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-------------------------------------------------------Abstract------------------------------------------------------ 
This paper investigation is concerned with the first-order homogeneous chemical reaction and thermal rad iation 

on hydromagnetic free convection heat and mass transfer for a micropolar flu id past a semi-infinite vert ical 

moving porous plate in the presence of thermal diffusion and heat generation. The fluid is considered to be a 

gray, absorbing-emitting but non-scattering medium, and the Rosseland approximation is used to describe the 

radiative heat flux in the energy equation. The plate moves with constant velocity in the direction of fluid flow 

while the free stream velocity is assumed to follow the exponentially increasing small perturbation law. A 

uniform magnetic field acts perpendicular to the porous surface, which absorbs the fluid with a suction velocity 

varying with time. Numerical results of velocity profiles of micropolar fluids are compared with the 

corresponding flow problems for a Newtonian fluid. The dimensionless governing equations for this 

investigation are solved analytically using two-term harmonic and non-harmonic functions. The effects of 

various parameters on the velocity, microrotation, temperature and concentration fields as well as the skin-

friction coefficient, Nusselt number and the Sherwood number are presented graphically and in tabulated forms.  
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I Introduction 
Modeling and analysis of the dynamics of micropolar fluids has been the subject of many research 

papers in recent years. This stems from the fact that these types of fluids may have many engineering and 

industrial applications. Micropolar flu ids are defined as fluids consisting of randomly oriented molecules whose 

flu id elements undergo translational as well as rotational mot ions. Analysis of physical problems using these 

types of fluids has revealed several interesting phenomena and microscopic effects arising from local structure 

and micro-rotation of fluid elements not found in Newtonian flu ids. The theory of micropolar fluids and thermo -

micropolar fluids was developed by Eringen [1, 2] in an attempt to exp lain the behavior of certain fluids 

containing polymeric additives and naturally occurring fluids such as the phenomenon of the flow of colloidal 

flu ids, real fluid with suspensions, exotic lubricants, liquid crystals, human and animal blood. Ahmadi [3] 

presented solutions for the flow of a micropolar fluid past a semi-infinite plate taking into account micro inertia 

effects. Soundalgekar and Takhar [4] studied the flow and heat transfer past a continuously moving plate in a 

micropolar fluid. 

The effect of radiation on MHD flow and heat transfer problems has become industrially more 

important. At high operating temperatures, radiation effect can be quite significant. The effect of variable 

viscosity on hydromagnetic flow and heat transfer past a continuously moving porous boundary with rad iation 

has been studied by Seddeek [5]. The same author investigated [6] thermal radiat ion and buoyancy effects on 

MHD free convective heat generating flow over an accelerating permeable surface with temperature-dependent 

viscosity. Ghaly and Elbarbary [7] have investigated the radiation effect on MHD free convection flow of a gas 

at a stretching surface with a uniform free stream. Pal and Chatterjee [8] perfo rmed analysis for heat and mass in 

MHD non-Darcian flow of a micropolar fluid over a stretching sheet embedded in a porous media with non -

uniform heat source and thermal radiat ion. In all the above investigations only steady state flows over a semi-

infinite vertical p late have been studied. The unsteady free convection flows over vertical plate were studied by 
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Raptis [9], Kim and Fedorov [10], Raptis and Perdikis [11], etc. The radiation effects on MHD free -convection 

flow of a gas past a semi-infin ite vertical p late is studied by Takhar et al. [12]. Ramachandra Prasad and 

Bhaskar Reddy [13] investigated radiation and mass transfer effects on unsteady MHD free convection flow past 

a heated vertical p late in a porous medium with viscous dissipation. Sankar Reddy et al. [14] presented unsteady 

MHD convective heat and mass transfer flow of a micropolar fluid past a semi-infinite vertical moving porous 

plate in the presence radiation. The study of the MHD Oscillatory flow of a micropolar fluid  over a semi -in fin ite 

vertical moving porous plate through a porous medium with thermal radiation is considered by Sankar Reddy et 

al. [15].  

The study of heat generation or absorption effects in moving flu ids is important in view of several 

physical problems, such as fluids undergoing exothermic or endothermic chemical reactions. Vajravelu and 

Hadjinicolaou [16] studied the heat transfer characteristics in the laminar boundary layer of a viscous fluid over 

a stretching sheet with viscous dissipation or frictional heating and internal heat generation. Chamkha [17] 

investigated unsteady convective heat and mass transfer past a semi-infinite porous moving plate with heat 

absorption. Alam et al. [18] studied the problem of free convection heat and mass transfer flow past an inclin ed 

semi-infin ite heated surface of an electrically conducting and steady viscous incompressible flu id in the 

presence of magnetic field and heat generation. Hady et al. [19] investigated the problem of free convection 

flow along a vertical wavy surface embedded in electrically conducting fluid  saturated porous media in the 

presence of internal heat generation or absorption effect. Rahman and Sattar [20] presented 

magnetohydrodynamic convective flow of a micropolar flu id past a vertical porous plate in the p resence of heat 

generation/absorption. Sharma et al. [21] investigated combined effect of magnetic field and heat absorption on 

unsteady free convection and heat transfer flow in a micropolar fluid past a semi -in fin ite moving plate with 

viscous dissipation. Sankar Reddy et al. [22] investigated radiation effects on MHD mixed convection flow of a 

micropolar fluid past a semi infinite plate in a porous medium with heat absorption.  

         Combined heat and mass transfer problems with chemical react ion are o f importance in many processes 

and have, therefore, received a considerable amount of attention in recent years. In processes such as drying, 

evaporation at the surface of a water body, energy transfer in a wet cooling tower and the flow in a desert cooler, 

heat and the mass transfer occur simultaneously. Possible applications of this type of flow can be found in many 

industries, For example, in the power industry, among the methods of generating electric power is one in which 

electrical energy is extracted directly from a moving conducting fluid. Many practical diffusive operations 

involve the molecu lar d iffusion of a species in the presence of chemical reaction within or at the boundary. 

There are two types of reactions. A homogeneous reaction is one that occurs uniformly throughout a given 

phase. The species generation in a homogeneous reaction is analogous to internal source of heat generation. In 

contrast, a heterogeneous reaction takes place in a restricted region or within the boundary of a phase. It c an 

therefore be treated as a boundary condition similar to the constant heat flux condition in heat transfer. The 

study of heat and mass transfer with chemical reaction is of great practical importance to engineers and 

scientists because of its almost universal occurrence in many branches of science and engineering. Deka et al. 

[23] studied the effect of the first-order homogeneous chemical reaction on the process of an unsteady flow past 

an infinite vert ical plate with a constant heat and mass transfer. Muthucumaraswamy and Ganesan [24, 25] 

studied the effect of the chemical reaction and injection on flow characteristics in an unsteady upward motion of 

an isothermal plate and the effects of suction on heat and mass transfer along a moving vertical surface in the 

presence of a chemical reaction. Chamkha [26] studied the MHD flow of a numerical of uniformly stretched 

vertical permeable surface in the presence of heat generation / absorption and a chemical react ion. Seddeek et al. 

[27] analyzed the effects of chemical react ion, radiation and variable viscosity on hydromagnetic mixed 

convection heat and mass transfer for Hiemenz flow through porous media. Ibrah im et al. [28] analyzed the 

effects of the chemical reaction and radiat ion absorption on the unsteady MHD free convection flow past a 

semi-infin ite vertical permeable moving plate with heat source and suction. Demesh et al. [29] investigated 

combined effect of heat generation or absorption and first-order chemical reaction on micropolar fluid flow over 

a uniformly stretched permeable surface.    

However, the problem of unsteady MHD double-diffusive free convection for a heat generating 

micropolar fluid with thermal radiat ion and chemical reaction has received little attention. Hence, the object of 

the present chapter is to study the effect of a first-order homogeneous chemical react ion, thermal radiat ion, heat 

source and thermal d iffusion on an unsteady MHD double-diffusive free convection flow of a micropolar flu id 

past a vertical porous plate in the presence of mass blowing or suction. It is assumed that the plate moves with a 

constant velocity in the flow direction in the presence of a transverse applied magnetic field. It is also assumed 

that the temperature and the concentration at the wall as well as the suction velocity are exponentially varying 

with time. The equations of continuity, linear momentum, angular momentum, energy and diffusion, which 

govern the flow field, are solved by using a regular perturbation method. The behavior of the velocity, 

microrotation, temperature, concentration, skin-friction, Nusselt number and Sherwood number has been 

discussed for variations in the physical parameters.   
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II Mathematical Analysis 
We consider a two dimensional unsteady flow of a laminar, incompressible, electrically conducting, 

radiating and micropolar fluid past a semi-infinite vert ical moving porous plate embedded in a uniform porous 

medium in the presence of a pressure gradient with double-diffusive free convection and chemical reaction. The 

x - axis is taken along the porous plate in the upward direction and y - axis normal to it. The fluid is assumed 

to be a gray, absorbing-emitting but non-scattering medium. The radiat ive heat flux in the x -direction is 

considered negligib le in comparison with that in the y -direction [30]. A uniform magnetic field is applied in  

the direction perpendicular to the plate. The transverse applied magnetic field  and magnetic Reynolds number 

are assumed to be very small and hence the induced magnetic field is negligib le [31]. It is assumed that there is 

no applied voltage of which implies the absence of an electric filed. A homogeneous first -order chemical 

reaction between the fluid and the species concentration is considered. The fluid properties are assumed to be 

constant except that the influence of density variation with temperature and concentration has been considered 

in the body-force term (Boussinesq’s approximat ion). Since the plate is of infinite length, all the flow variables 

are functions of y  and time t  only. Now, under the above assumptions, the governing boundary layer 

equations are 
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where x , yand t are the dimensional distances along and perpendicular to the plate and dimensional time,  

respectively. u and v are the components of dimensional velocit ies along x and y directions, ρ is the flu id  

density, µ is the viscosity, pc  is the specific heat at constant pressure, σ is the fluid electrical conductivity, 0  

is the magnetic induction, K   - the permeability of the porous medium, j  is the micro inert ia density,   is 

the component of the angular velocity vector normal to the x y  -plane,   is the spin gradient viscosity, T   is 

the dimensional temperature, MD  is the coefficient of chemical molecular diffusivity, TD  is the coefficient of 

thermal diffusivity, C  is the dimensional concentration, k is the thermal conductivity of the fluid, g is the 

acceleration due to gravity, and rq  , rK   are the local radiative heat flux, the react ion rate constant respectively. 

The term 0( )Q T T
   represents the amount of heat generated or absorbed per unit volume, 0Q being a 

constant, which may take on either positive or negative values. When the wall temperature T  exceeds the free 

stream temperature T
 , the heat source term 0Q >0 and heat sink when 0Q <0. The second and third terms on the 

right hand side of the energy Eq. (4) represents thermal radiat ion and heat absorption effects, respectively . Also, 

the second and third terms on the right hand side of the concentration Eq. (5) represents Sorret and chemical 

reaction effects, respectively.  
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It is assumed that the porous plate moves with a constant velocity 
pu  in the d irection of fluid flow, and 

the free stream velocity U
  follows the exponentially increasing small perturbation law. In addition, it is 

assumed that the temperature and concentration at the wall as well as the suction velocity are exp onentially 

varying with t ime.  

Under these assumptions, the appropriate boundary conditions for the velocity, microrotation, temperature, and 

concentration fields are  
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where, 
Pu ,

wC  and 
wT  are the wall dimensional velocity, temperature and concentration, respectively. C

 and 

T are the free stream d imensional concentration and temperature, respectively, 
0U  and n  are constants. 

From the continuity Eq. (1), it is clear that the suction velocity normal to the plate is either a constant or 

a function of time. Hence it is assumed in the form:  
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where, A is a real positive constant, ε and εA are very small (less than unity), and 
0V  is a scale of suction 

velocity which has non-zero positive constant. The negative sign indicates that the suction is towards the plate.  

Outside the boundary layer, Eq. (2) gives 
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By using the Rosseland approximation (Brewster [32]), the rad iative heat flux 
rq  is given by 
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where, s  and ek  are respectively the Stefan-Boltzmann constant and the mean absorption coefficient. We 

assume that the temperature difference within the flow are sufficiently small such that 
4T  may be expressed as 

a linear function of the temperature. This is accomplished by expanding in a Taylor series about T  and 

neglecting higher-order terms, thus 
434 34   TTTT                                                                                        (10) 

By substituting Eqs. (6) and (7) in Eq. (4), we get 
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In order to write the governing equations and the boundary conditions in dimensionless form, the following non-

dimensional quantities are introduced.  
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Furthermore, the spin-gradient viscosity  which g ives some relationship between the coefficients of viscosity 

and micro-inertia, is defined as    
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 where   denotes the dimensionless viscosity ratio, in which  is the coefficient of gyro-viscosity (or vertex 

viscosity).   

In view of Eqs. (7), (8), (12) and (13), the governing Eqs. (2), (3), (5) and (11) reduce to the following 

dimensionless form:    
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and Gr , Gc  M , K Pr , R ,  , 
0S , 

rK and Sc denote thermal Grashof number, the modified Grashof 

number, magnetic fie ld parameter, permeability parameter, Prandtl number, rad iation parameter, heat 

generation/absorption parameter, Soret number, chemical reaction parameter and the Schmidt number, 

respectively.    

The boundary conditions (6) are then given by the following dimensionless equations: 
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III Solution Of The Problem 
In order to reduce the above system of partial differential equations to a system of ordinary differential 

equations in dimensionless form, we may represent the translational velocity, microrotation, temperature and 

concentration in the neighbourhood of the plate as  
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Substituting equation (19) into equations (14)-(17), and equating the harmonic and non-harmonic terms, and 

neglecting the higher-order terms of O(
2 ), we obtain the following pairs of equations for  0000 ,,, Cu   

and  1111 ,,, Cu  . 
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The corresponding boundary conditions can be written as 
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Solving equations (19) - (26) under the boundary conditions (27), we get  

  3 61

0 1 3 5 61
m y m ym y yu y a e a e a e a e                                                                    

  yScyymymymymymym
ebebebebebebebebyu 

 876543211
6543211                                                                                                                                                                                                                   

 0 1

yy k e                                                                                                                  

  5

1 2 1

m y yA
y k e k e

n


                                                                                       

  4

0

m yy e 
                                                                                                                  

   34 43
1

m ym y m yAm
y e e e

n
  

                                                                                

  6 3

0 1 1(1 )
m y m y

C y c e c e
 

                                                                                                                    

  3 6 74

1 3 4 6 7

m y m y m ym yC y c e c e c e c e
  

                                                                                    

In view of the above solutions, the velocity, microrotation, temperature and concentration distributions in the 

boundary layer become  
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and the remaining constants are given in Appendix.  

From the engineering point of view, the most important characteristics of the flow are the skin friction 

coefficient fC , couple stress coefficient mC , Nusselt number Nu  and Sherwood number Sh , which are 

discussed below    

Knowing the velocity field in the boundary layer, we can calculate the skin -friction coefficient fC  at the 

porous plate, which in the non dimensional form is given by 
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Knowing the microrotation in the boundary layer, we can calculate the couple stress coefficient 
mC  at the 

porous plate, which in the non dimensional form is given by    
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Knowing the temperature field in the boundary layer, we can calculate the heat transfer coefficient at the porous 

plate, which in non-dimensional form in terms of the Nusselt number Nu is given by 
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Knowing the concentration field in the boundary layer, we can calculate the mass transfer coefficient at the 

porous plate, which in non-dimensional form in terms of Sherwood number Sh is given by 
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where 


xV
x

0Re   is the Reynolds number. 

IV Results And Discussion 
The formulation of the problem that accounts for the effects of chemical reaction, thermal diffusion, 

heat source and thermal rad iation on MHD convective mass transfer flow of an incompressible, micropolar flu id 

along an infin ite vertical porous moving plate embedded in a porous medium is performed in the preceding 

sections. This enables us to carry out the numerical calcu lations for the distribution of the velocity, temperature 

and concentration across the boundary layer for various values of the thermophysical parameters. In the present 

study we have chosen A= 0.5, t =1.0, n = 0.1, and ε = 0.01, while Up, M, K, Gc, Gr, Sc, Kr, Pr,  , R and So are 

varied over a range, which are listed in the figure legends.  
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The effect of v iscosity ratio   on the velocity and microrotation is presented in Fig. 1. It is seen that as 

 increases, the velocity gradient near the porous plate decreases, and then approaches to the free stream 

velocity. Also, the velocity distribution across the boundary layer is lower for a Newtonian fluid (  =0) for the 

same flow conditions and fluid properties, as compared with that of a micropolar fluid. Further, the magnitude 

of microrotation decreases, as   increases. 

Fig. 2 illustrates the variation of velocity and microrotation distribution across the boundary layer for 

various values of the plate velocity pU . It is observed that as  pU  increases, the translational velocity increases 

near the porous plate and it decreases far away from the porous plate. Also, it is observed that the microrotation 

increases, as the plate moving velocity increases. 

For different values of the magnetic field parameter M , the translational velocity and microrotation 

profiles are plotted in Fig 3.  It is observed that as M increases, the velocity distribution across the boundary 

layer decreases, whereas the microrotation increases. 

For various values of the permeability parameter K , the profiles of the translational velocity and 

microrotation across the boundary layer are shown in Fig.4. It is observed that as K increases, the velocity 

across the boundary layer increases, whereas the microrotation decreases. 

The translational velocity and the microrotation profiles against spanwise coordinate y for different 

values of Grashof number Gr  and modified Grashof number Gc  are described in Fig. 5. It is observed that an 

increase in Gr or Gc  leads to a rise in the velocity and a fall in the microrotation. Here the positive values 

of Gr  corresponds to a cooling of the surface by natural convection.  

Fig. 6 shows the translational velocity and the microrotation profiles across the boundary layer for 

different values of Prandtl number Pr  and radiation parameter R . It is observed that as Pr  or R increases, the 

translational velocity decreases, whereas the magnitude of microrotation increases. 

The translational velocity and microrotation profiles against y for different values of R are displayed in 

Fig. 7. It is observed that as R increases, the translational velocity decreases, whereas the microrotation 

increases. 

Fig. 8 displays the effect of the heat generation coefficient   on the velocity and microrotation across 

the boundary layer. It is observed that as   increases, there is a rise in both the velocity and microrotation. 

 Fig. 9 displays results for the velocity and microrotation distributions across the boundary layer for 

different values of chemical react ion parameter Kr. It  is noticed that as the chemical react ion parameter Kr 

increases, the velocity increases, whereas the microrotation decreases. The effect of Soret number So on the 

velocity and microrotation distribution is shown in Fig.10. It is observed that as So increases, the velocity 

increases, whereas the microrotation decreases. 

Typical variat ion of the temperature along the span wise coordinate y is shown in Fig. 11 for d ifferent 

values of the Prandtl number Pr and radiation parameter R. It is observed that as Pr or R increases, the 

temperature distribution across the boundary layer decreases. Fig.12 shows the variation of the temperature for 

different values of   . It is seen that as the heat generation parameter  increases, the temperature decreases. 

For different values of the chemical reaction parameter Kr , the concentration profiles are plotted in 

Fig.13. It is observed that as the Kr increases, the concentration distribution across the boundary layer 

decreases.Fig.14 represents the concentration profiles for different values of Soret number So. It is noticed that 

the concentration decreases, as So increases.  

 

Tables 1-5 depict the effects of the magnetic parameter M , the radiation parameter R , the heat 

generation coefficient  , the chemical reaction parameter Kr and Sorret number So on the skin-frict ion 

coefficient fC , the couple stress coefficient mC , Nusselt number Nu and Sherwood number Sh , 

respectively. From Table 1, it is observed that both the skin-friction and couple stress decrease, as M increases. 

From the analytical results, it can be seen that the rate of heat transfer depends  on the radiation parameter and 

heat generation coefficient and the rate of mass transfer depends on the chemical reaction and Sorret number. 

From Tables 2 and 3, it is observed that as R or  increases, there is decrease in the skin-frict ion, wall couple 

stress and Sherwood number, and there is a rise in the absolute values of the rate of heat transfer. Finally, form 

Tables 4 and 5, it is noticed that as Kr increases, there is an increase in the skin -friction, couple stress and 

Sherwood number. Also, as So increases, there is a decrease in the skin-frict ion, couple stress and Sherwood 

number. But the Nusselt number remains unchanged with the variat ion of Kr and So. 
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V Conclusions 
 The present paper deals with the analysis of the effects of chemical react ion, thermal diffusion, heat 

source and thermal rad iation on MHD convective flow and mass transfer of an incompressible, micropolar flu id 

along a semi infinite vertical porous moving plate in a porous medium. The porous plate was assumed to move 

with a constant velocity in the direction of the fluid flow. The governing equations were developed and 

transformed into a system of nonlinear ordinary differential equations by a regular perturbation technique.  From 

the present numerical study the following conclusions can be drawn. 

 Velocity increases with increase in the viscosity ratio  , thermal Grashof number Gr, modified  

Grashof number Gr, heat generation coefficient  , chemical reaction parameter Kr and Soret number 

So, but reverse trend is seen by increasing the magnetic field parameter M, Prandtl number Pr, 

radiation parameter R and Schmidt number Sc. 

 Microrotation decreases with increase in the viscosity ratio  , Prandtl number Pr, radiation parameter 

R, heat generation coefficient  , chemical reaction parameter Kr and Soret number So, but reverse 

trend is seen by increasing the magnetic field parameter M  and Schmidt number Sc.  

 Temperature decreases with increase in the value of the Prandtl number Pr, rad iation parameter R and 

heat generation coefficient . 

 Concentration decreases with increase in the value of chemical react ion parameter Kr and Soret number 

so. 

 

  
Fig.1 Velocity and microrotation profiles for different values of   

 
  

Fig.2Velocity and microrotation profiles for different values of Up  
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Fig.3 Velocity and microrotation profiles for different values of M 

  
Fig.4 Velocity and microrotation profiles for different values of K  

  
Fig.5 Velocity and microrotation profiles for different values of Gr, Gc & Sc  

  

Fig.6 Velocity and microrotation profiles for different values of Pr & R 
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Fig.7 Velocity and microrotation profiles for different values of R 

 

 

 

 

 

 

    

     

 

 

 

 

 

 

Fig. 8 Velocity and microrotation profiles for d ifferent values of   

 
 

Fig. 9 Velocity and microrotation profiles for d ifferent values of   

 

  

Fig. 10 Velocity and microrotation profiles for different values of So 
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         Fig. 11 Temperature profiles for                                             Fig. 12 Temperature profiles for  

                     different values of Pr & R                                                       different values of   

 

   

  

           

 

 

 

 

 

 

 

 

 

 

 

           Fig . 13 Concentration profiles for                                           Fig . 14 Concentration profiles for   

                         d ifferent  values of Kr                                                               different values of So. 

Table 1: Effects of M on skin -friction, couple wall stress, Nusselt number and Sherwood  number for reference 

values in figs. 3(a) and 3(b).  

M 
fC  mC  

1Re

xNu  
1Re

xSh  

0.0 
1.0 

2.0 

5.0 

10.0 

7.6182 
3.0872 

2.6121 

2.3688 

2.4618 

7.7006 
3.1180 

2.6362 

2.3892 

2.4821 

0.5786 
0.5786 

0.5786 

0.5786 

0.5786 

0.9704 
0.9704 

0.9704 

0.9704 

0.9704 

Table 2: Effects of R  on skin-frict ion and couple wall stress, Nusselt number and  Sherwood number for 

reference values in figs. 10(a) and 10(b).  

R  fC  mC  
1Re

xNu  
1Re

xSh  

0.1 

0.5 
1.0 

2.0 

5.0 

4.0977 

3.2679 
2.6121 

1.5744 

0.4586 

4.1332 

3.2970 
2.6362 

1.5910 

0.4670 

0.1864 

0.4283 
0.5786 

0.7313 

0.8103 

0.9832 

0.9784 
0.9704 

0.9498 

0.9202 

Table 3: Effects of   on skin-frict ion and couple wall stress, Nusselt number and 

Sherwood number for reference values in figs. 11 and 12.  

  fC  mC  
1Re

xNu  
1Re

xSh  

-0.5 

-0.2 
0.0 

0.2 

0.5 

4.3164 

4.2368 
3.7002 

3.1909 

2.6121 

4.3532 

4.2733 
3.7324 

3.2193 

2.6362 

0.1547 

0.1550 
0.3099 

0.4486 

0.5786 

0.9867 

0.9842 
0.9812 

0.9775 

0.9704 
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Table 4: Effects of Kr on skin-friction, couple wall stress, Nusselt number and Sherwood number for reference 

values in figs. 8 and 14. 

   Kr  fC  
mC  

1Re

xNu  
1Re

xSh  

0.0 

0.1 
0.5 

1.0 

2.0 

1.0866 

1.2544 
2.6121 

2.7197 

2.7074 

1.2686 

1.0996 
2.6362 

2.7447 

2.7338 

0.5786 

0.5786 
0.5786 

0.5786 

0.5786 

0.6800 

0.6640 
0.9704 

1.1762 

1.4785 

Table 5: Effects of So on skin-friction, couple wall stress, Nusselt number and Sherwood number for reference 

values in figs. 9 and 15. 

   So  fC  
mC  

1Re

xNu  
1Re

xSh  

0.0 

0.5 

1.0 

2.0 
5.0 

3.0276 

2.6121 

2.1965 

1.3655 
0.5344 

3.0545 

2.6362 

2.2180 

1.3815 
0.5450 

0.5786 

0.5786 

0.5786 

0.5786 
0.5786 

0.9897 

0.9704 

0.9512 

0.9128 
0.8744 
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