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--------------------------------------------------------ABSTRACT--------------------------------------------------
In this paper, the method of Total least squares is presented for the set of statistical data points which are under 

interval uncertainty and, Hansen-Bliek-Rohn method, was applied to solve the resulting interval linear system 

with guaranteed inclusion bounds as demonstrated by numerical example. It is suggested that Hansen-Bliek-

Rohn method always provide results which takes into account all round off errors which are as good as worst 

case error bounds with less computational efforts where theoretical floating point result fails. 
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I. INTRODUCTION 
The paper presents interval methods on Least squares equation for interval data type problems. When experimental 

problems are expressed in terms of uncertainties, the need to provide bounds for the solution set can be achieved through the 
use of interval arithmetic. Practically, it is that in a situation where safety is of paramount importance, interval arithmetic is 
able to provide the worst case guarantee [1] where traditional floating point method fails.   However interval arithmetic can 
be weak due to dependency problem which can be traced to a result of locality reasoning inheritable from arc consistency [2] 
and [3]. Interestingly this has been overcome in recent time [1]. 

Applications of Total least squares to problems can be found in signal processing, automatic control, system 
theory, various engineering practices, statistics, physics, economics, biology and medicine and a host of others. 

Statistical approach has long been in use for describing how observed set of data points 
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of sample size n of a population fits the data but when the data points are expressed in the 

form of uncertainty any computation using traditional approach will undermine the quality of results. Thus interval 

arithmetic becomes a useful tool in this case. There exist five parameters 
YTYT

 ,,, and   for describing the 

behaviour of the statistical data. One of such ways [4] begins with elementary statistical analysis for traditional floating point 
approach such that the estimate for   could be defined by the use of product moment  
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Assuming  
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  are approximated by 
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S and denoting the sample estimate   as r  , then the correlation 

coefficient is written in the form:  
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The z value for the normal distribution based on the knowledge of value of  is given in the form 
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and this gives the random variable z to be distributed with mean  
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 We move to discuss the computations of mean and variance for the statistical data when such data are 

subjected to interval uncertainty. As in [5], we describe method for computing mean and variance with interval 

data as follows: 

First, we note that, 
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Unfortunately, the same cannot be said of variance as it is dependent on 
i

T  , its  monotonicity fails in this 

circumstance as a result of dependency problem caused by locality reasoning inheritable from arc consistency . 

Besides, its computational complexity grows exponentially as the size n of data increases. It follows that the true 
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The radius of the variance   was defined as
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 The remaining section in this paper is structured as follows. Section 2 gives the introduction of the problem of 
Least squares as it relates Co-variance matrix and the distribution of variance as a biased estimator. In section 3, the extent to 

which an interval matrix that is not strongly regular can become singular if an attempt is made to extend the radius of an 
interval matrix by a certain factor based on the idea given in [7] was the main point of focus. Section 4 gives the numerical 
method we used to solve the resulting interval linear system obtained from the total least squares when the variable in the 
equation were subjected to uncertainty either due to contamination of the measuring instruments used in the model or some 
noise coming from the inexact observation of the model. We used the Hansen-Bliek-Rohn method which can be found in 
[8,9 and 10] to solve the Linear interval system of equations. Section 5 gives numerical example of the presented methods. 
Section 6 gives conclusion of the paper based on our findings. 

 

II. GENERAL LINEAR CASE 
Consider the general linear model  
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Where 
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T  is the j-th observation on the j-th independent variable and the first variable 
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takes  value 1. The residual is given by 
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The normal equation is obtained in a general way by minimizing the sum of least squares error: 
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Where T is nm   matrix, Y is an 1m  vector,   is 1n  vector. 

In matrix form, we have a representation 
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The condition number for the rectangular matrix T with full column rank is discussed in terms of 2-norm and is 

in the sense of [11], given by 
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III. COMPONENT WISE DISTANCE AS A CONDITION NUMBER TO THE WEIGHT 
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Given knowledge of ),( EA  as being defined as a number ),( EA   for which the matrix  

].,.[ EAEA    is singular, and setting
11

).(


 EA we define any matrix as 

)(,].,.[
///

  whereEAEA  is strongly regular. In  [12] it was  proved that the ratio 

11
).(

),(


EA

EA




 is the distance between strong regularity and regularity of the matrix A.  Thus,  Bauer-Skeel 

condition number written as  EAEACond
BS

.),(
1

   for some norm . relates component wise – 

distance as a condition number to the weight matrix E. A bound where such a matrix A could become singular 

occurs, assuming 
 

 EA

EA

,(

.

1

1






, when: 

        
 

 
 EA

nEA

EA .

1
.).223(,(

.

1

11 






.   (3.1) 

It follows that equation 3.1 states that, there exists a bound   nnn .223)(    for which an interval matrix that is 
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Assuming equation 2.4 is in normal form which can be written in the linear interval 

system  bAbA  bA ,: , it is assumed that bA  YTandTT
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Several characterizations of solution sets to (3.2) exist, for example, [13], gave three types of such solution sets to include 
among others as follows:  
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The terms  ,  appearing above are all quantifiers. 

 

IV. THE INCLUSION METHODS FOR EQUATION 2.4 
The inclusion method under consideration for the solution of equation 2.4 will be the adoption of Hansen-Bliek-

Rohn [10] and, where united solution set is used in our consideration. 
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In equation 4.1, 
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Using right hand side of equation 4.2 we have  
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V. IMPLEMENTATION AND EXPERIMENTATION 
Problem 1. 

 Consider the given problem taking from [15] of regressing y on t  

''cosln''
210

T
eTTY   .  The equation is 






m

j

j

T

jj
YeTT

j

1

2

210210
))()(cos)(ln(),,(    (5.1) 

 

The data points are 
T Y 

0.24 

0.65 

0.95 

1.24 

1.73 

2.01 

2.23 

2.52 

2.77 

2.99 

 

0.23 

-0.26 

-1.10 

-0.45 

0.27 

0.10 

-0.29 

0.24 

0.56 

1.00 

 

Take data noise to be %1  for each data set ),(
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Result obtained using Hansen-Bliek- Rohn’s method (3.1) for 
T
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investigation were subjected to some noise of %1  was found to be  
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Let us note that the solution set given by using Hansen-Bliek-Rohn’s method 3.1 is closed in the sense of Oettli-Prager 

theorem [13].It should also be noted that the mapping bAAAbA
T /1
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Least squares sense. 
By taking the value of t to be in the interval of [3.0, 3.5] we have the following result in midpoint-radius interval, the value 
for equation 4.2 in midpoint-radius interval was computed to be  

''444770179.0,508421816.1]['' TY .  

In the same reasoning, the value of ),,(
210

 =   -1.693769447 for the midpoint interval 

 [3.0, 3.5] was computed. 

 

VI. CONCLUSION 
The paper considered Total Least squares method for statistical data set which is under interval uncertainty. 

Hansen-Bliek-Rohn’s method was applied on the Least squares method which provides tight inclusion bounds for the Least 
squares problem with less computational efforts.  It was demonstrated in our example that computed result using Hansen-
Bliek-Rohn method showed a close relationship with guaranteed worst case error bound  which takes into account all round 
off errors as compared with theoretical floating point result.  We also examined regularity condition of resulting interval 
matrix coming from system of equation 2.4  taking into consideration distance between strong regularity and regularity of 

the interval matrix A in a sense analogous to [7]  where Bauer-Skeel condition number played a very crucial role which 
relates component wise –distance as a condition number to the weight matrix E.  
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