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-------------------------------------------------------Abstract-------------------------------------------------------------------- 

This paper will focus on theoretical analysis of Gamma Factor in (1+1) external trapping potentials which are 

usually used in experimental that lead to produced Bose-Einstein condensation BEC in ultra cold gases. Two 

mixed types of trapping potentials are used in this analysis. The first one is a harmonic oscillator potential 

(HOP) assume to be applied normal to the propagation axis, and the second is  a double well potential DWP 

assume to be applied Parallel to the propagation axis .  The cases of slowly and rapidly varying in gamma factor 

for HOP are considered. Although these analyses give us the overall view of the region of confinement that the 

external t rapping potentials have employed but also shows that the gamma factor in the mathematical formula of  

HOP play a major part in term of values and shape of the trapping external potential of confinement region .  
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1. Introduction 
The recognition of Bose-Einstein condensates (BECs) in dilute quantum gases has strained a great deal 

of attention to the dynamics of nonlinear excitations in matter waves, such as dark [1] and bright solitons [2], 

vortices [3, 4], supervortices [5], etc.  For the detail discussions see also [6-7].   In these verificat ions, theoretical 

exploration of characteristic of trapped potential needs a mathematical model describing those potentials which 

are used experimentally to produce BEC at very low temperatures.   Many different shape of Bose -Einstein 

condensation has been achieved by using different type of trapping potential.  External parabolic potential in 

(highly anisotropic) of the axial symmetry has been used to develop BEC see for example [8-13].  In some 

literatures, many authors investigated the effect of gravitation [14] by adding the gravitational potential as an 

external interaction.  In this paper, we analyze the effect of gamma (y)-factor on (1+1) dimensional harmonic 

oscillator potential which propagates along y-axis plus double well t rapping potential along the x-axis 

 

2. Theory  

The time dependent many-body Hamiltonian describing N interacting bosons confined by an external 

potential is given in second quantization by 
 

       (1) 

 

Where:  Vext(r,t) is the external trapping potential and Vint(r’-r) is the two-body inter-atomic interacting potential. 

 is the field operator;  is the single particle wave function;  is the 

annihilation/creation operators: 
 

 

 
 

And the ground state wave function will be .  In a Bose Einstein condensation macroscopic 

occupation of the ground state will be approximate to:  

 Thus  , the Approximation of the field operator at very low temperature will take 

the form:  and  represent small perturbation [1].  In general 

 With represent the classical field. And .   
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At zero temperature, all anomalous terms and the non-condensate part can be neglected. This is equivalent to 

replacing  
 

the quantum electrodynamics field   in (1) by the classical electromagnetism field .  It  gives rise to 

a nonlinear Schrodinger equation, the well-known Gross-Pitaevskii equation (GPE), 
 

    (2) 

 

for the Bose-Einstein condensed system where is analogous to E and B of the Maxwell theory. So the 

condensate wave function represents the classical limit of the de Broglie waves, where the corpuscular aspect of 

matter does not matter.  The external trapping potential  is taken to be time-independent. The GPE 

“which is a self-consistent mean field nonlinear Schrodinger equation (NLSE)” describes BECs in traps that are 

non-uniform, was first developed independently by Gross [15] and Pitaevskii [16] in 1961 to describe the vortex 

structure in superfluid. The macroscopic wave function/order parameter is normalized to the total number of 

particles in the system, which is conserved over time, i.e.  
 

        (3) 
 

For ideal (non-interacting) gas, all part icles occupy the ground state at T = 0 K
0
 and .   in the GPE 

describes the properties of all N particles in the system. For interacting gas, owing to the inter-particle 

interaction, not all particles condense into the lowest energy state even at zero temperature. This phenomenon is 

called the quantum depletion. In a weakly interacting dilute atomic vapor, which is the main concern in this 

paper, the non-condensate fraction is very small. The mean field theory can be succes sfully applied and the 

quantum depletion can be neglected at zero temperature, assuming a pure BEC in the system.  The External 

Potential in equation (2) assist an important part to bring the condensation to a reality.  In early BEC 

experiments, quadratic harmonic oscillator well was used to trap the atoms. Recently more advanced and 

complicated traps have been applied for studying BECs in laboratories [17, 18, 19, 20]. In this section, we will 

discuss the one dimensional harmonic oscillator potential which is widely used in current experiments.  Assume 

the harmonic oscillator potential is applied along the y-axis, in this case the mathemat ical formula will be read 

as:            , where, ωy, is the trapping frequencies in y-d irection. The other 

trapping used in this analysis is the double well potential dwp [19] (Type I) along the x-axis which is read as:   

, this formula of dwp will rep lace by the formula which seem to be clo ser to the 

experimental arrangement of the BEC, this will called it (Type II) of dwp and read as:  

where,  are the double well centers along the x-axis, νx is a given constant with physical dimension 1/[m s]
1/2

.  

The choices for the scaling parameters t0 and x0, the dimensionless potential V (r) with γy = t0ωy, the energy unit 

 , and the interaction parameter  for harmonic oscillator potential along y-axis is:  

, and for double well potential along the x-axis will be: 

. 

3. Result and Discussion 

 Since we concerned in harmonic oscillator potential in term of value and the shape and in more 

precisely, the effect of  on this potential, we will fixed first the shape and the distribution of double well 

Potential along the x-axis and study the distribution of HOP along y-axis.  This potential presented in figure (1a).  

One can conclude from this figure that  has no effect as long as the shape of the potential concern where its 

preserve the parabola open right like function, however the values of the potential change with .  Another 

remarkable point in this figure that is the distribution is symmetric just about the centre of propagation and the 

point of intersection of these figures is y = 0.   The Double well Trapping Potential presented in figure (1b).  The 

distribution of this potential along X-axis is shown in this figure for different value of centre of trap (1., 2., 3., 4., 

5.). The shape of this distribution is Parabola open up like function and is symmetrical around the centre of 

propagation. One can observe that there is no specific point of intersection when the centre of trapping potential 

is change.  To make a comprehensives view of the interaction of two potentials in XY plane a counters level are 

presented in figure (2) fo r difference values of  (0.5,1.0,1.4,2.0, 3.0,4.0,5.0,7.0) as long as the harmonic 

oscillator potentials, and for fixed value of the centre of p ropagation of double well potential (a = 5.).  A quick  
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view of these figures, one can conclude that for  ,  their exist a complete mirage and symmetry between 

the HOP and DWP which is analogous with the experimental result for this type of potential.   Addit ionally a 

concentrated circle around the centre of propagation shown in figure (2b), this means that the condensation can 

be confine around the centre under an equal forces exert on this condensation from all direct ion by an applied 

external potential.   If the experimental set up in such a way that the condensation need to be propagate along the  

y-axis, in this case we should use   in the theory figure (2a), and the value of   can be scan to fit the 

experimental result.  Likewise for  the condensation preserve its symmetry and confinement around the 

centre of propagation, but in this case tend to parallel to the x-axis as shown in figures (2c-2h).  This means that 

the HOP will control the shape and values of the condensation and the DWP begin gradually loss his 

effectiveness on the region of confinement of BEC.  

4. Conclusion 

Although the theories which describe the harmonic oscillator and double well potential are working very 

well to some extent, but this result shows that care must be taken in to account in order to explain the 

experimental results more accurately.  The limitat ion of different factor in theory need more study in parallel with 

the available of experimental data. It is necessary to balance between the HOP and DWP to confine the 

condensate matter in to the centre of propagation 
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Figure (2a) 1D Harmonic Oscillator Potential +1D 

Double well Potential when γy= 0.5. 

 

 

-10 -8 -6 -4 -2 0 2 4 6 8 10

X-Axis

-8

-6

-4

-2

0

2

4

6

8

10

Y-
A

xi
s

-14

-10

-6

-2

2

6

10

14

18

22

26

30

34

38

42

Figure (2b) γy= 1. 
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Figure (2c) γy= 1.4 
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Figure (2d) γy= 2.0 
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Figure (1b) the distribution of DWP along the 

X-axis 
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Figure (1a) the distribution of HOP along the 

Y-axis 



Analysis Of Gamma Factor In (1+1)-Dimensional External Trapping Potential Applied For BEC 

www.theijes.com                                                       The IJES Page 154 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFRENCES  
[1]  S. Burger et al., Phys. Rev. Lett. 83, 5198 (1999); J.  Denschlag et al., Science 287, 97 (2000); B. P. Anderson et al.,  

Phys. Rev. Lett. 86, 2926 (2001). 

[2] K. E. Strecker et al., Nature 417, 150 (2002); L. Khaykovich et al., Science 296, 1290 (2002).  

[3]  M. R. Matthews et al., Phys. Rev. Lett. 83, 2498 (1999); K. W. Madison et al., ibid. 84, 806 (2000); S. Inouye et al.,  

ibid. 87, 080402 (2001); J. R. Abo-Shaeer, et al. Science 292, 476 (2001); A. L. Fetter, Rev. Mod. Phys. 81, 647 

(2009). 
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Figure (2e) γy= 3.0  
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Figure (2f) γy= 4.0 
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Figure (2g) γy= 5.0 
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Figure (2h) γy= 7.0  

 


