX Scrubbing  

 $ 0.50/tonne  $                0.50  

 Annual Cost  $       420,500.00  

   

TOTAL ANNUAL COST USD  $  69,739,713.50  

   

COST PER TONNE USD  $               82.92  

 

IV.     SUMMARY 
NSC pressure leaching of complex sulfide concentrates was carried out. This entailed performance of 

bench scale test work on representative composite samples to ascertain indicative recoveries and identify lead 

deportment in the residue particularly with regards to the formation of plumbojarosite.   A major equipment list 

including materials of construction, equipment size and power requirements was also included. Detailed block 

flow diagrams showing each unit process were provided along with basic testing mass balances. Finally, order of 

magnitude CAPEX and OPEX was ascertained to +/-30%.  In summary, NSC pressure leaching was effective in 

leaching silver, zinc, copper, nickel and cobalt well over 90 % to solution from the complex sulfide concentrates. 

This was confirmed in optimized testing of another complex concentrate previously received. The NSC treated 

concentrate composite residue sample was produced as lead oxide and lead sulfide in the DOE testing. In the 

subsequent locked cycle NSC work, this was optimized to produce only the desired lead sulphide leached 

residue. 
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