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--------------------------------------------------------Abstract----------------------------------------------------------------- 

We analyze the effect of depth and location of minima of a double-well potential on vibrational resonance in a 

linearly damped quintic oscillator driven by both low-frequency force  tf sin  and high-frequency force 

sin tf with  . The response consists of a slow motion with frequency ω and a fast motion with 

frequency  . We obtain an analytical expression for the response amplitude Q  at the low-frequency ω. From 

the analytical expression Q , we determine the values of ω and g  (denoted as VR and VRg ) at which  

vibrational resonance occurs. The depth and the location of the min ima of the potential well have distinct effect 

on vibrational resonance. We show that the number of resonances can be altered by varying the depth and the 

location of the minima of the potential wells.  A lso we show that the dependence of VR and VRg  by varying 

the above two quantities. The theoretical predictions are found to be in good agreement with the numerical 

result. 
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1. Introduction 
In the last three decades the influence of noise on the dynamics  of nonlinear and the chaotic systems 

was extensively investigated. A particular interesting example of the effects of the noise within the frame work 

of signal processing by nonlinear systems is   stochastic resonance (SR) ie., the amplification of a weak input 

signal by the concerted actions of noise and the nonlinearity of the system. Recently, a great deal of interest has 

been shown in research on nonlinear systems that are subjected to both low- and h igh-frequency periodic signals 

and the associated  resonance is  termed as vibrational resonance (VR) [1, 2]. It is important to mention that two-

frequency signals are widely applied in many fields such as brain dynamics [3, 4], laser physics [5], acoustics 

[6],  telecomm-unications [7], physics of the ionosphere [8] etc. The study of occurrence of VR due to a 

biharmonical  external force with two different frequencies   and   with   has received much interest. 

For example, Landa and McClintock [1] have shown the occurrence of resonant behavior with respect to a low-

frequency force caused by the high-frequency force in a  bistable system. Analytical treatment for  this 

resonance phenomenon is proposed by Gitterman [2]. In a double-well Duffing oscillator, Blekhman and Landa 

[9] found single and double resonances when the amplitude or frequency of the high-frequency modulation is 

varied. So far this phenomenon has been studied in a monostable system [10], a multistable system [11], 

coupled oscillators [12, 13], spatially periodic potential system [14, 15], t ime-delayed systems [16, 17], noise 

induced structure [18], the FitzHugh-Nagumo equation [19], asymmetric Duffing oscillator [20], bio logical 

nonlinear maps [21] and so on. 

 

In this paper we investigate the effect of depth of the potential wells and the distance between the 

location of a min imum and a local maximum of the symmetric double-well potential in a linearly damped 

quintic oscillator on vib rational resonance. 
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The equation of motion of the linearly  damped quintic oscillator driven by two periodic forces is  
2 3 5
0 cos cos , (1)A B Cd t g t            fx x x x x  

 
where   and the potential of the system in the absence of damping and external force is  
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0 1, , , , , 0A B C      the potential )(xV is of a symmetric double-well form. When 
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, i935.0 , so these points are centres. Recently, 

Jeyakumari et al [10, 11] analysed the occurrence of VR in the quintic oscillator with sing le-well, double-well 

and triple well forms of potential. When 1A=B=C  
 
potential has a local maximum at 0*

0 x  and two 

minima at 
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x . The depths of the left-and right-wells denoted by DL  
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respectively are same and equal to 12/]236[ 322
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. By varying the 

parameter 1 the depths of the two wells  can be varied keeping the values of 
*
x

 
unaltered. We call the damped 

system with 1A=B=C    as DS1.  We call the damped system with 
2 4 6
2 2 2

1 1 1
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as DS2 in which  

case 0*
0 x  where as 
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x and D DL R  12/]236[ 322

0 ppp 
 
is independent of 

2 . Thus, by varying 2   the depth of the wells of )(xV can be kept constant while the distance between the 

local maximum and the minima can be changed. Figures (1a) and (1b) illustrate the effect of 1 and 2 . 

 

 

Fig.1: Shape of the double-well potential ( )V x for 
2

0
1, 1     and 1   (a)

1
A B C     

and (b) 
1 1 1

, ,
2 4 6
2 2 2

A B C  
  

. In the sub plots, the values of 
1

 (a) and 
2

 (b) for 

continuous line, dashed line and painted circles are 0.5, 1 and 1.5 respectively. 
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In a very recent work,  Rajasekar et al [22] analysed the role of depth of the wells and the distance of a 

minimum and local maximum of the symmetric double-well potential in both underdamped and overdamped  

Duffing oscillators on vibrational resonance. They obtained the theoretical  expression  for the response 

amplitude and the occurrence of resonances is shown by varying the control parameters , ,g   and  . In the 

present work, we consider the system (1) with 1 and 2  arbitrary, obtain an analytical expression for the 

values of g  at which resonance occurs and analyze the effect of depth of the wells and the distance between the 

location of a minimum and local maximum of the potential )(xV  on resonance. 

 

The outline of the paper is as follows, for   the solution of the system (1) consists of a slow 

motion )(tX  and a fast motion ),( tt   with frequencies   and   respectively. We obtain the equation of 

motion for the slow mot ion and an approximate  analytical  expression  for   theresponse amplitude Q  of the 

low-frequency )(  output oscillation in section II. From the theoretical expression of Q  we obtain the 

theoretical expressions for the values of g  and   at which resonance occurs and analyse the effect of depth  of 

the potential wells in section III and the distance between the location of a minimum and a local maximum of 

the symmetric double-well potential in section IV. We show that the number of resonances can be changed by 

varying the above two quantities such  as 1 and 2 . Finally section V contains  conclusion. 

 

2. Theoretical Description Of Vibrational Resonance 
An approximate solution of Eq. (1) for   can be obtained by the method of separation  where 

solution is written as a sum of slow motion )(tX  and fast motion ( , )t t  : 

 

   

 

We assume  that   is a periodic function with period 2   or 2 -period ic function of fast time 

t  and its mean value with respect to the time τ is given by 

 

 

 

 

 

 

Substituting the solution Eq.  (3) in Eq. (1) and using Eq. (4), we obtain the following  equations of motion for 

X and  : 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Because   is a fast motion we assume that
2 3 4 5, , , , ,         and neglect all the terms in the 

left-hand-side of Eq. (6) except the term  .  This approximation called inertial approximation leads to the 

equation cosg t    the solution of which is given by 
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For the   given by Eq. (7) we find 

 

 

 

 

 

Then Eq. (5) for the slow mot ion becomes 

 

 

 

where 

 

 

 
 

The effective potential corresponding to the slow motion of the system described by the Eq. (9) is 

 

 

 

 

The equilibrium points about which slow oscillat ions take place can be calculated from Eq. (9). The equilibrium 

points of Eq. (9) are g iven by 

 

 

 

 

 

 

 

 

 

 

 

The shape, the number of local maxima and minima and their location of the potential )(xV  (Eq. (2)) depend on 

the parameters  
2
0 , 

 
and  . For the effective potential )( effV these depend also on the parameters g  and  .  

Consequently, by varying g  or   new equilibrium states can be created or the number of equilibrium states 

can be reduced.  

 

We obtain the equation for the deviation of the slow motion X  from an equilibrium point *X .  Introducing the 

change of variable *XXY   in Eq. (9a) we get 
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For 1f  and in the limit t  we assume that 1Y  and neglect the nonlinear terms  in Eq. (12).  Then, 

the solution of linear version of Eq. (12a) in the limit t  is cos( )LA t  where 
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and the resonant frequency is 1r .  When the slow motion takes  place around the equilib rium point 

0* X , then .1Cr   

 

The response amplitude Q  is  

 

 

 

 

 

3. Effect Of Depth Of The  Potential  Wells  On  Vibrational Resonance 

In this section we analyze the effect of depth of the potential wells on vibrational resonance in the 

system DS1. From the theoretical expression of Q  we can determine the values of a control parameter at which 

the vibrational resonance occurs. We can rewrite Eq. (14) as 1Q S where  

 

 

and  r is the natural frequency of the linear  version of equation of slow motion (Eq. (9)) in the absence of the 

external fo rce cosf t . It is called resonant frequency (of the low-frequency oscillat ion). Moreover, r  is 

independent of ,f   and d  and depends on the parameters 
2
0 , , , ,g   

 
and 1 . When the control 

parameter g  or   or 1  is varied, the occurrence of vibrational resonance is  determined by the value of r . 

Specifically, as the control parameter g or   or   or 1  varies, the value of r  also varies and a resonance 

occurs if the  value of r  is such that the function S  is a min imum. Thus a local minimum of S  represents a 

resonance. By finding the minima of S , the value of VRg or VR or VR  at which resonance occurs can be 

determined. For example  

 

 

 

 

For fixed values of the parameters, as   varies from zero, the response amplitude Q  becomes  maximum  at   

VR  given  by  Eq. (16). Resonance does not occur for the parametric choices for which 
2 2 2r d  . 

When   is varied from zero, r  remains constant because it is independent of  .  In figure (2), VR versus 

g  is plotted for three values of  d  with 
1 0.75   and 2.0. The values of the other parameters are 

2
0 1, 1      and 10 . VR

 
is single valued. Above a certain critical value of d  and for certain 

range of fixed values of g  resonance cannot occur when    is varied. For example, for 0.5, 1.0, 1.5d   and 

75.01 
 
the resonance will not occur if [64.03, 70.49],[56.87, 79.81]g   and [42.54, 91.28]  respectively.  

For 0.21   and 0.5,1.0,1.5d  the resonance will not occur if [65.11,67.26], [62.96,72.28]g 
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[57.95, 78.02]  respectively. Analytical expression for the width of  such nonresonance regime is difficult to 

obtain because 1
2 r  is a complicated function of g . In fig. (2), we notice that the nonresonance interval of 

g  increases with increase of d  but it decreases with increase of 1 . We fix the parameters as  

2
0 1, 1, 0.05, 55f g        

 
and .10    Figures (3a) and (3b) show Q  versus   for 0.5, 1.0,1.5d   

with 75.01   and 0.2 . Continuous curves represent theoretical result obtained from Eq . (14). Painted circles 

represent numerically calculated Q . We have calculated numerically the sine and cosine components SQ  and 

CQ  respectively, from the equations 

 

 

 

 

 

 

 

 

where 2T    and  n  is taken as 500.  

     

Then  

 

 

 

numerically computed Q  is in good agreement with the theoretical approximat ion. In fig. (3a), for 1 0.75 
 

and 55g  resonsnce occurs for 0.5d  and 1  while for 1.5d   the value of Q  decreases continuously 

when   is varied. For 75.01  and 55g   resonance occurs for 0.5d  and the  response amplitude Q  is 

found  to be maximum at 1.02  and 0.75 . For 1 2.0   and 55g 
 
resonance occurs  for  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2: Plot of VR
 
versus g

 
for three different values of d with (a) 1 0.75  and 

(b) 2 2.0  .The value of the other parameters are 1,12
0   and 10 . 
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0.5,1.0,1.5d  .The response   amplitude Q  is maximum at 1.62, 1.5  and 1.35. Both VR  and  Q  at 

the resonance decreases with increase in d . The above resonance phenomenon is termed as Vibrational 

Resonance as it is due to the presence of the high-frequency external periodic force.  

 

  Now we compare the change in the slow motion )(tX  described by the Eq. (9) and the actual motion )(tx  of 

the system (1). The effect ive potential can change into other forms  by varying either g  or   . Figure 4  depicts 

effV  for three values of g  with  1 0.75  (fig.4a) and 2.0 (fig.4b). The other parameters are  

2
0 1, 1      and 10 . effV is a double-well potential for 55g   while it becomes a single-wel l 

potential fo r 70g   and 90g  . For 1 0.75, 0.5d   and 55g 
 
the value of  0.765VR  and for 

1 2.0, 0.5d    and 55g  , VR is 1.25 . The system (1) has two co-existing orbits and the associated 
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slow motion takes place around the two equilibrium points 
*
2,3X . This is shown in fig. (5a) for 0.5,1.0  and 

25.1 . The corresponding actual motions of the system (Eq.(1)) are shown in figs. (5(b)-5(d)).   For a wide range  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3: Response amplitude Q versus  for three values of d with (a) 1 0.75  and 

(b) 2 2.0  .Continuous curves represent the theoretically calculated Q from Eq. (14) 

with 1Cr  , while painted circles represent numerically computed Q from Eq. 

(17). The values of the other parameters are 05.0,1,12
0  f

 
,  g = 55 and  

.10       

effV for
 

2
0 1, 1        

and 10 with (a) 1 0.75  and (b) 1 2  for three values 

of g . 

 

Fig.6: Phase portraits of (a) slow motion  

and (b-d) actual motion of the system (1) 

for few values of   with 90g  and 

0.5.d   

Fig.4: Shape of effective potential effV for
 

2
0 1, 1        and 10 with (a) 

1 0.75  and (b) 1 2  for three values of g . 
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                        Fig.5: Phase portraits of (a) slow mot ion and (b-d) actual mot ion of the system (1) for few values   

                         of with 55g  and d = 0.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            Fig.6: Phase portraits of (a) slow motion and (b-d) actual motion of the system (1) fo r few  

                            values of with g = 90 and d = 0.5. 

 

 

of values of   including the values of , ( )VR t x  is not a cross-well motion, that is not crossing both the 

equilibria ).0,7521.0))((,( ***  xyx   When 90g  , effV is a single-well potential and 9925.0VR  for 

1 0.75      and for 1 2.0  , VR is 1.72 . The slow oscillation takes place around 0*

1 X  [fig.(6a)] and 

)(tx  encloses with the minimum 
*( 0.7521) x  and the local maxima )0( x  of the potential for all  valuesof 

 [figs. (6b)-6(d)].    Next , we determine VRg  which are the roots of 2 24( ) 0g r r rg
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   . The variation in r  with g  for  four values of 1  

is  shown in fig.(7). For 

each fixed value of 1  as g  increases from zero, the resonant frequency r  decreases upto 65.690g = g  . 

The value of  ( )0g = g  at  which effV   
undergoes bifurcation from a double-well to a single-well is independent 

of 1 . For 0g g , effV becomes a single-well potential and r .
increases with increase in g . Resonance will  

take place whenever r .
  Further,  for 0g > g , effV  is a single-well potential and 

2
1Cr   . In this case an  

analytical expression for VRg  can be easily obtained from  1Cr  and is given by 
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For < 0g g  the resonance frequency  is 1 . The value of = 0g g  at which effV  undergoes bifurcation fro m 

a double-well to a single-well is independent of 1 . The analytical determination of the roots of 0Sg   and 

VRg  is difficult because 1C  and 2C and 
*

3,2X  are function of g  and 1
2 r  is a complicated function of g . 

 
 

 

 
 

 

 

 

 

 

 
 

 

 

 

 
 

Therefore we determine the roots of 0Sg   and VRg  numerically. We analyze the cases 0)( 22 r  and 

0rg . In fig. 8(a), VRg  computed numerically for a range of   1   is plotted. For c11   there are two 

resonances - one at value of ( 65.69)< 0g g    and another at a value of 0g > g . In fig. (7) for 

4059.025.0 11  c  the r  curve intersects the 1  dashed lineat only one value of 0>g g  and so we 

get only one resonance for c1 . Figure (8b) shows Q  versus g  for 1 0.25, 0.75 
 
and 2 .Continuous 

curve represents theoretical results obtained from Eq. (18). Painted circles represents numerically calculated Q   

Fig.7: Plot of g versus r  for few values of 1 0.25, 0.75, 2  and 3 . The values of 

the other parameters are 2
0 1, 1, 1, 0.05       f and 10  . 

Fig.8: (a) Plot of theoretical VRg versus 1  for the system (1) and (b) theoretical and numerical 

response amplitude Q  versus 
g

for a few values of 1 0.25, 0.75  and 2 with 0.5d  . 

Continuous curves are theoretical result and painted circles are numerical values of Q . 
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from  Eq. (17). For large values of 1 , the two VRg values are close to 0 65.69g  . As 1  decreases the values 

of VRg  move away from 0g . For 25.01   we notice only one resonance. In the double resonance cases the 

two resonances are almost at equidistance from 0g  and the values of Q   at  these  resonances are the same. 

However, the response curve is not symmetrical about 0g . 

 

4. Effect Of Location Of Minima Of The Potential On Vibrational Resonance 
 For DS2 as 2  increases the location of the two min ima of  )(xV   move away from the orig in in 

opposite direction, ie., the distance between a min imum and local maximum 0*
0 x  of the potential increases 

with increase in 2 . When the slow oscillation occurs about 0* x  then 1
2 r  and analytical determination 

of VRg  is difficult because 
1
  is a complicated function of g . In this case numerically we can determine the 

value of VRg .  Figure (9) shows the plot of VRg versus 2   For c22   there are two resonances while for 

c22   only resonance. The above prediction is confirmed by numerical simulation. Figure (9b) shows the 

variation of r with g  for three values of 2 . The bifurcation point 0g  increases linearly with 2  . That is, at 

2 0.75,1.2   and 6.1 , the values of 0g  are 48.54, 78.66 and 105.44 respectively. Sample response curves for 

three fixed values of 2  are shown in fig. (9c). The difference in the effect of the distance of 
*
x  from orig in 

over the depth of the potential wells can be seen by comparing the figs. (9a) and (8a). In DS1 two resonances 

occur above certain critical depth c1  of the wells. In contrast to this in DS2 two resonances occur only for 

c22  .  In fig. (9a) we infer that as 2  increases from a small value (ie., as 
*
x  moves away from 

origin)
1
VRg increases and reaches a maximum value 96.5  at 15.12  . Then with further increase in 2 , 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

it decreases and 0  as c22  . Similarly 
2
VRg  increases and reach a maximum value 98.5  at 

35.12  .Then with further increase in 2 , it decreases and 0   at 7015.12  . We note that 
1
VRg and 

2
VRg  of DS1 continuously decreases with increase of 1 . But in DS2, 2  

increases from a s mall value, 

1
VRg and 

2
VRg  increase and reaches a maximum value. Then with further increase in 2 , it decreases and 0 .  

 

Fig.9: (a) Plot of theoretical VRg versus 2  for the system (1). (b) Theoretical and numerical 

r versus g  for a few values of 2 0.75,1.2  and 1.6  with  
 

2
0 1, 1, 1, 0.05       f and 

10  . The horizontal dashed line represents 1r  
 
(c) Theoretical and numerical response 

amplitude Q versus g
 
for a few values of 2 0.75,1.2  and 1.6 with 0.5d  . Continuous curves 

are theoretical result and painted circles are numerical values of .Q
  



Effect Of Depth And Location Of Minima Of A Double-Well Potential… 

www.theijes.com                                                       The IJES Page 91 

 

In double resonance case the separation between the two resonances increas es with increase in 2 .  The 

converse effect  is noticed in DS1.   Next  we consider the dependence of VR  on  g . VR  is given by Eq. (16). 

Figure (10) shows plot of VRω  versus g  for three different values  of d  with 75.02  and 2.1 . For 

0.5, 1, 1.5d   and 75.02   the nonresonance  intervals  occur  at [48.98, 51.14], [46.84, 54.72]g g   

and [43.25,59.02]g   and for 2 1.2,   the nonresonance intervals occur at [75.92,84.12],g   

[66.82,95.95]g 
 
and [49.50,111.43]g  . That  is  the  nonresonance intervals of g  increases with increase 

in 1 . But in DS1, nonresonance intervals of g  decreases with increase in 1 . Figures (2) and (10) can be 

compared.  

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 
We have analysed the effect of depth of the wells and the distance of a min imum and the local 

maximum of the symmetric double-well potential in a linearly damped  quintic  oscillator on vibrational 

resonance. The effective potential of the system allowed us to obtain an approximate theoretical expression for 

the response amplitude Q  at the low-frequency   .  From the analytical expression of Q , we determined the 

values of    and g
   

at  which  v ibrational resonance occurs. In the system (1) there is always one resonance at 

a value of g , 0>g g , while another resonance occurs below 0g  for a range of values of  . The two quantities 

1  and 2  have distinct effects. The dependence of VRg  and VR  on these quantities are exp licit ly 

determined. The number of resonance and the value of VRg  and  VR can be controlled by varying the 

parameters 1 and 2 . maxQ   is independent of 1 and 2  in  the system (1).
 VRg  of DS1 is independent of 

1  while in DS2 it depends on 2 .
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