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----------------------------------------------------------ABSTRACT------------------------------------------------ 

This paper presents nonlinear dynamic analysis of elastic robot arms using assumed mode method. 

Elastic manipulators exhibit many advantages over rigid ones and their dynamic analysis has attracted a great 

deal of interests recently. In the presented work, the assumed mode method is employed and the dynamic 

equations of flexible manipulators are derived. The total dynamic motion of the system is modeled as a rigid 

motion and a flexible displacement. Then the link flexibility represented by a truncated finite model series, in 

terms of spatial mode eigen functions and time-varying mode amplitudes. Hence the eigen function are relevant 

to boundary conditions of the system, some different boundary conditions are presented. Then, the total 

displacement of the elastic arm in reference coordinate system is developed and the Lagrange principle is 

employed to derive the nonlinear dynamic motion of the elastic robot arm. Finally, the nonlinear dynamic 

equations of a single-link flexible manipulator are presented using the Assumed mode method. 
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I. INTRODUCTION 

Robotic arms are widely used to implement in various activities. As the rigid manipulators are designed 

and build in a manner to maximize stiffness of the robot in an attempt to avoid unwanted vibration of the end-

effector, but the high stiffness is achieved by using heavy material and a bulky design, which results in 

inefficient power consumption. In despite, the elastic robot arms exhibit many advantages over their rigid ones 

such as their less weights, more maneuverability, smaller actuators, and for the sake of these advantages, 

flexible manipulators have been developed in variant scientific fields [1-6]. In fact, dynamic analysis of elastic 

manipulators is a complex task that plays a crucial role in the design and application of robots in task space. 

This complexity arises from very lengthy, fluctuating and highly nonlinear and coupled set of dynamic 

equations due to the flexible nature of robot links. Therefore, a great deal of interests has been received for 

dynamic modeling of the flexible robots, recently. Martins et al. [7, 8] studied the dynamic modeling of single-

link flexible manipulators. Rakhsha and Goldenberg [9] employed an analytical approach to model the dynamic 

of an elastic robot based on Newton-Euler formulation. Singh [10] used an extended Hamilton’s principle to 

derive the equation of motion of the flexible manipulator. Megahed et al. [11] developed a variation of lumped 

model to simulate motion of planar flexible link robot. In their procedure, a consistent mass matrix is used in 

order to provide better approximation than traditional approaches. Meghdari and Fahimi [12] presented an 

analytical method to decouple the dynamic equation of motion of flexible robots.     

In this paper, the nonlinear dynamic analysis of elastic robot arms is presented using assumed mode 

method. The dynamic motion of the system is modeled as a rigid motion and a flexible displacement. Then the 

link flexibility represented by a truncated finite model series, in terms of spatial mode eigen functions and time-

varying mode amplitudes. Hence the eigen function are relevant to boundary conditions of the system, some 

different boundary conditions are presented. Then, the total displacement of the elastic arm in reference 

coordinate system is developed and the Lagrange principle is employed to derive the nonlinear dynamic motion 

of the elastic robot arm. Finally, the nonlinear dynamic equations of the system are presented. 

 

II. DYNAMIC MODEL OF ELASTIC ROBOTIC ARMS 
In this section, the nonlinear dynamic model of the flexible manipulator is derived via Assumed mode 

method (AMM). Figure 1 shows a schematic of the ith link of an elastic manipulator. 
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Figure 1. The flexible manipulator 

 

To derive the nonlinear dynamic equation of the system, assume the kinetic and the potential energies 

of the system can be written as follows:  
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Where n is the number of links, iT and iU  are the kinetic and the potential energies of the ith link of the elastic 

robot, and q


 and q


 are the generalized coordinates and velocities of flexible system, respectively.  

By implementation of Lagrange principle, the Lagrangian function is UTL  , and the dynamic equations of 

flexible manipulator can be written as:  
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 Where jQ  represents the torques applied to joints of links. 

As it is shown in Fig. 1, the parameters of the system are indexed as: OXY is referred to the global coordinate 

system, OiXiYi is indicated to local coordinate system attached to ith link of robot, ir


 is the displacement of the 

element in global system, 
ior


is the displacement of the origin of the local coordinate OiXiYi in the global 

system, 
iT0  is the transformation matrix between OXY and OiXiYi coordinate systems, i  indicates the angular 

displacement of joint of ith arm, il  is the length of ith link, im  is the uniform mass per meter of ith arm, iE is 

the elasticity modulus of ith link, and iI is referred to  the moment inertia of ith link.  

According to Eqs. 1-2, for dynamic modeling of elastic links robot, it is sufficient to derive the kinetic and 

potential energy of ith link of the system. 

By assuming ir


as a displacement vector of a given point of link i in the reference coordinate system, the kinetic 

energy of the link is stated as Eq. 3:  
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Moreover, the total displacement vector ir


 is a combination of a rigid displacement of the link, and a 

flexible deformation related to elastic deflection of the arm in local coordinate system OiXiYi attached to ith arm. 

So the displacement of the link is expressed as following:  
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Where iv is the lateral deflection of ith link in the local coordinate system referred to flexibility of the 

link, and is presented as a summation of finite model eigen functions multiplied to time-dependent amplitudes:  
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where )t,x(v ii is the bending deflection of the ith link at a spatial point xi, ni is the number of modes used to 

describe the deflection of link I, )x( iij  is the jth assumed mode shape eigen function of the link, and )t(eij  is 

the jth time-varying displacement of the spatial point.  

In the next step, for determining of potential energy Ui of ith link, the total potential energy is assumed as a 

summation of Ui,g due to gravity and Ui,e due to elasticity of the arm:  
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The potential energy due to gravity is expressed as:  
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And assuming the Euler- Bernoulli model of the flexible link, the potential energy related to elasticity is given 

as:  
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Also, it is must be mentioned that the generalized coordinate vector regarding to the ith link of the robot is given 

as  Tinii i
e...eq 1


, and proper determining of the generalized coordinates must be performed.  

 

III. MODAL SHAPE EIGEN FUNCTIONS 
In the AMM there are numerous ways to choose the boundary conditions. The present study addresses 

four well-known conditions. Ideally, the optimum set of assumed modes is that closest to natural modes of the 

system. Hence, there is no stipulation as to which set of assumed modes should be used. Natural modes depend 

on several factors such as size of hub inertia and size of payload mass. Choosing appropriate conditions is very 

important and it may cause better consequences in the results [13]. Hence, the ultimate choice requires an 

assessment based on the actual robot structure and for example, anticipated range of payloads together with its 

natural modes [14]. Therefore, four normal modes for some familiar mode conditions are described as follows. 

 

3.1. Pinned-pinned boundary condition 
As the pinned-pinned boundary condition is presumed, the mode shapes are presented as: 
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Where Aij and Bij are determined by the following equation:  
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3.2. Clamped-free boundary condition 
As the clamped-free boundary condition is presumed, the mode shapes are presented as: 
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3.3. Clamped-clamped boundary condition 
As the clamped-clamped boundary condition is presumed, the mode shapes are presented as: 
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3.4. Clamped-pinned boundary condition 
As the clamped-pinned boundary condition is presumed, the mode shapes are presented as: 
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Where Aij and Bij are determined by the following equation:  
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IV. DYNAMIC MODEL OF A SINGLE-LINK FLEXIBLE ROBOT 
In this section, the nonlinear dynamic modeling of a single-link flexible robotic arm is done. If the 

boundary condition of the system is presumed as clamped-free condition. Furthermore, only the first modal 

shape function of the system is considered in modeling of the system. Thus, the lateral deflection of the single 

link in the local coordinate system attached to the first link is presented as: 
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Where 1l is the length of the arm, 1x  can change between 110 lx  , and 111 lB is equals to 1.87. 

Then, the transformation matrix 
1
0T  is defined as:  
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And regarding to Eq. 4, the displacement vector of the robot in the reference coordinate system can be written 

as:  
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The velocity vector of the system is given by: 
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Thus, the kinetic energy of the flexible robotic arm is stated as:  

  1

0

2
1

2
1

1

2

1
dxYXT

l

    (21) 

 Moreover, the potential energy of the system regarding to the gravity is:  
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And the potential energy of the flexible manipulator due to flexible effects can be written as:  
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Finally, the generalized coordinate vector is defined as  Teq 111


, and the nonlinear dynamic equations of 

the system can be derived regarding to Eq.1 and Eq. 2. 

 

V. CONCLUSION 
In this paper, the nonlinear dynamic analysis of the elastic robot arms have been studied using assumed 

mode method. The total dynamic displacement of the system has been modeled as a rigid motion and a flexible 

displacement. Then the link flexibility has been formulates as a summation of spatial modal eigen functions 

multiplied to time-varying mode amplitudes. Hence the eigen function are relevant to boundary conditions of 

the system, some different boundary conditions have been considered, and their corresponding eigen functions 

have been presented. Then, the total displacement of the elastic arm in reference coordinate system has been 

obtained and the Lagrange principle has been used to derive the nonlinear dynamic motion of the elastic robot 

arm. Finally, the assumed mode method has been employed to derive the dynamic equations of a single-link 

manipulator. 
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